On the derivation algebra of zygotic algebras for polyploidy with multiple alleles

R. Costa

1. Introduction

The terminology and notations of this paper are those of [1] of which this one is a natural continuation. In that one, we have calculated the derivation algebra of G(n + 1,2m), the gametic algebra of a 2m-ploid and n + 1-allelic population. In particular, it was shown that the dimension of this derivation algebra depends only on n. The integer m is related to the nilpotence degree of certain nilpotent derivations of a basis ([1], th. 3 and 4), as it is easily seen.

The problem now is the determination of the derivations of Z(n+1,2m), the zygotic algebra of the same 2m-ploid and n+1-allelic population. As Z(n+1,2m) is the commutative duplicate for G(n+1,2m) ([10], Ch. 6C), the first idea to obtain derivations in Z(n+1,2m) is to try to duplicate derivations of G(n+1,2m). We recall briefly that given a genetic algebra A with a canonical basis C_0, C_1, \ldots, C_n then the set of symbols $C_i * C_j (0 \le i \le j \le n)$ is a basis of the duplicate A*A of A ([10], Ch. 6C). In particular if dim A=n+1 then dim A*A is given by

$$(C_i^*C_i)(C_k^*C_\ell) = (C_iC_i)^*(C_kC_\ell)$$

where C_iC_j (resp. C_kC_ℓ) is the product, in A, of C_i and C_j (resp. C_k and C_ℓ). An intrinsic construction of A^*A is the following: take the tensor product vector space $A \otimes A$ and define a multiplication by $(a \otimes b)(c \otimes d) = (ab) \otimes (cd)$. Then let J be the two-sided ideal generated by the elements $a \otimes b - b \otimes a$, $a, b \in A$ and take $A^*A = (A \otimes A)/J$ ([10]).

Lemma 1. Let $\delta: A \to A$ be a derivation. There exists one and only one derivation $\delta^*: A^*A \to A^*A$ such that $\delta^*(a^*b) = \delta(a)^*b + a^*\delta(b)$ for all a, b in A.

Proof. Let $\theta: A \times A \to A \otimes A$ be the the canonical bilinear mapping given by $\theta(a,b) = a \otimes b$. Then $\theta \circ (\delta \times 1_A): A \times A \to A \otimes A$ is bilinear. The same holds for $\theta \circ (1_A \times \bar{\delta}): A \times A \to A \otimes A$. Hence $\theta \circ (\delta \times 1_A) + \theta \circ (1_A \times \bar{\delta})$ is again bilinear and induces $\bar{\delta}: A \otimes A \to A \otimes A$, linear and satisfying $\bar{\delta}(a \otimes b) = \delta(a) \otimes b + a \otimes \delta(b)$ for all a,b in A. This mapping $\bar{\delta}$ satisfies $\bar{\delta}(J) \subset J$. In fact, take one generator $a \otimes b - b \otimes a$ of J. We have

$$\overline{\delta}(a \otimes b - b \otimes a) = \overline{\delta}(a \otimes b) - \overline{\delta}(b \otimes a) =$$

$$\delta(a) \otimes b + a \otimes \delta(b) - \delta(b) \otimes a - b \otimes \delta(a) =$$

$$= (\overline{\delta}(a) \otimes b - b \otimes \delta(a)) + (a \otimes \delta(b) - \delta(b) \otimes a),$$

which is an element of J. By the well known lemma on quotients, $\overline{\delta}$ induces $\delta^*: A^*A \to A^*A$ such that $\delta^*(a^*b) = a^*\delta(b) + \delta(a)^*b$ for all a, b in A. It rests to prove that δ^* is a derivation of A^*A . As A^*A is generated by the elements a^*b , a, b in A, it is enough to prove the following equality:

$$\delta^*((a^*b)(c^*d)) = \delta^*(a^*b)(c^*d) + (a^*b)\delta^*(c^*d)$$

for all a, b, c, d in A. In fact, we have:

$$\delta^*((a^*b)(c^*d)) = \delta^*((ab)^*(cd)) = \delta(ab)^*(cd) + (ab)^*\delta(cd) =$$

