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Degenerate minimal surfaces in R*

Chi Cheng Chen* and Célia Contin Gées

§0. Introduction

Recently, Hoffman and Osserman [6] have studied degenerate mi-
nimal surfaces in R* in great details. In this paper we continue the study
from a different point of view. We first analyse the geometry of the complex
quadric Q, in CP? by looking at its intersections with hyperplanes in
CP3, as studied in [6], but we emphasize on their intrinsic aspects and
their relations with the euclidean geometry in R* since each point in Q,
represents an oriented plane in R*. Most important of all, we will show
that there are natural ways to assign normal directions to each intersection
so that when we study degenerate minimal surfaces in R* there are natural
normal vector fields to facilitate understanding the second fundamental
form. Finally, we relate the generalized Gauss map to the curvature
ellipse which is an important tool for the study of surfaces of codi-
mension 2, so that we give an alternative proof of a classical theorem
of Eisenhart [S] which gives a characterization of 2-degenerate minimal
surfaces.

§1. Preliminary

The quadric in CP? is defined to be _
el e 2=1{Z2eCP}Z2 + Z; + Z3 + Z2 =0
Each point of Q, can be viewed naturally as an oriented plane in R*,
generated by its real and imaginary parts:
(]2) X=’(x1’x2’xsex4), Y= 0’1’}’2,}’3,}’4)
where x;+iy;=z;, l <j<4.
To each orientable minimal surface in R* given by the immersion

(1.3) x: M? > R4,
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the generalized Gauss map
(1.4) [¢]: M? > Q,
is defined by

ox Lax

(1.5) ¢='(gg—lﬁ—n,

where (= ¢+ in is the conformal structure on M defined by isothermal
parameters (&, 7); x is said to be degenerate if its Gauss image lies in some
hyperplane in CP?, and is said to be h-degenerate if h is the largest
integer such that the Gaussian image lies in a projective subspace of
codimension h. Therefore there are only three kinds of degeneracy: 1-de-
generate, 2-degenerate and 3-degenerate. It’s known [6] that 3-degenerate
minimal surfaces in R* are just planes. We will, therefore, only concentrate
on l-degenerate and 2-degenrate minimal surfaces in R*.

§2. The geometry of the quadric Q,

1) It’s known [6] that the intersection of Q, with a hyperplane H
in CP3 is congruent in Q, to the one by assuming H to be determined by

(2.1) CZ 5 Z, =0
with
(2:2) @ = jr, 0 < n <l

For t=1, S=Q, n H is the union of two projective lines:
Ll:Zl_iZZ:O,l.Z3‘_Z4=0
(23) LZ_:ZI =F iZZZO, IZ3—Z4=O

with only one common point: [0,0, 1,i], and S has constant curvature
K=2.
For 0<tr<1, S is isometric to the quadric Q,:

(2.4) L FRTR L g F e

in CP3, where

(2.5) =

Now set

(2.6) ;:Z“L=2ba=¢ o
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which identifies O, with Q, = {ZeCP?/Z}+ Z3+ Z3=0). Through
the identification,

ce-mfi(e-2) (o )]

2.7) EL0 1,0
{=we[l,—1i,0]
A
betwen C and Q,, we see that the Fubini-Study metric on CP?
i ] Z ndZ?
(2.8) e
|Z[*

induces a metric in C given by

u4 2
(2.9) 420 A AR o 2R TP

k 2
: P+ =]+
(l, kl_l+

Using the formula for the Gaussian curvature

ldl]? =22 ldl .

~ ,‘2
210 K = 20lop 1
s
Where (1 = ('i“’ 5 (‘Tz (5(_; , We get
3
b !
(2.11) el

(JZ1*+ 2% [¢P + 1)

From (2.11) and the fact that

& i \ : e
@A 1L+ P 22 = Pl L2
|Z4] | 2| 1Z,] 2] !S!+kvs|+1
ZiP+IZLF + K2 = g (L + 2 P+ 1)
7 !

for { #0, we therefore obtain the Ness’ formula [7, p 60] for the Gaussian
curvature on Q,:

2 UZiP+|Za + |22
(!Z >+ |§2\2 +k2}23|2)3
To determine the extremum of K, note that K depends only on
r=| (| Studing the function

(2.13) K=2%
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r2+%r+1

i bl

r =0

we find that K achieves its maximum at |{|=1 and its minimum at
{=0 or {=o0. And we obtain the result of Hoffman-Osserman [6]:

max K =2 — k2

(2:15) y 1
MmN — —?.

