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On the derivations of gametic algebras for polyploidy
with multiple alleles

R. Costa

1. Introduction

1.1. In this paper we obtain some results concerning derivations of a class
of genetic algebras. Let us set down our terminology and notation.

First of all, our base field is the field R of real numbers. All genetic
algebras are algebras over this field and “algebra” means R-algebra,
“linear mapping” means “R-linear mapping”. We adopt Gonshor’s de-
finition: A genetic algebra is a commutative algebra for which there exists
a basis Cy, Cy, ..., C, with a multiplication table satisfying the following
conditions:

If C,CJ= Z lijkck (i,j=0,...,n) then:
k=0 '

(i) Aooo =1
(iii) for i>0 and j>0, 4,3, =0 if kK <max {i,j}.

Any basis of A, satisfying conditions (i), (ii) and (iii), is called a canonical
basis of A. In general, A may have many canonical bases.

It is well known ([10]) that, for a given genetic algebra A, there exists
a unique non-zero homomorphism of algebras w: A — R. This homo-
morphism is defined by w(Cy)=1 and w(C;)=0 (i > 1) and it is called
the weight function of 4. The algebra A is then a baric algebra. The kernel
of w, which is an n-dimensional ideal of A4, has Cy, ..., C, as a basis. This
ideal will be indicated by N.

It is known that the numbers Aygo =1, 4011, ---5 A0mn are, in fact,
independent of the canonical basis of A. They are called the train roots
or shortly the t-roots of A. The proof of this consists in the observation
that these numbers are the proper values of all the linear mappings x> bx,
where b is an arbitrary element of weight 1.
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The concept of genetic algebra was introduced by Etherington
([1],[2)) in order to investigate the behavior of gametic and zygotic
populations, in the case of diploid and tetraploid individuals with one
locus and two alleles. Later, Gonshor ([3], [4]) carried these investigations
to cover the case of multiallelism and polyploidy with mutations. He
showed, in particular, that the gametic and zygotic algebra of such a popu-
lation is a genetic algebra. Nowadays, many genetic systems are described
by such algebras ([10]).

1.2. Let us indicate by G(n+1,2m) the gametic algebra of a 2m-ploid
population with n+ 1 alleles, which we shall denote here by 4, 44, ..., A4,.
This algebra has a natural basis consisting of all monomials of degree m
in the “variables” Ay, 4, ..., A,. Each one of these monomials represents
one of the gametic types of the population. The multiplication of two
of these monomials is an algebraic representation of the distribution of
gametic types obtained by the mating of the gametic types corresponding
to the given monomials. The number of such monomials is (™}"), the
binomial number, and so the dimension of G(n+1,2m) is ("}™). The
basis consisting of these monomials is not a canonical basis of G(n + 1, 2m)
but the set of monomials AY (4y — A;)"...(4Ao — A,)" with iy +
+i; + ...+ i,= min the variables 4,, Ao — A4, ..., Ay — A, is a canonical
basis, as shown by Gonshor ([4]). He showed that these monomials form
a canonical basis, where the multiplication table is given by:

[A8(Ao — A1) .. (Ao = A" ] [AF (Ao — A,)" ... (Ao — A,)"]

_ G THRR) AT (Ag — Ay T L (Ag — At if g+ o =m
0 if i+ jo < m.

9

In particular,
AF(AR(Ao— ArY' ... (Ao — AP =GN ™1 (370 A (Ag — Ar)' ... (Ag — Ay

and so the t-roots of G(n+ 1,2m) are the real numbers 3™~ ! (™) for
j=m,m—1,...,1,0 (in this order). The t-root (3™~ ! ("}7) of G(n+ 1, 2m)
has multiplicity ("%~ "), cf. Gonshor [4]; this is the number of mono-
mials of degree m —j in (n+ 1) — 1 = n variables; or, what is the same,
the algebraic multiplicity of the proper value (3™)~! (™%/) of the linear
mapping x+— Agx, x € G(n+ 1,2m). Especially for n=1, i.e., two alleles
in the locus under consideration, all t-roots are simple.

