c-equivalence of embeddings is different from equivalence and bordism of pairs

Gilberto Francisco Loibel and Roberto Carvalho Engler Pinto*

- (0) Manifolds and maps will be C^{∞} . All manifolds will be compact without boundary. Fix two manifolds N^n and M^m ($n \le m$ are the dimensions). There are several equivalence relations between embeddings. We shall use:
- (a) the embeddings $f, g: N \to M$ are d-equivalent (or simply equivalent) iff there is a diffeomorphism $h: M \to M$ such that $h \circ f = g$;
- (b) f and g are B-equivalent iff their normal bundles are equivalent. This occurs iff there is a bordism of the pairs (M, f(N)) and (M, g(N)), which, restricted to the submanifolds is a product bordism (see [1]).
- (c) In [1], [2], [3] we defined several other relations using surgery on M and studied some of their properties. The most interesting of them seems to be c-equivalence (see definition 2 below).

The main result of this paper is

Theorem A. c-equivalence lies strictly between d-equivalence and B-equivalence.

We shall show this in the case $N = S^1 \times S^1$ and $M = S^1 \times S^1 \times S^1$.

(1) Let $\psi: S^p \times D^{m-p} \to M$ be an embedding and $M' = \chi(M, \psi)$ be the manifold which is obtained by the surgery (of type p) defined be ψ . Let $f: N \to M$ be an embedding. If $f(N) \cap \psi(S^p \times D^{m-p}) = \emptyset$ we shall say that the surgery is away from f. In this case there is a well determined embedding $f': N \to M'$ defined by f.

Definition 1. Two embeddings f, $g: N \rightarrow M$ will be c-related if they are d-equivalent or if there is a surgery, away from f and g, such that f' and g' are d-equivalent.

c-relation is reflexive and symmetric but in general it is not transitive, so we give the:

^{*}This work was parcially supported by FAPESP and FINEP. Recebido em 9/12/80. Versão definitiva em 9/11/82.

Definition 2. c-equivalence is the equivalence relation which is generated by c-relation: f and g are c-equivalent if there are embeddings $f = h_1$. $h_2, \ldots, h_r = g$ $(h_i: N \to M)$ such that h_i and h_{i+1} are c-related (i = 1) $= 1, 2, \ldots, r - 1$).

It should be clear that in general f and g are not c-equivalent if f' and g'are c-related, because all surgeries must be performed on the same M.

If f and g are d-equivalent, they are c-equivalent and it is easy to see that two c-equivalent embeddings are B-equivalent. For embeddings of S¹ into surfaces and into 3-manifolds, c-equivalence is the same as B-equivalence. In these cases we have even more: c-relation coincides with B-equivalence (see [1], [2], [3] for these and others cases).

(2) We now adapt some definitions and results from [5] for our purposes:

Let dim N=2 and dim M=3 and $f: N \to M$ be an embedding. If f(N) is 2-sided in M, it will be called a "surface" in M, then f(N) will be "incompressible" in M if $N \neq S^2$ and $\ker(f_{1*}: \pi_1(N) \to \pi_1(M)) = 0$. We say that M is P^2 -irreducible iff (a) every embedded 2-sphere bounds a ball and (b) M does not contain a 2-sided projective plane.

Theorem. (Waldhausen) Let M be P^2 -irreducible and $f, g: N \to M$ be embeddings such that both are incompressible surfaces. If $g_{1*}(\pi_1(N)) \subset$ $\subset f_{1*}(\pi_1(N))$ then g(N) is isotopic to f(N).

For the proof see [5].

Lemma 1. $M = S^1 \times S^1 \times S^1$ is P^2 -irreducible.

Proof. (i) Let $p: \mathbb{R}^3 \to M$ be the universal covering and $f: \mathbb{S}^2 \to M$ be an embedding. Hence f lifts to an embedding $\tilde{f}: S^2 \to R^3$, so there is a ball $B \subset \mathbb{R}^3$ such that $\delta B = \tilde{f}(S^2)$. From $\pi_2(M) = 0$ it follows that $f(S^2)$ separates M into two components. Let γ be a small arc which crosses $f(S^2)$ transversally. Then y lifts to an arc $\tilde{\gamma}$ which is transversal to $\tilde{f}(S^2)$. One of its end points, say \tilde{a} , lies in the interior of B. Let C be the component of M which contains $a = p(\tilde{a})$. Let us show that $\overline{C} = C \cup f(S^2)$ is simply connected. Since $\pi_1(S^2) = 0$, by van Kampen's theorem it follows that $\pi_1(\overline{C}) \to \pi_1(M)$ is a monomorphism. If there would be a $\lceil \mu \rceil \neq 0$ in $\pi_1(\overline{C}, a)$ it could be represented by a loop μ in the interior of C. Let n be a sufficiently large positive integer. Then $n \cdot \mu$ would be lifted, starting from \tilde{a} , to an arc in R^3 which joins \tilde{a} to a point outside of B without crossing $\tilde{f}(S^2)$. Then μ cannot exist. It follows that \overline{C} lifts to B and $p \mid B$ is a diffeomorphism onto the ball \overline{C} with boundary $f(S^2)$.