Furthermore, from (2.9) we see that ds? |, _, =ds?| 1 and there-

tore i Ki(l)= K<%)

Calculating the area for D= {{e C/|¢ | <1} we find
(2.16) A(D) = 2n.

Hence S can be viewed, intrinsically, as in Figure 1.

0<t<1
Eigc

2) Since each point in Q, represents an oriented plane in R* and
isometries on Q, are induced by isometries on R*, 0(4), we now study S
in terms of the 4-dimensional euclidean geometry.

For t=1, S decomposes in two complex projective lines. We take
one of them, say,

(217) L Zz == iZl, Z4 = l‘Z},
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(2.18) Zi=a+if, Zy=vy+id.
Then the homogeneous vector
(2.19) RB 2508, 8 Ve i 7y
satisfies
(2.20) X=(x,—=B,9,—-93), Y=(f,00,7)
Set
(2.21) V=0, —a —f), W=(3,~v —f,0)

natural orthogonal complements to X, Y in R* Then
{2.22) V+iW=[Z;,—iZy,—Z,,iZ,]

represents the oriented plane normal to (2.19) and describes a complex
projective line in Q,:
(2.23) G SRl eeany, )

We can conclude now that

Proposition 2.1. For each complex projective line in Q,, there is a natural
correspondence to another complex projective line in Q, such that any
two corresponding planes are mutually orthogonal in R*.

For 0 <t < 1, we will show that there exist two natural orthogonal
normal fields defined on S. We start with some algebraic considerations.
Let

(2.24) el Zs BN TV = BT,
Write ‘
(2.25) Zi— X 1Y
with
(2.26) X = (i o X, 8, Hmm (94 o Vs, Ha)
where Z;=x;+iy;, 1 <j<4. |
Define
(2.27) Ny Il T 252 22,00

N2 =Im (7224, 7421 ,0, 7122)

It’s trivial to see that
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Y Vo
Let 7 be the canonical projection from R* to the XX, — plane.
Then we have

Lemma 2.2. Im (Z,Z,) = 0 < det <x1 x2) =0

Lemma 2.3. Im (Z,Z,)=0<n(X) e n(Y) are linearly dependent.

Since

Ny = (X3 — X395, X3y, — X1Y3,X1Y2 — X3)1,0),
(2.28) Ny =(Xp4 — X4y5, Xy, — X 4.0, %9, ~ x1,),

it can be proved that if x,y, — x,y, =0 then N, and N, are linearly
dependent.. Together with Lemmas 2.2, 2.3 we obtain
Lemma 24. N, and N, are linearly dependent if and only if n(X) and

n(Y) are linearly dependent.

Furthermore, by straightforward calculation, we have

Lemma 2.5. (N;, X)=0=(N,, Y) for j=12.

Now in case

(2.29) Z}+ 23+ 253+ 23=0, Z,=it Z,
for 0<t<1, we have

(2.30) 22+ Z3+(J1-F2Z,=0

and

(2.31) s i/ et X3 Uh}z’\/l_f y3)

are orthogonal and possess the same positive norm.
Since Wn(Z; /T~ Zs /T =P 2323, 2. 20520 5 Hiiie

Lemma 2.6. N, will never vanish if (2.29) holds.
And, in this case, with
(2:32) A= e s = (58
and
Xt+xd+x3+ 3 =yt + 3 + 3 + 023
(2.33) Xi¥1 + Xa¥p + X3y — P xgpy =0
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we have

Lemma 2.7. (N, ,N,>=0 if (2.29) holds.

Combining these results and the fact that the directions of N, and
N, are independent of the choice of the homogeneous coordinates, we
conclude that

Proposition 2.8. For 0 <t <1, there are two natural unitary normal
vector fields, ny, n,, defined on S, such that

a)ingdin,

b) n, / N, and

) ny ) N, when Im(Z,Z,) #0.

