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On the uniqueness of the maximizing
measure for rational maps

Ricardo Mahné

I. Introduction

If f is a continuous transformation of a compact metric space X.
the Dinaburg-Goodman-Goodwyn theorem states that

hAf) = sup{h(f) e u(f)

where I1,,,(f) is the topological entropy of f, .#( ) is the space of f-invariant
probabilities on the Borel g-algebra of X and h,(f) denotes the p-entropy
of f..A measure e .#(f) such that h,(f)=h,,,(f) is called a maximizing -
measure. It is not difficult to exhibit examples of continuous maps without
maximizing measures {see [2] p. 148 for instance). More delicate is the
construction of C" diffeomorphisms of compact manifolds (I <r< x)
not having maximizing measures (Misiurevicz [6]) and it is still unknown
whether there exist similar examples in the C “ class. Even more particular
are the continuous transformations having a unique maximizing measure.
Several interesting classes of transformations with this property are
known, like transitive finite type subshifts, basic sets of Axiom A diffeo-
morphism and automorphisms of compact groups. The purpose of this-
paper is to prove that this property holds for analytic endomorphisms
of the Riemann sphere.

Theorem. Analytic endomorphisms of the Riemann Sphere C=C U | r!
with degree >2 have a unique maximizing measure. '

Analytic endomorphisms of the Riemann sphere are given by rational
functions f (= 2)/Q(z), where the polynomials P and Q have no common
roots. Its degree (that coincides with its topological degree) is defined as
the maximum of the degrees of P and Q. According to the results of Gromov
[4] and Misiurevicz-Przyticki [7], its topological entropy is given by the
logarithm of the degree.
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Given an analytic endomorphism f :C— C with dcoreeldi—2 ¥ an
f-invariant measure y, with maximum entropy has been constructed by
Freire, Lopes and Maié [5] (and, according with the theorem above, is
the unique one with this property). Let us briefly explain the construction
of py. Given ae C denote by z{a), ..., z{"(a) the roots of the equation
f"(z) —a=0. Define a probability u"(a) by

* 1
'u( )(a) = W Z ()Zyn(a) &
i=1

In [5], it is proved that for every a e C (with two possible exceptions easy
to describe), the sequence of probabilities {u"(q) |n>1] converges in the
weak topology to an f-invariant measure p s» independent of a. Moreover
it is proved that, with respect to x,, f is a K-system and that K, is the
unique f-invariant probability satisfying

(1) pyf(4) = duy(A)

for every Borel set where f|A is injective. This characterization will play
a key role in the proof of the Theorem above, whose proof we now proceed
partially outline.

Suppose that u is an f-invariant probability. Assume that f isabsolutely
continuous with respect to y, i.e. that u(f{A4)=0 if u(4)=0. Then it is
not difficult to find a p-integrable function g S [0, + ) such that:

() uf(A4) = J Jdu

A

for every Borel set 4 = C where f/4 is injective. Using a convenient par-
tition of C, it is easy to prove that:

3) f S

(5}

Much more delicate is the proof of the formula for its entropy:

C

4) J log J,du = h,(f).
Then, if u is a maximizing measure:

(5}

(5) logd = h#(f)=f log J,du < log J

J,dp = log d.
B
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Therefore:
(6) logj J dy = -[ log J,du = log d.

[ C

But this implies that J, = d u-a.e.. Hence, from (2) and the absolute con-
tinuity off, it follows that y satisfies property (1) and we conclude that =y, .
However, to prove the theorem, we have to introduce some changes in this
method in order to make it work also when f is not absolutely continuous
with respect to u. Without the absolute continuity hypotheses, (2) cannot
be expected to hold. What can be actually proved is that there exists a
Borel set 4, = C, with y(A;)= 0 and such that (2) holds if /4 is injective
and 4 < 4,. Equality (3) must then be corrected. It still holds replacing =
= by < and that is enough to get (6) using (5). Then we can reach the
conclusion J,=d p-a.e. With some minor technical work, this property
still implies that u has property (1), but is slightly less immediate than in
the absolutely continuous case. Let us remark that (4) will be in fact proved
only when p is ergodic and h,(f)> 0. This is not an obstruction in our
scheme because when a transformation has more than one maximizing
measure, it has more than one maximizing ergodic measure ([ 2], Prop. 13.3).