(ii) Suppose there is an embedding $g: RP^2 \to M$. Since $\pi_1(RP^2) = Z_2$, we have $g_{1*}(\pi_1(RP^2)) = 0$ and g would lift to an embedding $\tilde{g}: RP^2 \to R^3$. which is impossible.

(3) **Lemma 2.** Let $f: T^2 \to T^3$ be an embedding, then $f(T^2)$ is incompressible in T^3 iff it does not bound in T^3 .

Proof. $\pi_1(T^2)$ and $\pi_1(T^3)$ are isomorphic to $H_1(T^2)$ and $H_1(T^3)$. Let ε_1 and ε_2 be the generators of $H_1(T^2)$ which correspond to the factors of $T^2 = S^1 \times S^1$ and let analogously e_1, e_2, e_3 be the generators of $H_1(T^3)$. For both manifolds, H_2 may be identified with $H_1 \wedge H_1$ with basis $(\varepsilon_1 \wedge \varepsilon_2)$ and $(e_1 \wedge e_2, e_1 \wedge e_3, e_2 \wedge e_3)$ respectively. If f_{1*} is given by $f_{1*}(\varepsilon_i) = a_i e_1 + e_2 e_3 + e_3 e_4 + e_4 e_4 + e_5 e_5 = e_5 e_5 + e_5 e_5 + e_5 e_5 = e_5 e_5 = e_5 e_5 + e_5 e_5 = e_$ $+b_1e_2+c_1e_3$ then $f_{2*}(\varepsilon_1\wedge\varepsilon_2)=(a_1e_1+b_1e_2+c_1e_3)\wedge(a_2e_1+b_2e_2+c_2e_3)$. Hence $f(T^2)$ does not bound iff $\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{bmatrix}$ has rank 2, iff ker $f_{1*} = 0$,

iff $f(T^2)$ is incompressible in T^3 .

(4) Now let G be a free abelian group of finite rank n and let H be a subgroup. Then there is a basis (e_1, e_2, \dots, e_n) of G and there are positive integers k_1, k_2, \dots, k_n , $p \le n$, such that $(k_1e_1, k_2e_2, \dots, k_ne_n)$ is a basis of H (see [4]).

Lemma 3. Let $f: T^2 \to T^3$ be the embedding given by f(x, y) = (x, y, 0). Another embedding $g: T^2 \to T^3$ is incompressible iff g is d-equivalent to f.

Proof. Let (b_1, b_2, b_3) be the generators of $\pi_1(T^3)$, then $f_{1*}(\pi_1(T^2))$ is generated by (b_1, b_2) . By assuming that $g(T^2)$ is incompressible it follows that $g_{1*}(\pi_1(T^2)) = Z \oplus Z$. Then there is a new basis (e_1, e_2, e_3) of $\pi_1(T^3)$ and there are numbers k_1, k_2 such that (k_1e_1, k_2e_2) is a basis for $q_1'(\pi_1(T^2))$. There is also a diffeomorphism $h: T^3 \to T^3$ such that $h_{1*}(b_i) = e_i, i = 1, 2, 3$. For the embedding $h \circ f: T^2 \to T^3$ we have $g_{1*}(\pi_1(T^2)) \subset (hf)_{1*}(\pi_1(T^2))$. By the theorem above $q(T^2)$ is isotopic to $(hf)(T^2)$ and therefore it is d-equivalent to $(hf)(T^2)$ and $f(T^2)$. On the other hand if $g(T^2)$ is d-equivalent to $f(T^2)$ it is also incompressible.

(5) In the lemmas 4 and 5 we put $T^3 = M$.

Lemma 4. Let $f: T^2 \to M$ be an embedding and let $f(T^2)$ be incompressible in M. If M' is obtained by a surgery away from f, then $f'(T^2)$ does not bound in M'.