Of special importance in genetics are the algebras G(rn+ 1,2) and
G(2,2m). They correspond to multiallelism and polyploidy respectively.
We give some emphasis to these two sequences of gametic algebras.
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1.3. Given an algebra A4 over the real field R, a derivation of A4 is a linear
mapping d : A— A such that d(ab) = ad(b) + d(a)b for any a,b in A. If d,
and d, are derivations of A, the linear mapping d,d, — d,d, is also a deri-
vation of A. So the set of all derivations of 4 may be equipped with the
operation (d,,d;)—d;d, —d,d,. This set of derivations is a real Lie
algebra, called the derivation algebra of A (cf. [8]).

We shall be concerned here with finding a basis of the derivation
algebra of G(n + 1,2m). It should be interesting to find the genetic inter-
pretations of the results presented here.

2. Multiallelism only

In this case, the algebras G(n + 1, 2) describe the gametic population
of a diploid and multiallelic population. The natural basis of G(n + 1,2)
is the set of monomials of degree 1, namely Ag, 4, ..., A,. The multi-
plication table is A;4;=1/2 A;+ 1/2 A;, which reads genetically as “the
gametes produced by a zygote resulting from the mating of gametes A;
and A;will be 4;and A4;, with equal probability”. One canonical basis is defi-
ned by Cy= Ay, C;=Ao— A; (i > 1) and now the multiplication table is
C3=Cy, CoC;=1/2C;,C,C;j=0ifi >1andj> 1. The t-roots of G(n+1, 2)
are 1,1/2,1/2,...,1/2. The weight function w of G(n+ 1,2) is given by
w(Co)=1,w(C;)=0(>1)orbyw(4;)=1(i=0,1,...,n). It is well known
that G(n + 1, 2) satisfies the polynomial equation x* = w(x)x for every x
in G(n+ 1,2). This identity may be linearized to give the two variables
identity 2xy = w(x)y + w(y)x.

We prove in this paragraph that G(n + 1, 2) has the greatest derivation
algebra among all genetic algebras of dimension n+ 1 and is the only
with this property. First of all, we consider the class of baric (commutative)
algebras which have a unique weight function.

Theorem 1. Let A be a baric algebra having a unique weight function w.
For every derivation d of A we have wod = 0.

Proof. Call o, the automorphism of A defined by

272 njn
td +...+td +...=¢"

O-t=1A+td+ 2' n' s

for each real number ¢ (Jacobson [8]) where 1, is the identity of 4. Hence
W o g, is an algebra homomorphism from A to R, and is clearly non zero.
By our hypothesis, wo o, = w, for all ¢t € R. If we take derivatives in both
sides of this equality we obtain w. do,/dt = 0; in particular, when t =0,
we have wod = 0.
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Corollary 1. Let A be a baric algebra of dimension n+ 1 with unique
weight homomorphism. Then the dimension of the derivation algebra of A is
not greater than n(n+ 1). In particular for every genetic algebra of dimension
n+ 1, its derivation algebra has dimension not greater than n(n + 1).

Proof. Each derivation maps A4 into the kernel of the weight function,
which has dimension n.

Corollary 2. Let A be a baric algebra with a unique weight function w.
Then the derivation algebra of A can be identified with a subalgebra of the
Lie algebra of matrices (a;j) (0 <i,j<n) such that ay;=0 (i=0,...,n).

Proof. Construct a basis ¢, ¢y, ..., ¢, of 4 such that w(cy) =1 and w(c;) =0
(i=1,...,n). For each derivation d of A, d(c;) doesn’t depend on c¢,.

Proposition 1. The derivations of G(n+ 1,2) are exactly those lmear
mappings d such that wod=0.

Proof. It is enough to prove that, if wod =0 then d is a derivation of
G(n+1,2). In fact, if x,ye G(n+ 1,2), then 2d(xy) = d2xy) = d(w(x)y +
+ w(y)x) = w(x)d(y) + w(y)d(x) = w(x)d(y) + xw(d(y)) + w(y)d(x) + yw(d(x)) =
= 2xd(y) + 2d(x)y and so d(xy) = d(x)y + xd(y).

Proposition 2. Let Ay, Ay, ..., A, be the natural basis of G(n+ 1,2) and
let d;; (i # j) be defined by

A;— A if k=i
d;(4,) = i J
4 {0 otherwise.

Then the elements d;;(i # j, 0 < i, j <n) form a basis of the derivation
algebra of G(n+ 1,2).