The core fand most difficult part) of the proof is the entropy formula.
As the rest of the proof of the Theorem, it becomes much simpler to prove
in the absolutely continuous case.

There is a criteria, due to Bowen [1] and based on the method used
by Parry to prove the uniqueness of the maximizing measure for finite
type subshifts, from which this property can be deduced for finite type
subshifts, basic sets of Axiom A diffeomorphisms and group automor-
phisms. We weren’t able to deduce our theorem from this criteria. It is
not clear at all whether the measure u, satisfies the very strong uniform
estimates that are required by that criteria.

II. Proof of the Theorem

Let f :C o be an analytic endomorphism of degree d > 2. To for-
malize the sketch of the proof given in the introduction, the first step will
be to prove existence of J, and A4,.

Lemma I1.1. For every ue ,/%(f) without atoms, there exist a p-integrable
function J,:C—[1,4+ ) and a Borel set A, with u(A,)=1 such that

9 u(f (A) = J Jdp
3 A

for every Borel set A = A, such that f/A is injective.
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Proof. Using that u has no atoms, it is easy to construct a family of disjoint
topological disks (i.e., sets homeomorphic to a disk) not containing critical
values of f and satisfying y(( % U,-> > =0.Letgl (U, >0 =1....4d
i=1,...,m,bethebranchesof f ~'/U;. Thenif 4 = U,is a Borel set, we have
(1) 1(g$(A)) < w(A)

for every j because

ugi(A4) < u(f ~1(A) = wA).

In particular, every g“’ transforms measure zero sets in measure zero sets.
Then, by Radon-Nykodim theorem, there exist u-integrable functions
H{Y :U;- [0, + o) such that

(2) 1(g$(A)) = j HYdu
A

for every 1<i<m, 1<j<d and every Borel set 4 < U,. Define

=1 U UV T = e s

xeU Bitx 0

From (2) it follows easily that u(A4) = 0 or u(A,)= 1. Moreover, (1) and (2)
imply:

J HYdp < w(A)
A

for every Borel set 4 = U;. Hence, H(x) <1 for a.e. xe U,. Without
loss of generality, we can then assume that

3) H(x) < 1
forall 1<i<m, 1<j<d, xeU, Define J,:C—[1, +c0) as
4 Jux) = HP(f (x) !

if xed, ng?(U;) and

J(x)=1
if x¢ A,. The deﬁmtlon of A, grants that H{"(f(x)) # 0 in (4). Moreover,
(3) 1mp11es that J (x) =1, To verify (*) is sufficient to consider the case

when 4 is contained in a set g’(U;) n 4,,. To obtain from this the general
case observe that if 4 = 4, is a Borel set and f/4 is injective, then the sets

AP = gP(f(A) A U))
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satisfy
(%) UAP=Anf*lJU
i,Jj
6) UfA“—f UU
and
(7) fAPY O faP) =&

if (i, j) # (k, ). The first two equalities are trivial. To prove the third suppose
that the intersection is # J. Then i =k because fAM U, and
f(AP)NU,. Take y in the intersection. We can write y —f(xl)—/(r,
with x, € 4", x, € 4/". Since f/4 is injective, it follows that X; = x,. Hence,
A" n A # &. This means ¢'(U;) n g (U,) # & that implies j = ¢ com-
pletmg the proof of (7). From (5), (6), (7). it follows that:

)= T ufA4?) =Y VJMﬂ=J Jﬂu=fh@.
N g Uap i

This completes the proof of the reduction step.
Suppose now that 4 < g¥U;) n A4,,. Set

S, = {xef(4)| Hx) = 1/n)}.
The property 4 = A, implies that
U 8. = f(4).

n=1
Moreover, the definition of H{’ implies:

S,) = J dp = f H{(x) (H{(x) ™ du(x) =
S Sy

n

:J\ H(l)( ayt g;l))d'u f Judu
S 95(S,)

n

Henge:

n= oG N> oG

u(f(A4) = lim u(S,) = lim J Jdu
4)(5‘)

By the monotone convergence theorem, it follows that J, 1s integrable on

U 955, = gP() S.) = g(f(4) =

n=1 nz1
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and

n=r oo

f Judp = lim f Judp = u(f(A))
A g}“(s’.)

