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c-equivalence of embeddings is different from
equivalence and bordism of pairs

Gilberto Francisco Loibel and Roberto Carvalho Engler Pinto*

(0) Manifolds and maps will be C*. All manifolds will be compact
without boundary. Fix two manifolds N" and M™ (n <m are the dimen-
sions). There are several equivalence relations between embeddings. We
shall use:

(a) the embeddings f,g : N> M are d-equivalent (or simply equivalent)
iff there is a diffeomorphism h: M — M such that hof=g;

(b) f and g are B-equivalent iff their normal bundles are equivalent. This
occurs iff there is a bordism of the pairs (M, f(N)) and (M, g(N)), which,
restricted to the submanifolds is a product bordism (see [1]).

(c) In [1], [2], [3] we defined several other relations using surgery on M
and studied some of their properties. The most interesting of them seems
to be c-equivalence (see definition 2 below).

The main result of this paper is

Theorem A. c-equivalence lies strictly between d-equivalence and B-equi-
valence.

We shall show this in the case N=S' x S! and M = S! x S! x S'.

(1) Let ¢ :S?x D""?—> M be an embedding and M’ = y(M, ) be the
manifold which is obtained by the surgery (of type p) defined be . Let
f:N—>M be an embedding. If f(N) N y(S? x D" "?)= & we shall say
that the surgery is away from f. In this case there is a well determined
embedding /' : N - M’ defined by f.

Definition 1. Two embeddings f, g: N - M will be c-related if they are
d-equivalent or if there is a surgery, away from f and g, such that f' and g
are d-equivalent.

c-relation is reflexive and symmetric but in general it is not tran-
sitive, so we give the:
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Definition 2. c-equivalence is the equivalence relation which is generated
by c-relation: f and g are c-equivalent if there are embeddings f = h, ,
hy,...,h, =g (hi: N > M) such that h; and h;,, are c-related (i =
=1,2,...,r—1).

It should be clear that in general f and g are not c-equivalent if ' and ¢’
are c-related, because all surgeries must be performed on the same M.

If f and g are d-equivalent, they are c-equivalent and it is easy to see
that two c-equivalent embeddings are B-equivalent. For embeddings of
S* into surfaces and into 3-manifolds, c-equivalence is the same as B-equiva-
lence. In these cases we have even more: c-relation coincides with B-equi-
valence (see [1], [2], [3] for these and others cases).

(2) We now adapt some definitions and results from [5] for our purposes:

Let dm N=2 and dim M =3 and f : N> M be an embedding.
If f(N) is 2-sided in M, it will be called a “surface” in M, then f(N) will be
“incompressible” in M if N # 5% and ker(f,. : n,(N)— n,(M)) = 0. We say
“that M is P*-irreducible iff (a) every embedded 2-sphere bounds a ball
and (b) M does not contain a 2-sided projective plane.

Theorem. (Waldhausen) Let M be P*-irreducible and f,g :N—M be
embeddings such that both are incompressible surfaces. If g,.(m(N))<
< f1{m1(N)) then g(N) is isotopic to f(N).

For the proof see [5].

Lemma 1. M =S! x S! x S! is P2-irreducible.

Proof. (i) Let p : R* > M be the universal covering and f : S>> M be an
embedding. Hence f lifts to an embedding f: $> > R?, so there is a ball
B < R’ such that 6B = f(S?). From n,(M) = 0 it follows that f (S?) separates
M into two components. Let y be a small arc which crosses f (S?) transver-
sally. Then y lifts to an arc  which is transversal to f(S?). One of its end
points, say 4, lies in the interior of B. Let C be the component of M which
contains a = p(d). Let us show that C=C uf(S?) is simply connected.
Since 7,(S?) = 0, by van Kampen’s theorem it follows that 7,(C)— (M)
is @ monomorphism. If there would be a [u] # 0 in 7,(C, a) it could be
represented by a loop u in the interior of C. Let n be a sufficiently large
positive integer. Then n - u would be lifted, starting from 4, to an arc in
R? which joins @ to a point outside of B without crossing f(S?). Then p
cannot exist. It follows that C lifts to B and p | B is a diffeomorphism
onto the ball C with boundary f(S2).

(ii) Suppose there is an embedding g : RP?> — M. Since 7,(RP?) = Z,,
we have g,,(n;(RP?))= 0 and g would lift to an embedding § : RP?> - R3,
which is impossible.
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(3) Lemma 2. Letf : T> - T3 be an embedding, then f (T?) is incompressible
in T? iff it does not bound in T?3.

Proof. n,(T?) and 7,(T?) are isomorphic to H,(T?) and H,(T?). Let ¢,
and &, be the generators of H,(T?) which correspond to the factors of
T? =5! x S* and let analogously e, e,, e; be the generators of H,(T?).
For both manifolds, H, may be identified with H, A H,; with basis (g, A ¢,)
and (e, A ez, eq A e3,e, A e3) respectively. If f,, is given by f,(¢;) = ae; +
= b,-ez + ce3 thenfz*(gl A 82) = (alel S b1e2 + C1e3) A (a2e1 R bzez = C2€3).
Hence f(T?) does not bound iff | “! et has rank 2, iff ker f;,=0,
A a, b, c;

iff f(T?) is incompressible in T3.