Proof. By Prop. 1, each d;; is a derivation. It is enough to prove that they
are linearly independent. Suppose 4;€ R and X 4;; d;;=0 (here
i,j=0,1,...,n and i#j). Then for a ﬁxed k,

(= Z Aijdij(Ax) = ZO Ajdii(Ay) = z;) Axj(Ax— Aj) and
i,J J= J=

itj ¥k itk

j=0

(Z >Ak = ) AjA;. By comparing coefficients we get Axj=0.
ok jtk

The condition wod =0, which characterizes the derivations of
G(n+ 1,2), is still characteristic for the derivations of this algebra in the
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sense of the following theorem, which is similar to a theorem of Gonshor
[4], giving G(n+ 1,2) as the only (up to isomorphism) baric algebra of
dimension n+ 1 such that every linear mapping preserving weight is a
homomorphism of algebras.

Theorem 2. Let A be a commutative baric algebra of dimension n+ 1,
with weight function w. Suppose that every linear mapping d : A— A such
that wod =0, is a derivation of A. Then A is (isomorphic to) G(n+ 1,2).

Proof. We will show that every element a € 4 such that w(a) = 1 is an idem-
potent. In fact, given ae A with w(a)= 1, consider d,: A— A given by
d,(x) = w(x)a — x. We have w(d,(x)) = wiw(x)a — x) = w(x)w(a) — w(x) =
Hence, by our hypothesis, d, is a derivation. Hence d,(a*)= 2ad,(a).
But d(a®)=w(a*)a—a®>=a—a* and dj(a)=w(a)Ja—a=0. Hence a=a’.
Taking now a basis Ay, 4,,..., A, of 4 such that w(4;)=1, we have
w(l/2(A;+ A;))=1 and so 1/2(4;+ A;)=[1/2(4;+ A;)]* from what
follows A;4;=1/2A;+ 1/2 A; and the isomorphism is clear.

3. Polyploidy only

In this case, the algebras G(2,2m) describe the gametic population
corresponding to a 2m-ploid and diallelic population. The natural basis
of G(2,2m) is the set of monomials of degree m in the two variables 4,
and A,. They are A AT ' A,,...,A0AT" !, AT, so the dimension of
G(2,2m) is m + 1. The product of two of such monomials is given by

(A5 AT ) (A AT ) =Gt Y (R CRzi)) A8 AT
k=0
which is an algebraic way of expressing the distribution of probability
for the gametes produced by the zygote obtained by mating the gametes
AL AT and A) AT _

A canonical basis for G(2, 2m) is the set of monomials Ay(4, — 4,)" "

(0 <i <m), with multiplication given by

[A5 (Ao — A" ] [4d (40— A)" 7] =
o JERE A T 0 Al i
0 otherwise.
If we call A§ =co, A5 ' (A9 — A1) =c1, ..., (Ag— Ay)" = ¢y then we

have c;c;=(¢7;)"" (%)) ci+jif i+j<m and 0 otherwise. The t-roots are
f= (") (™) (i=0,1,...,m)and 0 1 =tg>t;=1/2>t> ... >t
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We construct a derivation ¢ of G(2,2m) by defining 6 to be the linear
mapping d(c;) =ic;(i=0,1,...,m). It is easy to verify that § is indeed a
derivation.

A second derivation 7 is defined in the following way:

'I(Ci)=i+—l_ci+l fOI‘ 0 S l Sm = 1 al’ld r’(Cm)= O

i—Livy ,
(Observe that 7 is nilpotent). In order to prove that # is a derivation, it
is enough to prove that #(c;c;) = c;n(c;) + n(c;)c; holds for all i and j. If
i+j>m than c;c;=0 so n(c;c;)=0; on the other hand,

Lj+

T )
nici)e;+ cinl(e;) = #C;‘H (e r.l—l(‘icj-O—l =0

i i+1 J J+1
because i+j+1>m. If i+ j=m, then n(c;c;) = n(cocm) = N(tmCm) =

+1 lity

t.
=twl(cm) =0 and cinlc;) + nlci)e;=c; ———
Jo bt it ]
again because i +j+ 1 =m + 1 > m. Now for the case i + j < m, we must
observe that the sequence t,/(tg—ty), to/(t; —12)y--eslp/(tm—1—tm) 1S

nothing but the sequence 1, 1 —1/m, 1 —2/m, ,1/m. With this, we have

Cj+l+[ C,'+1Cj=0

nicics) = nlcocivj) = nltisjcivj) =
l’A %
— B lipail_ © ~nlc:) =
= li+j Y Ci+j+1 and n(c;)c;j+cinlc;) =
Livj—litj+1