A,,=C. Applying the Lemma to H1, We obtain J, and 4, . Then it is
easy to see that J,=/J, +(1—-2)J,, and 4,= A, satisfy the required
properties.

(>}

Corollary. f S die="d:

Proof.

j Jbp== Z J e =% Judu=
=~ L]

(5 95U, i gU) A,

=2 ufgU) nA4,) <Y u(fg(u,)) =
] e

= Z (Z Hf(g(U))) = dZ w(U;).

Lemma I1.2. If ue . #(f) is ergodic and h(f)>0, then:

hu(.f)=f log J dy.

C

Proof. Endow C with the standard Riemann structure. Then, if || (f")(2) ||
denotes the norm with respect to this structure of the linear maps
(f")(2) : T.C- Tjn,C, we have

a=1" i :
(Y@ = TT £ (]
=0

Denote by d( - , - ) the metric on C associated to this Riemann structure.
We shall need several lemmas to complete the proof of 11.2. The first one
concerns the integrability of log || /|| and the Lyapounov exponents of f.

Lemma I1.3. For every ergodic nwe M (f) with h(f)>0, the function
z—log|| f'(2)]| is w-integrable and

* f g | 1G] dute) = -+

C

h(f).
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Moreover,
* l r ’
(A lim  — log || (f")(x) || =f log || f'(2) ] du(2)
i Waitioa s U] =

for y—a.e. xeC.

Proof. The function log || /' || is obviously measurable and upper bounded.
Then, since u is ergodic, either log || f'| is not u-integrable and then

n—> o n= oo

Nl
(1) lim L log | (/"Y(x) I = tim — Y log | () =
n n =y

for u—ae xeC, or log| f'| is u-integrable and:

- tm g 47109 = [ 18] "

C

for p-a.e. xe C. When (1) holds, the Lyapounov. exponent of Flis —
By Ruelle inequality [9], this implies h,(f)=0, contradicting the hypo-
thesis. Then log || /' [ is u-integrable and (2) holds. Clearly, (2) and (**)
state the same property. Moveover, (2) implies that the Lyapounov ex-
ponent (with multiplicity 2) of f is

x=j log ] /' d,.
C

Using again Ruelle’s inequality, we get h,(f) < max {2y,0!. From h,(f)> 0,
we obtain y >0 and then

hf) < 2% =2 J log | 7' d,-
E s

Coi'ollary. If z4 is a critical point of f, the function z— log d(z, z,) is p-in-

tegrable for every ergodic pe H(f) with el

Proof. The p-integrability of z— logd(z, z,) follows from the fact that
it is bounded below by a constant times log | f'(z) |.

Lemma I1.3 and its Corollary will be used to prove the following
result that is the key step in the proof of IL2.

Lemma IL4. If ue #(f) is ergodic and h(f)> 0, there exists a partition
2 of C and a sequence of partitions Ry < R, < ... satisfying the following
properties:
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and

n=> % oo

J Jdp = lim J Jdp = u(f(A)).
A 95%(S,)

A,,=C. Applying the Lemma to y,, we obtain J,, and 4, . Then it is
~easy to see that J,=2J, +(1 —2)J,, and 4,= 4, satisfy the required
properties.

Corollary. J Jdinsd

(D)

Proof.

f Judp =3 J iy = o=

c L g}”(U,-) LJ g}i)(U,i A A“

=2 ufgU) nA4,) <Y u(fg™Uu,) =
i j DA

=2 Quf@UI = dY uU,.

Lemma IL.2. If ue #(f) is ergodic and h(f)>0, then:

h(f)= f log J dp.