(4) Now let G be a free abelian group of finite rank n and let H be a sub-
group. Then there is a basis (ej, e,, ..., e,) of G and there are positive in-
tegers ky,k,,...,k,, p<n, such that (kie,,kze,,...,k,e,) is a basis of H
(see [4]).

Lemma 3. Let f : T>—> T3 be the embedding given by f(x,y)=(x, y,0).
Another embedding g : T* > T3 is incompressible iff g is d-equivalent to f.

Proof. Let (by, by, b)) be the generators of n,(T?), then f,,(n,(T?)) is gene-
rated by (b,, b,). By assuming that g(T?) is incompressible it follows that
g1.(n(T?) = Z @ Z. Then there is a new basis (e,, e,, e3) of 7,(T?) and
there are numbers k,,k, such that (k,e,,k,e,) is a basis for g!(m,(T?)).
There is also a diffeomorphism h : T3 — T3 such that h,,(b;) =¢;,i= 1,2, 3.
For the embedding h.f : T?>— T3 we have g,.(n,(T?)) < (hf ),.(7,(T?)).
By the theorem above g(T?) s isotopic to (hf ) (T?) and therefore it is d-equi-
valent to (hf)(T?) and f(T?). On the other hand if g(T?) is d-equivalent
to f(T?) it is also incompressible.

(5) In the lemmas 4 and 5 we put T3 = M.

Lemma 4. Letf : T?> > M be an embedding and let f(T?) be incompressible
in M. If M’ is obtained by a surgery away from f, then f'(T?) does not bound
in M'.

Proof. A surgery of type 0 produces a new connection, so possibly a boun-
ding surface might be transformed into a non bounding one in M’, but
the opposite will never happen. By a surgery of type 2 we obtain M’ = M U S*
and f'(I'*) lies in M in the same way as f (T2) does. So we only need to ana-
lyse surgeries of type 1. By Lemma 3 we may suppose that f is given by
f(x,y)= (x, »,0). Take the neighborhood U = S* x S! x (—&,¢) of f(T?)=
=8B 81 x D.then, FAT?), divides, U in. U .= 8" %8! x(+60).and
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U,=S5"x8"x(0,¢). Take a path A in M — f(T?) which joins a point
ae U_ to a point a, € U, . Any surgery of type 1 away from f(T?) can be
chosen away from A. This shows that M’ — f'(T?) is connected and f(T?)
is 2-sided in M’, so it does not bound in M'.

We shall say that an embedding f bounds if f(7?) bounds in M.

(6) Lemma 5. Let f,g : T>—> M be two c-related embeddings. If f bounds
so does g.

Proof. If f and g are d-equivalent this is obvious. If not, introduce any
surgery which produces the c-relation between f and g. Suppose that g
does not bound, so by Lemma 4 g’ does not bound either. Then the surgery
must transform the bounding f into a non bounding f'. This is only possible
by using a surgery of type 0. By van Kampen’s theorem we see that (M)
is the free product of n,(M) and Z, ker f{,=ker f,,# 0 and ker ¢,,=
=kerg;.,=0. Then /" and ¢ cannot be d-equivalent.

Proposition. Let f,g : T?>— T3 be embeddings. If f is bounding and g is
non bounding then they are not c-equivalent.

Proof. This follows immediately from Lemma 5 and from the definition
of c-equivalence.

(7) Proof of Theorem A: It suffices to show the results for N = T and
M=T:.

(a) Take f(x,y)=(x,»,0) and g= G| T? where G:S' x D*—> T3 is
any embedding of the solid torus. By the proposition of (6) f and g are
not c-equivalent, but both have trivial normal bundles so they are B-equi-
valent.

(b) Now we shall sketch how one can obtain two embeddings which
are c-equivalent but not d-equivalent. Let D = T3 be an open cell. Consider
two disjoint embeddings F, G : S' — D. Let y be a simple arcjoining P € F(S?)
to Q € G(S'), such that ye F(S')= P and ye G(S*)=0Q. Let U, Vand W
be tubular neighborhoods of F(S'), G(S') and y respectively, which lie in D.
Now take an embedding H :S' — U u Vu W which runs first in U
following F(S?), then it goes through W to V where it follows G(S') and
finally it goes back in Wto U. We may choose H such that H(S') does
not touch F(S')u G(S')u y.

Let f,g : T> - T3 be embeddings such that f(T?) and g(T?) are the
boundaries of smaller tubular neighborhoods of F(S') and G(S') which
are disjoint from H(S®). It is easy to see that if the knots F(S') and G(S?)
are not equivalent than f and g cannot be d-equivalent. But choosing
conveniently f and g it results that after a surgery of type 1 along H(S')
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/" and ¢ are isotopic in (T?) so f and g are c-equivalent. For more details
see 1.
We want to thank Mr C. Biasi for several suggestions.
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