Livy Lj+1 fis1 Li+1
= o e N A e T - 3= CoCitj+1 =
= bt = -

Li—tivy i—bita il L R L e

t: Ly
=( i+1 + j+1 >t,~+,~+1 it We must prove that
Li—livy Tji—ljy

L av) = ties 4 Uit1 we have — M
Livj—Ulivj+1  Li—livg 0=l Livj—litj+1
livjer = livjertlivy _ 4 i Litj+1 __ lisg Li+1
Livj— Livj+1 Livj— Livj+1 Gi—liey  -Ej— ]

(because in any arithmetic sequence o, a,, ... wehave oy + o4 j4 1 = %y g +
+ o4+ 1). This proves that n is a derivation of G(2,2m).

It is also clear that 6 and # are linearly independent.

Theorem 3. Every derivation d of G(2,2m) is a linear combination of o
and n. Precisely, if oy and oy, are the components of d(cy) and d(c,) in
the direction of ¢y, then d=ayon + 0110.
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Proof. First of all, we recall that for any derivation d of G(2,2m), we have
wod = 0, where w is the weight function of G(2,2m). This implies that
for 0<j<m, d(c;) is a linear combination of c,, ..., c,, say d(c;)=

m
=Y oyc;. From c§=c, (again!) we have
i=1

ron

aioc; = d(co) = 2cod(co) = 2cy <Z oCioﬁ) = Z 20;000C; = Z 200t ;¢;.

i=1 =1 i=1

i=1

Comparing coefficients and remembering that t; = 1/2 and t;< 1/2 for
i >2, we conclude that a,, is arbitrary but o, =o0a30="... = 0,0 =0.

‘This means that

(1) d(co) = o190y

From the equality cocl=t1clbwe get, applying d,

m m
®10C1€1 + Co(Z ailci> = t1<Z “i1C1> or

i=1 i=1
m m
AiotaCy + 3, itici = Y. oytyc;. The comparison of coefficients gives
i=1 i=1
the relations:
{0‘10[2 + gty = G4ty
aply = oty ((>2),

from which we deduce that a,; =t,/(t; — ;) oy and o;; =0 for i> 2.
Hence:
19}

I— 1

(2) d(cy) = ay1¢y + a0 3.

Taking now coc, = t,c, we get:

m m
®A10C1C2 + C0<Z ai2ci> = t2<z 0(,~2€i> or

i=1 i=1
m m
a10t3C3 + Z lx,'ztici = Z aiztzci and SO
i=1 i=1

oy2fy = dqal2
®yotz + G3zl3 = A32l2
appt; = apt;  (i>3)

I3

from which we obtain oy, =0, a3, ~7 o0 and o;; =0 for i> 3.
2 " 43

Hence, for the moment, we have the equality
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t
(3) d(cy) = a35¢; + ayo 2

C3
2 =3

Naturally, by repetition of this argument, we will conclude that

lk+1
(4) d(Ck)= otkk(‘k-l- X0 { Ck+1
k—1

for any k <m—1 and d(c,) = dpmCm- We prove now that
(5) akk=ka11(k=1,2,...,m)

by induction onk. The casek = 1is obvious. Suppose now that | <k <m—1
and that we have already proved that o, _ ; ,—; = (kK — 1)a; ;. This means that

t
d(cy—y) = (k— gy ¢y + a0 :

Ck-
fp—1— Ik

From the equality c,c,—; = tyc, We get d(cy)ci—y + ¢ d(ci— 1) = tid(cy)
and so:

t Iy
|:a11C1 + a0 t—zt‘fz]ck—l +c4 [(k— Dotyg cx—1+ a0 ; Ck:l =

1 2

t .
=t [ockkck + %50 ":1 ckﬂ] This gives:

L — T+

Iz
oy 1tk T Ag0 . te+1 Cher T ke — Do, +

17 2

t )
+ %0 et G = b O Ok L g Cx+1 and so:
Ip—1— Ik =T+
ayy + oy k—1) = ay
t t t
2 k i k

ti—ty by =t le— s

The first is the desired equality and the second is an identity for
every k (as in the proof that n was a derivation). The relations (1) to (5) )
show exactly that d =000+ o, 0.