C

Proof. Endow C with the standard Riemann structure. Then, if || (f"Y(2) ||
denotes the norm with respect to this structure of the linear maps
(f")(z) : T.C> Ty, C, we have

Pl

@1 =TTl
j=0
Denote by d( - , - ) the metric on C associated to this Riemann structure.
We shall need several lemmas to complete the proof of 11.2. The first one
concerns the integrability of log || /|| and the Lyapounov exponents of £

Lemma I1.3. For every ergodic HEM(f) with h(f)>0, the function
z—log|| f(2)|| is w-integrable and

i

& JIWHthMMHZ S ).
C
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Moreover,
L) 1 ’ o 4
() lim - log || (f7Y(x)|| = J log || 12| dut2
n=>+tec N &

for p—ae. xeC.

Proof. The function log || /' | is obviously measurable and upper bounded.
Then, since u is ergodic, either log|| f'|| is not u-integrable and then

nat oo

i ] Nl
(1) lim —-log [ (f"Y(x)| = lim — 2 log | f(fixN | = —x
R ot oo j=o0
for u—ae xeC, or log| f'| is u-integrable and:

o) tim L iog | (77709 = f log | /' | du

(D)

for u-a.e. xe C. When (1) holds, the Lyapounov. exponent of f is — .
By Ruelle inequality [9], this implies h,(f) = 0, contradicting the hypo-
thesis. Then log|| f | is u-integrable and (2) holds. Clearly, (2) and (**)
state the same property. Moveover, (2) implies that the Lyapounov ex-
ponent (with multiplicity 2) of f is

x= J log| 1| d,-

C

Using again Ruelle’s inequality, we get h(f) <max {2y,0}. From h,(f)> 0
we obtain ¥y >0 and then

9)

i 22 f log || f'|

(5

d,.

Coi'ollary. If zy is a critical point of f, the function z— log d(z, Zo) is p-in-
tegrable for every ergodic pe #(f) with Al V>0

Proof. The p-integrability of z— logd(z, z,) follows from the fact that
it is bounded below by a constant times log || /'(z) .

Lemma I1.3 and its Corollary will be used to prove the following
result that is the key step in the proof of IL2.

Lemma I1.4. If pe /(f) is ergodic and h(f)>0, there exists a partition
2 of C and a sequence of partitions Ry < R, < ... satisfying the following
properties:
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o0

a) \/ f ™) is ‘the Borel c-algebra of C.

b) If 2, = \/ fI2) and we denote by P,(x), R,(x) the atoms of

j=0
P, and R, containing x, then, for every n>0 and p-a.e. x, f maps
R,(x) bijectively onto almost all 2,( f (x)) and 2 (x) = R, _ ,(x) N P(x).

) \/ @, is the Borel g-algebra.

n=0
d) The p-entropy of ? and R, is finite.

Before proving .this lemma, we shall show how it is used to complete
 the proof of I1.2. By properties (a) and (d) of IL.4, in order to prove I1.2
it is sufficient to show that the sequence of functions:

BiX) = — - log W)

converge in #' to the p-integral of log J,. Set:
WP 1(f (X))

F =1
el
Then:

- i e P, (PN 1 n
Pulx) = Rl Z log (gn i :f’“ —IIOgH(g’(f (x) =

1 !
= L% i - Liog wasreon
i=0 i

But since the p-entropy of 2 is finite, the function x— |log u(#(x))| is

p-integrable and its integral is the y-entropy of 2. The f- mvarlance of u
implies that the same is true for the functions x — | log u(2( f "(x )) |- Then
the last term converges to zero in .#'. Our problem is now reduced to
show that the sequence of functions:

i ns 1 b
— Fyaipd
" .:ZO n—] f
belong to #' and converges in £ to the integral of log J,. In order to

insure this, it is enough to prove that the functions F, are in 2 !'and con-
verge in ' to log J,, because if this is true, we write

1 =1 3 = : 1 n=l '
o j;o R o 71 j;) (F,,_J—longu)cfH-? ,;o {log't,) !
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and by the ergodicity of u the last term converges in %' to the integral
of log J, and the first term satisfies:

|
e

” ( =1 log‘]u)’ “1

1 1
HE=5 h j=o

Uzl

that converges to zero if F,—logJ in #'. To prove this convergence
write:

M2y 1(f (X)) Aihop HZ,-1(f (%)

