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Green function behaviour of critical Galton-Watson
processes with immigration

Bernhard Mellein*

1. Introduction

Let {X,] be a Galton-Watson branching process allowing immi-
gration (GWI) and {p,,p,,...} and {go,q,,...} its offspring and immi-
gration distributions respectively. In this paper we are concerned only
with the critical, aperiodic and irreducible case, i.e. we assume throughout
that

Z kpk = l,
k=1

gcd {keN|p, >0 =1

and
every state of the state space N, of {X,! can be
reached from every other state,

where N = {1,2,...} and Ny = {0, 1,2,...}. The two latter conditions are
fulfilled, if, e.g, 0<p, <1 and 0<gy<1 (see [8]). Furthermore we
assume that :
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P,(i,j) be the n-step transition probability from i to j (written P(i, j) if
n=1). and for i#j let (see e.g. [1], p. 31)

1Pn(laj)=P(Xn:]’ Xk#i’ k= 15""n_1!X0:i)a neN'
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In Section 2 we shall study the asymptotic behaviour of the Green
function of the GWI

G(i,j) = ZP(IJ

which exists if y> 1 (in this case the GWI is transient [6]), giving the
expected number of visits of {X,} to j, starting in state i.
If y <1 the GWI is null-recurrent and it makes sense to investigate

B ="3"PLDT#* ] Lje s
n=1

which is the expected number of visits to state j between successive visits
to state i. In Section 3 we will obtain some information on this quantity.

To get a fairly complete description of the asymptotic behaviour of
the Green function of the GWI let us recall that Pakes [7] has demons-
trated the following results (relation (2) is stated incorrectly in the cited

paper):
n— o j=0
and
lim "1 G(i, j) = «” " 'T(y — 1)}, jeN,,

i— oo

where y>1 and {0;|jeN,} denotes the invariant measure of {X,],
satisfying

0 = Gj = Z Hkp(k,j), jG NO’

k=0
and being uniquely determined by

3) 0, = lim n’P,(i,j), i,je N,.

n—oo

Finally, in Section 4 we shall be concerned with the corresponding
functionals of the time-reversed GWI.
2. Asymptotic properties of the Green function

In this section we will prove

Theorem 1. Let y > 1, 0 < A < oo. Then
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and
lim G(j,j)) =1+ B.

JTtoo
The proof is based on the following local limit theorem, given in [4].
Moty Whignbis i+ 2 =
4 A et Wy—1)/2 AR bl
( ) Pn(la]) on {J/ll exp { on } el <o<n \/U)
(n — 00; sup i/n, sup j/n < «),

where I, is the modified Bessel function of order p, and the following
estimate established in [3]

5) sup P (i, j) < C(in) %2, i, ne N,
j=0
where ¢ =min(l,y) and C is a finite constant.

Proof of Theorem 1. Let £¢>0 and 1 <i# j. We break the sum defining
G into the form

GG, j) = SG, j, &) + T, j, &),

where
[£]] o
S, j, e) = Z Pl ) and S iliye) — Z P.(i.))
n=1 n=[gi]+ 1

and estimate, using (5),
el] i
(6) S R B 6 S IR

n=1

Since j,n— oo and j/i— 4, the following conditions are satlsfled by the
indices in the sum T{(i,}, ¢):

im<e "t and jin<ilie<(l+d)e

if i and j are sufficiently large. Equation (4) then yields, as i, j— oo, j/i— 4,
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Now recall (6) to deduce, as ¢|0,

~ lim G(i,j)=%/1”””/2f x~texp {—x(1+A)},_, (2x /) dx
100, ]
i% ), jli=A g

ATD2 1+ A4 £ A2 =42} A
~af—1) W } '

But the latter expression (found e.g. in [5]) coincides with the limit in the

first part of the theorem. The second part being evident, the theorem is

proved.

The case j— oo, i/j—0, excluded in Theorem 1, will be treated in
Theorem 2. It requires some preliminaries.

Lemma 1. Let ¢ > 0. There exists j, = jo(e) such that, for all inr.egerj =1p-

P(r,k) < &fj, for all 0 <r <j/3 and k > j.

Proof. Let Q(n,s) be the coefficient of x* in <Z pmx'")" (i.e. the one-
m=0

-step transition probability of the imbedded Galton-Watson process),
and j, k and r be as above. In view of the facts

0@, ) < M(i—s)2s, i>s,
([2], p. 538), and
lim sP(0,s) = 0,

§— 0

which is obvious from (1), one sees, in combination with
P(n,s)= ) PO,m)Q(n,s—m), n,seN,,
m=0

that

RPrik) = U/Zs] P(0,s) O(r,k—s) + Zk: P(0, s) O(r, k—s)
s=0 - g

s=[j/3]1+1

< dusup . L0, 1)+ sups B(0)s)

(k—j/3)<i<k Jl3 =s=<k

<Mj32 4+ sup P(0,s) < ¢fj,

j/3<s<k

for all j>j,, jo=jo(e) appropriately chosen.
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Exactly as Kesten, Ney & Spitzer [2] we now define the stopping
times

min {k |keN, X, >}

{ ; , jeN.
o0, if no such k exists J

) = {
Since there are no absorbing states it follows that [im X, = o« as. and
hence that T(j) is a.s. finite. ik

Lemma 2. Let ¢> 0, y > 1. There exists j, = jo(¢) such that, for all j > j,,

P(X’I‘(j/3):k|XO = l) S &, fOr al] IS]/3, k Z]

Proof. Choose K such that for all ieN,, > G(i,j) < Kn. That this is
=31
possible follows frorh Theorem 1 and the observation that G(i, ) < G(j, ),
i,j€ No. Now let j, = jo(¢/K) as determined in Lemma 1 and i, j,k be as
in the proposition. An obvious modification of a result in [2], p. 538,
gives
1j/31
P(Xyim=k|Xo=1< Y G,rP(rk).
r=0
Recalling the choice of K and j, and applying Lemma 1 leads to the desired
bound.
Obviously, the following result is a refinement and generalization of (2).