$$= (\delta(a)b + a\delta(b))^*(cd) + (ab)^*(\delta(c)d + c\delta(d)) =$$

$$= \delta(a)b^*(cd) + a\delta(b)^*(cd) + (ab)^*\delta(c)d + (ab)^*c\delta(d) =$$

$$= (\delta(a)^*b)(c^*d) + (a^*\delta(b))(c^*d) + (a^*b)(\delta(c)^*d) + (a^*b)(c^*\delta(d)) =$$

$$= [\delta(a)^*b + a^*\delta(b)](c^*d) + (a^*b)[\delta(c)^*d + c^*\delta(d)] =$$

$$= \delta^*(a^*b)(c^*d) + (a^*b)\delta^*(c^*d).$$

The unicity of δ^* is clear.

We shall call δ^* the duplicate of δ and the correspondence $\delta \rightarrow \delta^*$ the duplication mapping.

Proposition 1. The correspondence $\delta \rightarrow \delta^*$ is an injective homomorphism of Lie algebras.

Proof. Let δ_1 and δ_2 be derivations of A, $a, b \in A$. We have:

$$(\delta_1 + \delta_2)^*(a^*b) = (\delta_1 + \delta_2)(a)^*b + a^*(\delta_1 + \delta_2)(b) =$$

$$= \delta_1(a)^*b + \delta_2(a)^*b + a^*\delta_1(b) + a^*\delta_2(b) =$$

$$= \delta_1(a)^*b + a^*\delta_1(b) + \delta_2(a)^*b + a^*\delta_2(b) =$$

$$= \delta_1^*(a^*b) + \delta_2^*(a^*b) = (\delta_1^* + \delta_2^*)(a^*b).$$

As a^*b , with $a, b \in A$, is a generating set of A^*A , we have $(\delta_1 + \delta_2)^* = \delta_1^* + \delta_2^*$. In a similar way, we prove that $(\lambda \delta)^* = \lambda \delta^*$ for all $\lambda \in R$.

$$(\delta_{1} \circ \delta_{2} - \delta_{2} \circ \delta_{1})^{*}(a^{*}b) = \left[(\delta_{1} \circ \delta_{2})^{*} - (\delta_{2} \circ \delta_{1})^{*} \right] (a^{*}b) =$$

$$= \delta_{1}(\delta_{2}(a))^{*}b + a^{*}\delta_{1}(\delta_{2}(b)) - \delta_{2}(\delta_{1}(a))^{*}b - a^{*}\delta_{2}(\delta_{1}(b)) =$$

$$= \delta_{1}(\delta_{2}(a))^{*}b + \delta_{2}(a)^{*}\delta_{1}(b) + a^{*}\delta_{1}(\delta_{2}(b)) + \delta_{1}(a)^{*}\delta_{2}(b) -$$

$$- \delta_{2}(\delta_{1}(a))^{*}b - \delta_{1}(a)^{*}\delta_{2}(b) - a^{*}\delta_{2}(\delta_{1}(b)) - \delta_{2}(a)^{*}\delta_{1}(b) =$$

$$= \delta_{1}^{*}(\delta_{2}(a)^{*}b) + \delta_{1}^{*}(a^{*}\delta_{2}(b)) - \delta_{2}^{*}(\delta_{1}(a)^{*}b) - \delta_{2}^{*}(a^{*}\delta_{1}(b)) =$$

$$= (\delta_{1}^{*} \circ \delta_{2}^{*})(a^{*}b) - (\delta_{2}^{*} \circ \delta_{1}^{*})(a^{*}b) = (\delta_{1}^{*} \circ \delta_{2}^{*} - \delta_{2}^{*} \circ \delta_{1}^{*})(a^{*}b) \text{ and so}$$

$$(\delta_{1} \circ \delta_{2} - \delta_{2} \circ \delta_{1})^{*} = \delta_{1}^{*} \circ \delta_{2}^{*} - \delta_{2}^{*} \circ \delta_{1}^{*}.$$