In order to get a more precise and useful description of the normal
fields we set

o Z,

Mz S i Sepae
{234 v LB S B

gty ML e

Then w = : 1% and it can be easily seen that

(ZI’ZZ7Z_%Z4) =
(2.35)

. 1 Lo i Limt 1 it
R Ry e 2 ity 2 ] x
- 12)<2< 1+rw>2<+1+r“>’1+r”’1+r">

and, at Z, —iZ, # 0, n, and n, are parallel to

(2.36) H=0QRew 2Imiw, (1 -1 tw!® =i(tuin, 0)
= (—2tImw, 2tRew, 0, (1 — 1) !w!z + (1 4+ 1))

respectively, which satisfy obviously (i}, %,) = 0 and

230 == P w2 A P &

Remark. The directions of 7, and 7, extend naturally over Z,—iZ,=0
to the directions of (0,0, 1,0) and (0, 0,0, 1), respectlvely since w extends
naturally to o« at Z, =iZ,.
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§3. 1-degenerate minimal surfaces in R*

Let x: M?> > R* be an 1-degenerate minimal surface. Without loss
of generality (see [6]), we may assume its generalized Gauss map satisfies:

(3.1) $a =it 3
for some 0 < < 1.
Set

(32) g= d)B Sl l¢4 (] ol [ d).}

b, — ip, ¢y — i,

which is a meromorphic function on M. Comparing (2.35), ¢ can be
written as

. - i k1
e 2 Tl P K el on W e

Set

{3.4) fOdl= (¢, — igy)dC
which is a global holomorphic differential on M. Then the induced metric
(3.5) ds? = 4% | dbl®
i1s given by
s cbop ppitrss. L z e
7 Qs 4
(3.6) | £ 12 i 1
il i Ol 1 2 4
4 { el +<1+ ) |’|}
And the Gaussian curvature K given by the formula (see [4])
| 2
(3.7) [ e 4%
: l¢|
can be computed to be
(3.8)
etV (1 :
i 4 04 20 gl gp ez U0 .
K:_l()lg!(]+t)4 ‘ (1+T)
Bl T+ +20+D)|glP+0-02]gl*3

From (2.36), (2.37) and (3.6), setting g = u + iv, we get that

Ny=(=2u,—-2v,—(1 =0)|g]*+ (1 +1),0)
(39) Ny = (=2t0,2tu,0,(1 — )| g > + (1 + 1)
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are two normal vector fields defined off the isolated set: ¢, — i¢h, = 0.
with

(3.10) N LN -

NG =N L= (L= 2l 2 B 1% +r)2=£2%%£
Furthermore, l

(3.11) o ks

1
—_— Ny = —=
6720 lbinciali sV

are two mutually orthogonal unitary normal vector fields which extend
over all M.
To study the induced second fundamental form we set

(3.12) Wk I
il T e Gl O

which form a local tangent frame for x. Note that

AN o L8 N éN, o
< (‘\C—z > i < (‘\5 »el>e2 + <T762 €)=
I L 1>|(u:Re f + u:Im f |e, +
7 el R R (eI 8
it B Sl — uIm f — v,Re f
gl 4l usIm f — v.Re 6’2/ 4
AN\ e
<‘w2> =L{_r< i I )(vaef'—%u:Imf‘)el—F
cé / 1 a3k tisibes : y
+t<1 — :;;!{J‘Z)(vélm.f— u:Ref>e2},

A el Lt , .

(5n>_7{_<1 pme ) ><L§Re_/+uilm‘f>e1+
1 — 1 :

+<l+ﬁ+:|g|2><vélm.f—u:Re‘f>ez},

N 1 i _
2o i (B AL |

<Pn> /l{t< 1+tg‘>< “A_RC/JFR_Imf>FI+
e ; ‘
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Therefore we obtain

(A", AYS = (A"e;, A%e,) + (AMe,y, A™e,) =

L ONLY (NG YN | /(8N (aN Y\ _
AR TP gc '\ ok on '\ on 2
4 ri2 1 Loy 2
(3.14) Hie bl 2
2isa e\ T el )
l’2 | f !4 2 Th t . 2
A qry =L 1) || b ,
< ate i Gl U
(A™, A™) = (A™e,, A%e;) + (A™e,, A™e,) = 0,
(A, AY = (A", A™Y + (4™ 4™ =

o dule e bbbl (o dufpabaliat e
=SEU R g el el I

From (3.14) we see immediately: (4", 4" ) — (A", 4") >0 and for
any unitary normal vector -

n=n,cosa+ nysena, (A" A") = cos? a (A", A"Y + sen® a (A", A",

Therefore we have

Proposition 3.1. The two natural unitary normal vector fields n,, n, de-
fined in (3.11) satisfy

(3.15) (A™ 4™y < (A" A™S < (A™, 4™

for any unitary vector field n normal to x.