Theorem 2. Let y> 1. Then
lim & RGN —)

J=i00, =0

Proof. For £¢>0 and i <j/3 we decompose G into

G(i, j) = SG,j, &) + TG, J, €)
where

[e)] %
SG.j,8) = ), PJfi,j) and TG je)= Y Pfij)
n=1 n=[gjl+1
and first turn to an estimation of S(i, j, ¢), once more (to obtain the first of
the following inequalities) applying a result of Kesten, Ney & Spitzer [2],
p- 539. Setting U(i, j,r) = P(X yj3,=r| Xo=i) and using the Kronecker
()
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S, j,e) < ). UG, j,r) [8(r,)) + S, j, €)]

r=j/3

=UGjj)+ Y UGj,r) Sr,je)

r= 3

< Uli.j.f) + sup S@,j ¢)

r=j/3

< UG+ C'/e,

the last inequality following from

[ej] [ej] AL ] i
Mrhe < ¥ sup Phrsi< € ) (ol C' Jejr, r,jeN,
n=0 s=0 n=1

where we have used (5). Lemma 2 now yields
lim lim S(i,j, &) = 0.

el0 .jfcx;

i/j—=0

Finally, the behaviour of the summands of (i, , ¢) is dealt with as in 4),
hence, as j— oo, i/j—0,

e et o i i
fdiong T (an) e"p{ an}

- [al(y»)] 7! J x~"exp {—1/x}dx, as j— 0, i/j—0

[ee]

- [al(y)]~* f x'"? e *dx a8 e 1l

0

= [oI(] ' T-1) = 4.

Corollary. Let y > 1. Then
lim P(There is a neN with X,=j| Xo=1i)= B/(1 + p), i€ N,.

Jj— o
Proof. Observe that G(i, j)= P(There is a ne N with X, =j| X, = i)G(j, j)
and apply Theorem 2.
3. Expected sojourn times under a taboo.

As mentioned in Section 1, if y <1, the state space N, of the GWI
{X,} forms a null-recurrent class, i.e. recurrence to any given state occurs
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with certainty (hence each state is visited infinitely often with pro-
bability one), yet the relative frequency of visits to any given state tends
to zero as time approaches infinity. Thus an examination of the quantity
{G(i,j) introduced in Section 1 is meaningful.

Theorem 3. Let y < 1. Then

(7) lim GG, j)j' 7" = [0'T(y)] 7%, ieN,,
J—
(8) lim GGHP ' =0T -, jeN,
9) lim GGQ,j). =it
L,jow,i#]
i/jj=A>0

Proof. Due to irreducibility and (null-) recurrence standard results for
Markov chains (see e.g. Karlin & Taylor [1], pp. 35-42) yield ,G(i, j)= 0;/0;
and the theorem follows on observing that

(10) lim j* =78, = [&T ()] !

Jr e

(Mellein [4]).

Remark. The GWI {X,] is null-recurrent whenever 7 < 1, however the
cases y <1 and y=1 exhibit quite different features:

a) Suppose that the process is started in the origin. Relation (7), with
i=0, then indicates that the expected number of ‘visits to state j# 0
before a first return to the origin® becomes small if 7 < 1 and j tends to
infinity, it approaches a positive limit-if y= 1.

b) Suppose that the process is started a long way from the origin.
Relation (8), with j = 0 and large i, then states that on the average visits to
the origin occuring before a first return to the starting point are “con-
siderably more frequent” when y < 1 than in the case y =1 (the mean
number of such visits to the origin is unbounded (as i — o) in the former
case and bounded in the latter case).

¢) Relation (9) indicates a sort of “drift-free oscillatory behaviour”
of the process in the case 7 = 1 which contrasts with the “attractive nature
of the origin region” if y < 1; started on a high level the process will more
often visit states on the origin side of the starting state than those of the
opposite side, when y < 1, while in the case y = 1 the process is as likely
to start wandering out to + oo as it is to head toward the origin.



24 Bernhard Mellein

4. The time-reversed GWI

Pakes [8] introduced the time-reversed GWI {V,!, ie. the Markov
chain on N, whose joint probability P(V, =i,,....V, =i | V,=i,) is
defined as the (existing and nondegenerate) limit

m P(X,_,, =i, o X, =
where 0 <n; <...<n and i, i, ...,i,€ Ng. It is .easily seen that the
n-step transition probabilities of {V,] are given by

n)
Rn(i’j) T HJP”(], l’/(),. l’,je NO’

where {0;] is the invariant measure (3) of {X,!. Clearly, 15
nullrecurrent if y <1 (as {X,] is) and transient if y > 1 and has
{0;} as its (unique) invariant measure. Furthermore it is known [8] that
{X,/n} and {V,/n] have the same limiting distribution.

We observe that the Green function behaviour of {¥,! also coincides

n)
with that of {X,]: when y > 1, let H(i,j)= Y R, ) and, when 7 < |
n=0

define ;H(i, j) analogously to ,G(i, ). Clearly
0
H(,j) = -()—JG(j, i)

and hence if i, j behave as in Theorem 1 or as in Theorem 2. then it follows
from Theorems 1 and 2 and (10) that H(i, j) ~ G(i, j). Since {V,! and {X,!
possess the same invariant measure, ;G(i, j) = ;H(i, j).
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