Corollary 1. For any m > 1, the derivation algebra of G(2,2m) is isomor-
phic to the non abelian Lie algebra of dimension 2.
Proof. Clear, since 6 and n do not commute. In fact, on —nd=1.

Corollary 2. The proper values of a non-nilpotent derivation of G(2,2m)
are of the form 0,a,2a, ..., mo, for some non-zero real number o.
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4. Multiallelism and Polyploidy

As we know, G(n+1,2m) has a .can'onical basis consisting of all
monomials Ag(Ao— A)" ... (Ao — A,)" with ig+i;+...+i,=m. The
t-roots are given by
sl i g 1

t =1,t =1/2,...,t-——;—,...,tm=
A ! ) @)

with multiplicities 1,n,...,(**"7 1), ..., ("*» ') respectively.

In order to simplify notations, we denote the variables 4y, Ao — A4, ...,
Ao— A, by Xo,X;,...,X,. So we have the multiplication table of
Gn+1,2m):

(XX XX Xim)
i {(2,:")—1 P X i o B
0 otherwise

The weight function of G(n+ 1,2m) is defined to be 1 on X7 and 0
on the other monomials.

Let us call now V; the subspace of G(n+ 1,2m) generated by the
monomials of degree m — i in the variable X,. So ¥} is generated by X7,
V, is generated by Xg~! X; (i=1,...,n), and so on. Each subspace V,
is the proper subspace of the linear mapping x —» Xgx, x€ G(n + 1,2m),
corresponding to the .proper value t;. We have the direct sum decom-
position Vo @V, @ ... D V,,=G(n+1,2m). Observe also that V,®...®V,,
is the kernel of w. When n=1 (polyploidy only), each subspace V; has
dimension 1, because the t-roots are all simple.

Lemma 1. For any derivation d of G(n+1,2m), d(X3)= A€ V,, that is,
d(Vo) = V.

Proof. We already know that wod = 0. So we may write d(X3)= A + v, +
+v3+...4+Vp_y+v,, with A€ V; and v;€ V; (i > 2). The equality (X7)* =
= X7 implies that 2X{(A+ v+ ...+ Vo1 +0p)=A+ 03+ ...+ Vpy— 1+ Up.
But X§v;=tw; (i=1,...,m) and t, = 1/2, which imply that

A+2t0,4+ ...+ 2t (U1 + 2t 0m=A+0v,+ ... + V,_; + v, and so

UV = V3= ... = Up_; = U, =0, that is d(X7) = A€ V.
Lemma 2. For any derivation d of G(n+ 1,2m) and any 1 <j < n, we have
i 1 i :
Xy X;)=B;+ A WA X ;), where Bj is some element of V; and
Witz

A=d(X}). In particular, dV;) < V; @ V,.
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Proof: Call d(X§ 'X;)=Bj+Cj+v3+...4 Vp_y +m, With BjeV,,
C;eV, and v;€ V; (i = 3). From the equality X3(Xg ™' X;)=1,(X5"' X})
we obtain:

1‘1(Ang_‘1 X_)) + X'(;I(BJ+ CJ+ U3 + ...+ Um) = tl(Bj+ C1+ U3 + ...+ Um),
that iS, A(X'S_IXj)+[1Bj+t2Cj+t3U3+...+tmvm=t1(Bj+ Cj+U3+...+Um).

But A(X7 ! X;) belongs to ¥, so we must have:

1,C;j=1,C; + AXG X)) or
t,'U,' = tlvi (123)
1— L2
v, =0 (=3)
which gives d(X§ ' X;) = B; + . 1 y AXT X))
5]

A repetition of the same argument will prove that for any derivation
d of G(n+1,2m) and any 1 <j,k <m,

1
t, — 13

d(X§72X;X,) = P+ AXG2X;X,)
where P, is some element of V,, depending on X j and X . More generally,
we will have the formulae

AXT PRy X Yo Py b —— AKX Ay, o Xi,)
v 5 tp s tp+1
which describe, at least partially, the action of d on the basis of V,,
for every p<m— 1. Here P; ...; is some element of V, depending on
. I A
Lemma 3. For any derivation d of G(n+ 1,2m) we have
d(Xi1 oo Xim) = Pi| ime Vm.