F i i
i e W () PR
o _l .u('%n— l(x) ) Q(X)) l ,u(gno l(f(x)))
T G RRT
i TR T GO ki MRV 04 C A FEIE D))
WA, — (x)) W2, -1 (f (X))
l :u(f(Aumgn—l(x)))
TR T

Observe that:
j WA, _ (x) N P(X))
€

(R - 1(x))
But by I1.4 (c) we know that H(?/#,,_,)— 0 if n— + oc. This shows that
the first term in (1) converges to zero in #'. The same technique can be
used to show the convergence to zero in ! of the second term. However,
this case is slightly more delicate. Take an atom Pe # and R € %, such
that f maps R bijectively onto P. Consider the partition .# of P with
atoms f(4,NR) and f(4; N R). Consider also the partitions .#, of P
whose atoms are those atoms of 2, contained in P. If # denotes the Borel

o-algebra of P, it follows from 114 (a) that \/.#,= % and obviously
0

log

d ST (e PR, 1(x) N g)(x))‘d
G J- ¢ e R S

= H/P|R,_,).

Mo< M <.... Define a probability u, on # by uy(S)= w(S)/u(P). It
is easy. to check that:

log AN OMED | 4y = y(PIH, (M) ).
L‘O‘g il el



36 Ricardo Maiié

The map f/R : R— P satisfies u((f/R)™1(S)) < u(S) for every Borel set S
contained in P. Hence:

log KA (X)) N A(f (x)) WA (x) O M (x))

f ot e T = A ol e o B
= W(P)H,, (M| M),

Now observe that if xe R " 4 »» wWe have:

MAf(X) N f(A,NR) = 2(f(x) " f(4,nR) =

= f(4, o B fx))

Then, using that (A, N R)= u(R), we obtain

M (A, 0 R(x)) S WA (X)) (] (x))
f log = oey. | )~ f S e L

< W(PH, (M].M,).

Since f ~'(P) contains d atoms of %, we conclude that

() f | log & (fu ((f;, (mfg?"(x | du(x) < du(P)H (M| A).
0 1(P) n\.

Given ¢ > 0 take a set S that is a finite union of atoms of % (say k atoms)
and such that u(S°) < ¢/(2d log 2). Since H,(A|.M,)— 0 for every atom P,
it follows from (2) that we can choose N such that if » > N then

[ Dog Ml i
()

HZ,(f(x)) k
for every atom Pe % contained in S. Then
o log KU (4u 0 A(x)
L o M | =

if n > N. Moreover, since the partition .# contains only two atoms, (2)
implies that

log W (4w 0 Z,0) |,
ff ‘(P)I ' W2,(f (x)) | du(x) < du(P) log 2.
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Then
A0 9?
@) J | log 0L ‘du(x ) < d log 2 u(S9) 37
i ? o f(x)

From (3) and (4), it follows that the second term in (1) converges to zero
in #! as we wished to show. To complete the proof of IL.2, it remains
to show that the third term in (1) converges to log J, in £'. But

U (X)) = W(R(x) N A,) < p(f " (A, 0 R(X)) =
= u(f (A, O R (X))
Then

(5) u(f (A4, 0 R,(x)) e

WA ,(X))

Moreover,

pf(A N R _ 1 ravinet Lo 4 W0ah
(6) ,ll(:@,,(x)) ,Ll(,@,,(x)) J ﬁg(x) wai u(@n(x)) . ud .

Then (6), together with the fact that \/9?,, is the Borel o-algebra, im-
plies that

u(f (A, 0 R,(x))

7) = J (%)

‘ W) '

in ' (also for a.e. x, but this will not be used). But J ()= 1" for aie w
and the same is true for the functions x — u(f (A4, N Z,(X))/(Z,(x)) by (5).

Hence, (7) implies that

u(f (A, 0 R(X)
H(Z,(X))

log = log " J [x)

in &L

Now we shall prove Lemma 11.4. We shall need the following pro-
perty:
Lemma ILS. For all 0 <k <1 there exists a continuous function
p :C— [0, + o) satisfying the following properties:

a) There exist constants G >0, x>0 such that:

p()ZG

T

d(beine )2,

1

H

Where Xi,...,X,, are critical points of f.
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b) If x is not a.critical point of f and d(y, x) < p(x), d(y,, X) < p(x), then
df 30, fG2) 2k || f'(X) | di1,y2).