And since (4, 4) = — %K we have

Proposition 3.2. The two orthogonal unitary normal vector fields

(3.16) V= \/2 (n, + ny), W= l/;(nl — ny)
satisfy
(3.17) (AAD SEARLG 7 -

Now, if we look at the problem of stability intrinsically, following
the arguments of Barbosa do Carmo [1,2], we get:
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Theorem 3.3. Let D be a simply connected domain of an 1-degenerate
minimal surface in R*. If the area of the generalized Gauss map on D is

less than 3;41(7, where k is given by (2.5), then D is stable.

Proof. Since the generalized Gauss map is a branching covering on its

image and it’s known [4] that d$* = — K ds? is the induced Fubini —
Study metric on the image, the Gaussian curvature
e

by (2.15). From (3.4) and (3.10) in [2], we compute that if the Gauss image
has area less than §4Lk2 then the first eigenvalue /, with respect to
ds* on D is greater than 2. The rest of the proof then follows the same
argument in [1].

Remarks.

I — For t =0, we have k = 1. This gives the same result in [1], which is
sharp. It would be interesting to know whether our result is sharp for
arbitrary general r. If it were true, then the result obtained by Barbosa —
do Carmo [2] for minimal surfaces in R* would therefore be sharp also.

2 — From our discussions in this section, we see clearly that 1-degenerate
minimal surfaces in R* possess many properties similar to those in R?,
as observed first by Hoffman-Osserman [6].

§4. 2-degenerate minimal surfaces in R*

It’s known [6] that any 2-degenerate minimal surface in R* is a
regular complex analytic curve lying in C? = R* with respect to some
orthogonal complex structure on R* Now let

4.1) Y=({f.g): M* > C*=R*

be a regular holomorphic curve, where M is a Riemann surface and
C*=R?@® i R? is the canonical identification to R* Then the real coor-
dinates of Y are given by

4.2) ' x = Re(f, =i, g, —ig).
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And with respect to a local complex parameter { = u + iv, the
generalized Gauss map is given by

(4.3) o) = (£, =i "0, g0, —ig' Q).
Writing

(4.4) - fO=a+if gO=y+id

in real and imaginary parts, then ¢ = X +iY with

(4.3} X=(pB70), Y=(f,—aé,—7),

which satisfy :

(2.6) (X,Y)=0, =Y | flon

It’s easy to see that
(47) N1=(_5,—%/))’0()a NZI(’V’_(Sa_asﬂ)

are normal to x and are mutually orthogonal. Then

(4.8) sy i
VS I

form a local adapted frame for x. To calculate the second fundamental
form, using the Cauchy-Riemann equations

gy = Bv’ N _ﬁu
il g =y
we get
(4.10)
Anlel = i?, ﬁyu+yﬁu+(sa >€1 3<ﬁ(su_a'yu_5ﬁu+au>82#

Anzel e i3 Yy — /f(3 Yoy ar 5/3 )el __< ﬁyu O((Su o1 (Sau i Vﬁu)eb

n o
A 262——

Anlelz %(—d'})u-i‘ﬂ() +W 5ﬁu>e1 <ﬁ'))u+(1(> Vﬂ >€27

1
ﬁyu+ yﬂu+ (xu)el iy F(ﬁau Y 5ﬂu+ yau>62’
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and

<A"1,A"1> u <A"Z,A"Z> s

" 12 L fffrrgrg// i f'if—//g-/g/r} 25

"

@.11)

= Z1#na)a ¢ g
LAt dn i
Therefore, we have the Gaussian curvature

(4.12) A= Al

for any unitary normal vector n. Summing up, we have

Theorem 4.1. Let x : M?> > R* be a 2-degenerate minimal surface in R*.
Then, with respect to any orthonormal normal vectors, v, w, the second

fundamental form satisfies

(4.13) @ AT b gy 6 R
(4%, 4" = 0,

where K is the Gaussian curvature of the surface.

Remarks.