Proof. We have X3(X;, ... X, )=tu(X; ... X;,) from which we obtain
AX; . X))+ XBd(X, ... X)) = td(X, .. X)) But AX; .. X )=0
because A is a linear combination of monomials like X3~ ' X;. If we de-
compose d(X; ...X;) as vi+va+ ...+ V0u-1+P;...;, with v;eV,
(i=1,....m—1)andP;, ... ;, €V,, wehavet;v; + 0, + ... + tp—1Um-1+
bl i, =01 02+ i+ Uy +Py,) and 50 vy =0,= =0m_1=0.

We need now a better understanding of the elements P; .., (2<p<m)
which appeared above.

|

T TN T T Y T T
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Lemma 4. For any derivation d of G(n+ 1,2m) and any monomial
X372X;X, in V5, we have:

1

ly—1I3

AR 1 m— m— m—
d(Xg 2XJ-X,‘)=?2—|:(X0 'X;)B.+ (X§~'X,)B;] + AXT2X;X,),

where B; and By are those elements of Lemma 2.

Proof. Take the equality (X7 ' X)) (X7 ' X)) =t,(X7? X ,;X,). By deri-
vation, we obtain:

m— m-— 1 &l )
(X57'X;)(By+ Co) + (X5 ' X)) (B; + Cj)=f2(ij+t2—_t3A(X13 2X;X,)

where C, and C; are those elements of Lemma 2. But (X7~ 'X;)C, and
(X5~ 'X,)C;are in V3, hence we must have (X3~ 'X;)B,+(X§ ' X,)B, =
= t2 ij. )

Lemma 4 is the first induction step in the following:

Lemma 5. For any derivation d of G(n+ 1,2m) and any monomial
X3 X, ... X, in V, (2<p <m) we have the following recurrence relation:
dXg "X, ... X;) = ti [P;

iyieipoy
14

(X371 X:,) +

+ B, X3~ VX, X, ]+ —,I—A(XE””X,-l )

tp_ p+1
Proof. Start with (X{;’“”‘“)X,.I...XiP‘l)(Xg‘IXip)=tp(X{;'“’X,-l...Xip)
and use induction.

Remark. The recurrence relation expressed in lemma 5 can be resolved
to give the following explicit formula for d:

dAXT?X,;, ...X;)= ti f X37PX, ...X,...X, B+
p j=1
=+ —1————A(X{)""’X i, --- Xi,), where A indicates absence.
tp_ tp+1

The preceding lemmas describe the action of a derivation on the
canonical basis of G(n + 1, 2m). These formulae have some indeterminates,
which are the elements A4, By, ..., B, of V;. Let us call this sequence the
characteristic sequence of the derivation d. Hence, given a derivation d
of G(n + 1, 2m) we can associate to it an element of the vector space (V;)"*!
(direct product of V;, (n+ 1)-times). Conversely, given any element of
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(V)"*!, we define a derivation d of G(n + 1,2m) in the following (recurrent)
way: If we give (4, By, ..., B,) in (V})"*", then d(Af)= 4, d(A7 ' X,)=

1 _ " 1 _
AXTX), dXT2 X X,)=—(X37'X;)B,+
t1—1ts 5]

=Bl+

+(X'(;"le)Bj+t—lTA(X3'2Xij), and so on. The proof that this d
2713
is a derivation offers no difficulty.

On the other hand, the correspondence d~ (4, By, ..., B,) is linear,
as it becomes clear by looking to the formulae above. As we can see easily,
the zero derivation corresponds to the sequence (0,0, ...,0).

A basis for the derivation algebra is obtained by standard ways.
If we take B, = ... = B, = 0 than we will have n derivations corresponding
to the choices 4= Xg 'X; (i=1,...,n). These derivations are all nil-
potent. (These derivations look like # in theorem 3). Then taking 4 =0,
B;= X3 'X;,B;=0 (j # i) we obtain another n derivations, which look
like 6 in theorem 3. The remaining derivations appear when we take
A=0, B;=Xg 'X; (j#1i), B,=0 (k # i). These are nilpotent. We have
proved

Theorem 4. The derivation algebra of G(n + 1,2m) has dimension n(n + 1).
In fact it has a basis consisting of n diagonalisable derivations and n* nil-
potent derivations.

Remark. One of the referees has simplified the proofs in our earlier
version of this paper, by proving that a genetic algebra with weight function
w over any field of characteristic 0 whose t-roots 7,4, ..., Yon. are all
different from 1, satisfies wod =0 for all derivations d. In the case the
field is R, this result appears as a particular case of our corollary to th.1.
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