Proof. A surgery of type 0 produces a new connection, so possibly a bounding surface might be transformed into a non bounding one in M', but the opposite will never happen. By a surgery of type 2 we obtain $M' = M \cup S^3$ and $f'(T^2)$ lies in M in the same way as $f(T^2)$ does. So we only need to analyse surgeries of type 1. By Lemma 3 we may suppose that f is given by f(x, y) = (x, y, 0). Take the neighborhood $U = S^1 \times S^1 \times (-\varepsilon, \varepsilon)$ of $f(T^2) =$ $= S^1 \times S^1 \times 0$, then $f(T^2)$ divides U in $U_- = S^1 \times S^1 \times (-\varepsilon, 0)$ and $U_+ = S^1 \times S^1 \times (0, \varepsilon)$. Take a path λ in $M - f(T^2)$ which joins a point $a \in U_-$ to a point $a_+ \in U_+$. Any surgery of type 1 away from $f(T^2)$ can be chosen away from λ . This shows that $M' - f'(T^2)$ is connected and $f(T^2)$ is 2-sided in M', so it does not bound in M'.

We shall say that an embedding f bounds if $f(T^2)$ bounds in M.

(6) **Lemma 5.** Let $f, g: T^2 \to M$ be two c-related embeddings. If f bounds so does g.

Proof. If f and g are d-equivalent this is obvious. If not, introduce any surgery which produces the c-relation between f and g. Suppose that g does not bound, so by Lemma 4 g' does not bound either. Then the surgery must transform the bounding f into a non bounding f'. This is only possible by using a surgery of type 0. By van Kampen's theorem we see that $\pi_1(M')$ is the free product of $\pi_1(M)$ and Z, $ker\ f'_{1*} = ker\ f_{1*} \neq 0$ and $ker\ g'_{1*} = ker\ g_{1*} = 0$. Then f' and g' cannot be d-equivalent.

Proposition. Let $f, g: T^2 \to T^3$ be embeddings. If f is bounding and g is non bounding then they are not c-equivalent.

Proof. This follows immediately from Lemma 5 and from the definition of *c*-equivalence.

- (7) Proof of Theorem A: It suffices to show the results for $N = T^2$ and $M = T^3$.
- (a) Take f(x, y) = (x, y, 0) and $g = G \mid T^2$ where $G: S^1 \times D^2 \to T^3$ is any embedding of the solid torus. By the proposition of (6) f and g are not c-equivalent, but both have trivial normal bundles so they are B-equivalent.
- (b) Now we shall sketch how one can obtain two embeddings which are c-equivalent but not d-equivalent. Let $D \subset T^3$ be an open cell. Consider two disjoint embeddings $F, G: S^1 \to D$. Let γ be a simple arc joining $P \in F(S^1)$ to $Q \in G(S^1)$, such that $\gamma \in F(S^1) = P$ and $\gamma \in G(S^1) = Q$. Let U, V and W be tubular neighborhoods of $F(S^1)$, $G(S^1)$ and γ respectively, which lie in D. Now take an embedding $H: S^1 \to U \cup V \cup W$ which runs first in U following $F(S^1)$, then it goes through W to V where it follows $G(S^1)$ and finally it goes back in W to U. We may choose H such that $H(S^1)$ does not touch $F(S^1) \cup G(S^1) \cup \gamma$.

Let $f, g: T^2 \to T^3$ be embeddings such that $f(T^2)$ and $g(T^2)$ are the boundaries of smaller tubular neighborhoods of $F(S^1)$ and $G(S^1)$ which are disjoint from $H(S^1)$. It is easy to see that if the knots $F(S^1)$ and $G(S^1)$ are not equivalent than f and g cannot be d-equivalent. But choosing conveniently f and g it results that after a surgery of type 1 along $H(S^1)$

f' and g' are isotopic in $(T^3)'$ so f and g are c-equivalent. For more details see [1].

We want to thank Mr C. Biasi for several suggestions.

References

- [1] R. C. Engler Pinto; Relações de Equivalência entre Mergulhos, Tese de Doutorado, ICMSC-USP, São Carlos, SP, 1980.
- [2] G. F. Loibel & R. C. Engler Pinto; Uma classificação de mergulhos por cirurgia, An. Acad. Brasil. Ciênc. (1980), 52(3).
- [3] G. F. Loibel & R. C. Engler Pinto; A c-equivalência entre mergulhos de $S^1 \times S^1$ em S^3 (to appear).
- [4] C. B. de Lyra; Introdução à Topologia Algébrica (1957), or L. Fuchs; Infinite Abelian Groups, Academic Press.
- [5] F. Waldhausen; On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87, Vol. 1 (1968), 56-88.

Universidade de São Paulo Instituto de Ciências Matemáticas de São Carlos Departamento de Matemática 13.560 – São Carlos – S.P.