Proof. If x is not a critical point, let p,(x) be the maximum positive number
such that f is injective when restricted to the disk {y |d(y, x) < p(x)]. Set
p1(x)=0 when x is a critical point. It is easy to see that the function
p1 : C— R is continuous, bounded away from zero on compact sets not
containing critical points, and, using that, nearby a critical point, f acts
as z—z¥ with 2d — 1> ¢ > 2, that in a neighborhood of a critical point,
x; is bounded below by Gd(x, x;)*, where G, and o, are positive. Therefore,
there exist 4 >0, o« >0 such that:

(1) PI(X)ZA

i

|

d(x, x;)*

1

for all xeC. We claim that there exists a continuous function
po : C— [0, + o0) satisfying (a), upper bounded by p, and such that

) IOV =k 0]

if d(y, x) < po(x). To construct p,, we take disks D, ..., D,, centered at the
critical points x, ..., x,, such that f'/D, can be written as

f'(@) = (z—x,)"gi2),

where g; : D;— C has no zeroes. Then there exists r > 0 such that if 1 == m,
x€eD;, yeD; and d(x,y)<r then:

3) . 'gi(y)'>\/zlgi(x)’-
Now take the continuous functions p® : D, — [0, + oc) defined by:
(4) p¥(x) = min {r, (1 pEI e L

Let B,, el 5,,, be disks centered at x, ..., x,, whose closures are contained
in D,, ..., D, respectively. Set r,= min d(D;, D¢) and choose &> 0 such

that if xe (D, and d(y,x) <5 then | f'0)| 2k | f'x)|. If xeD,

and d(y, x) < min {ro, p?(x)} it follows that ye D, (because d(y, x) < rg)
and d(y, x) < p”(x) <r. Hence (3) implies:

A2 =<|y—x.- )" 90| Z<|y—xi!>"‘ﬁ_

I el \x—x 9]\ [x—x]
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If we now use (4), we obtain:

TR TS vy SN,
5 e [ Tl i e k>
& Tl i ik Er

>(1—(1 =k [k =k
Now take a continuous function p, : C— [0, + o) such that:
po(x) = min {p,(x),0} if x ¢ ) D;,
Po(x) = min {Pl(x), o, P(i)(x)}

if xe U;, 1 <i<m where U, is neighborhood of x; with closure contained
% N
in D; and

0 < po(x) < min {p,(x), ro, p* (x)}

if xeﬁi— U;, 1 <i<m. By (5) and by the way we choose ¢ it follows
that p, satisfies the required properties. Now define p by

) = 72 po(x)

Clearly p satisfies (a) because p, does. To complete the proof of IL.5, we
have to show that it also satisfies (b). Suppose that x is not a critical point.
Since po(x) < py(x), we know that f/{y|d(y,x) < po(x)} is injective. By
Koebe’s theorem [3] we have:

(6) f{y]dp, x) < pox)}) = {y]d, f(x) < %Po(x) | £}

Let g be the branch of f~'/{y|d(y, f(x) < (%) po(x) | f'(x) |} that

maps f(x) in x. Applying Koebe’s theorem to g, we obtain:
1
o |40 ) < - pol) | 611> (3] dy ) < < polo} =
= {y]d(, x) < p(x)}.

Then:

1
D ] d0sx) < peoh) < (v [0, £0D) < 7 polx) | £6x) |3
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Therefore, if d(y,, x) < p(x) and d(y,, x) < p(x), we obtain from (7) that

df O F0) < pol) | 1| =12

Hence, all the segment joining f(y,) and f(y,) is contained in the disk
1 ’
{y|do, %) < (7) pulx) | 16| 1. Then:

dyy,y2) = dg(f (1)), g(f(y2) <

<d(fp1). f2) sup {[g'(2)|]d(z f(x) <i,00 I RACI

But d(z, f(x)) < < ! )po(x) | f'(x)| implies by (6) that:

d(g(Z), x) = po(x).