1 — From (4.7) we see that y=(f.g) is orthogonal and isometric to
gb (g, —f) as 2-degenerate minimal surfaces in R*. We thus conclude
that | K|=|K *|, where K * is the normal curvature of x. In fact, this
is a characteristic property for holomorphic curves in C2.

2 —If M is simply connected, then, using a fixed uniform. parameter,
we can construct global unitary normal vector fields.

3 — The property (4.13) is, in fact, also characteristic. We will explain
it in the following discussions.

Finally, we investigate the relation between the generalized Gauss
map and the curvature ellipse. Given a minimal immersion x : M? —» R*,
for each pe M, the curvature ellipse is defined to be

(4.14) Elp) = {B il

where B is the second fundamental form. If we choose {e,, e,! an ortho-
normal base for TpM, then for X =cos e, +sin0e,, B(X, X)= cos 20
B(e,, e )+ sin 20 B(e,, e5). Therefore: we get easily:
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Lemma 4.2. E(p) is a circle if and only if B(X, X)L B(X,Y) and
| B(X, X)| = | B(X, Y)| for any orthogonal base {X,Y) for TpM (i.e.
X1 Y and 'X\_|Y|>0

éx f'x>_ G

: : o ; B ‘
For isothermal parameters { = ¢ + in, (2 o

& Bx e
= 0 = A nd
B(aé’ ("n> &on

&% i 8x Fx+i<(’2x F_x>_ﬁ_x_+B<Fx (’X)
PE T P \OEE TORipE DB R Fl o P

(4.15)

G ?xz,ix_>ix+ <92 ﬁ>ﬁi+3< (’X>
&ty AT NOitw 0E [ fC fEcy’ oy ) on i

where 1 = B_x = P_x . Furthermore, from
ac Cy
Gl 5 (x ax
s and hEC ]

0 = cn lels cn
we get

2 2 A

i oken’ on
4.16) : LY T a2y i)i>

o )T " \egen 7/

Together with Lemma 4.3, we have

Proposition 4.3. E(p) is a circle if and only if the global holomorphic form
4
(¢, §)dC* or Z di(O*dC* vanishes at p.
k=1

Proof. It’s sufficient to note that

Aoct e éx  0x ox ﬁx)
bR LR RS 3 T L
B((’*é” ﬁ{)‘LB(ﬁﬁ’ 8n)an ’ <ﬁ§ 2

A e i e A e
e a2 |~ oz

@x g
-|2(% %))

gl — 3oy "

iff (¢, ¢) =

Corollary. The curvature ellipses associated to x are circles everywhere
or only at isolated points.
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Combining Prop. 4.3 and the recent results of Hoffman-Osserman
[6], we now give an alternative proof of the following.

Theorem 4.4 (Eisenhart [5]). Let x: M? — R* be a minimal surfuce.
Then x (M) is 2-degenerate if and only if all the curvature ellipses are circles.

Proof. Consider the formula (see [6]):

¢ = %(1 + 9192, i1 — 9192), 91 — 92, —i(g, + g2)).

Without loss of generality, we may assume that f never vanishes. Thus
we see easily:

(¢.¢)=0<g,=0o0rg;,=0

This means g, = constant or g, = constante, ie. x (M) is 2-degenerate.

On the other hand, let n, be a unit normal vector which represents
the semi-major axis of the curvature ellipse, and n, be the unit orthogonal
complement to n, in the normal plane. Using an orthonormal base
{ey, e, for the tangent plane such that

”1//3(81»6’1) and n, / Ble,,e,),

then, since B(e,,e,) L Ble,,e,) and ! B(e,,e,)! > ! B(e,.e,)!, by strai-
ghtforward calculation, we obtain

A Ay =0 Ble, e )%, (A" 40 = 2| Ble, .2,) 2

and (A" A = 0.
Thus we have

Proposmon 4.5. The major directions of the curvature ellipse diagonalize
the A operator defined by {A(v) Jow )= (A" AV,

Together with Thm. 4.4, we have

Corollary. For a minimal surface x : M* — R*, x(M) is 2-degenerate if
and only if at each p € M there exist an orthonormal base {v,w' for the
normal plane such that (4.13) holds.

Remark. This investigation of the relation between the generalized Gauss
map and the curvature ellipse leads to a generalization of the curvature
ellipse for surfaces with higher codimensions. Definitions and some
applications are given in Chen [3].
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