Hence

| g

=[G | <k | fiex)] !
and then

dy1,y2) <k £ T ) £ O

as we wished to prove.
~ Continuing with the proof of 114, we take a partition 2 with finite
p-entropy and satisfying:

(8) diam 2(x) < p(x).

Such a partition exists because the function x — log p(x) is integrable by
II. 3. Therefore we can apply Lemma 2.3 of [8]. For each P € 2, we choose
a point ae P and then (8) implies that P is contained in the disk

D(P)= {x|d(x,a)< p(x)!. Take a topological disk D) < D(P) with

(D(P) (D(P) ) not contamm& critical values of f. Then there exist
branches gP : D(P)> T of f “!/D(P), i=1, ..., d. Let ®, be the partition
with atoms of the form g!")(4), where P is an atom of 2, 4 an atom of
2, contained in P and 1 <i <d. From this definition, it is clear that 2
and #, <%, < ... satisfy condition (b) of I1.4. Condition (d) holds by
the way we choose 2. To prove conditions (a), it is sufficient to show that:

©) lim diam 2,(x) = 0

a2 ap (50
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for p-a.e x. Once this is proved, by the way £, was constructed it follows
that lim diam £,(x)=0 for p-a.e. x. In order to show (9), observe that

n= oo
if y € 2,(x), i= 1.2, then fj(y )e@(fj(x)), i=12, for all 0 <j <n. Hence,
since diam 2(f’(x)) < p(f’(x)), we have:

d(f ), fIoN = k| £ | A ), fI710)
for all 1 <j<n. Then:
(f"01), f102) =k H (f")(x) ” Ay, y>).

But d(f f"(2)) <diam Z,(f"(x)). The last term is bounded, say
by G> 0 for every x and n>0. Hence,

dyy2) < 21 (V) |7

and then
10 i T e
(10) diam 2,(x) < F | (Y (x) |

By (*) and (**) of 11.3, (10) implies (9) completing the proof of 11.4.

Now we shall prove the theorem. As we mentioned in the introduc-
tion, the f-invariant measure y, constructed in [5] satisfies h, (f) = logd
and is characterized by the property

uf(A) = d,[(A),

for all Borel set 4 such that f/4 is injective. If by contradiction we assume
there exists another f-invariant measure v # u, with h,(f)=log d then it
1s well known that there exists an f-invariant ergodic measure (i, # pt
with h,(f) = log d (this follows for instance from [2] Prop. 13.3). Associated
to i, we have the function J, and the set 4, given by Lemma IL.1. Then
applying I1.2, the Corollary of I1.1 and the convexity of the logarithm we get

log d = hy(f)= j log J,d, < log J Jd, < logd.
c C

Hence:

J log J,d, = logj J,d, = log d.
o) c
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Then J,=d p-a.e. Now let us show that u(f(4;)) = 0. Take a family of
disjoint connected and simply connected open sets {U,, ..., U,] such
that they do not contain critical values and

1D uJuiry=o.

Then for each 1 <i <k, we can find open sets DY, ..., D such that f/D}
is a homeomorphism onto U; and (JD{' =f~'(U,). It follows from
(11) that ¢

(12) p( DY) = 1.
]
Hence:

u(f (4, ~ D) = J A
A, DY

= du(A4, » DY) = du(D).
Therefore,
(13) T ulf( Ay 0 DY) = T D) = dplf ! (U)) = duU)
Since: j
(14} u(f (4, 0 DY) < p(f(DP) = u(U;)
for all i, j, we obtain from (13) and (14):
u(f(4, 0 DY) = uU))
for all i,j. Then:
0= pu(U;) — u(f (4, n DY) = p(f (D) — p(f(4, 0 D}"")) —
= u(f (45, 0 D).

Since this holds for all i and j, it follows from (15) and (12) that u(f(A4})) = 0.
Now consider a Borel set 4 where f/A is injective. We have:

fA)= fldAnd,)u f(4n 4))

(15)

and then:

p(f(A4) = u(f(4 nA4,) + u(f(4nA4y) =

= uf(AnA4,)= J Jdu = J Jdp = du(A).
nAu A

A

Therefore pu=pu,.
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