We show now that $\delta^* = 0$ implies $\delta = 0$. Take a basis $C_0, C_1, ..., C_n$ of A. If $\delta(C_i) = \sum_{k=0}^{n} \alpha_{ki} C_k$ (i = 0, 1, ..., n) then:

$$0 = \delta^{\circ}(C_i^*C_i) = \delta(C_i)^*C_i + C_i^*\delta(C_i) = 2C_i^*\delta(C_i) =$$

$$= 2C_i^*(\sum_{k=0}^n \alpha_{ki}C_k) = \sum_{k=0}^i 2\alpha_{ki}C_k^*C_i + \sum_{k=i+1}^n 2\alpha_{ki}C_i^*C_k,$$

for all i = 0, 1, ..., n. As $C_0 * C_i, ..., C_i * C_i, C_i * C_{i+1}, ..., C_i * C_n$ are part of a basis of A*A we have $\alpha_{ki} = 0$ for all k = 0, 1, ..., n and so $\delta = 0$.

Remark. In general the correspondence $\delta \to \delta^*$ is not an isomorphism of Lie algebras. We give an example of a class of genetic algebras where $\delta \to \delta^*$ is not an isomorphism. But, in contrast to this, we will have an isomorphism for every one of the gametic algebras G(n+1,2m).

For each $n \ge 1$, we call K_n the trivial genetic algebra of dimension n+1 having a basis C_0, C_1, \ldots, C_n such that $C_0^2 = C_0$ and all other products are zero. The weight function $\omega: K_n \to R$ is given by $\omega(C_0) = 1$ and $\omega(C_i) = 0$ $(i = 1, \ldots, n)$. Given $x = \omega(x)C_0 + \sum_{i=1}^n \alpha_i C_i \in K_n$ and

 $y = \omega(y)C_0 + \sum_{j=1}^n \beta_j C_j$ we have $xy = \omega(x)\omega(y)C_0$. The algebra K_n is the Bernstein algebra of dimension n+1 and type (1,n) ([10], Chap. 9B, th. 9.10).

Lemma 2. The derivations of K_n are the linear mappings $\delta : K_n \to K_n$ such that $\omega \circ \delta = 0$ and $\delta(C_0) = 0$. Hence the derivation algebra of K_n has dimension n^2 .

Proof. Suppose δ is a derivation. Then $\omega \circ \delta = 0$ ([1], th. 1). If $\delta(C_0) = u \in \text{Ker } \omega$ then $C_0^2 = C_0$ implies

$$u = \delta(C_0) = 2C_0\delta(C_0) = 2C_0u = 0.$$

Suppose now $\delta: K_n \to K_n$ satisfies $\omega \circ \delta = 0$ and $\delta(C_0) = 0$. Then

$$\delta(xy) = \delta(\omega(x)\omega(y)C_0) = \omega(x)\omega(y)\delta(C_0) = 0.$$

On the other hand,

$$\delta(x)y + x\delta(y) = \omega(\delta(x))\omega(y)C_0 + \omega(x)\omega(\delta(y))C_0 = 0$$

and so δ is a derivation of K_n .

We have shown that δ is completely determined by $\delta(C_1), \ldots, \delta(C_n)$ with $\delta(C_i) \in \text{Ker } \omega, \ (i=1,\ldots,n)$ and so there is a one-to-one correspondence between derivations and sequences A_1,\ldots,A_n of elements of Ker ω . This completes the proof.

Lemma 3. For each $n \ge 1$, $K_n * K_n$ is isomorphic to $\frac{K_{n(n+3)}}{2}$.

Proof. It is enough to prove that $(K^*K)^2$ is a one dimensional algebra spanned by $C_0^*C_0$. In fact, if $C_0, C_1, ..., C_n$ is a basis of K_n , then $C_i^*C_j$, with $0 \le i \le j \le n$ is a canonical basis of $K_n^*K_n$.

Now

$$(C_0 * C_0)^2 = C_0 * C_0 \text{ and } (C_i * C_j)(C_k * C_\ell) = C_i C_j * C_k C_\ell = 0,$$
 if i, j, k or $\ell \neq 0$.

Corollary. For each K_n , $n \ge 1$, the duplication mapping is not an isomorphism.

Proof. By lemmas 2 and 3, the derivation algebra of $K_n * K_n$ has dimension $\frac{1}{4} (n^2(n+3)^2)$ which is greater than n^2 .

2. Multiallelism only

It is well known that G(n+1,2) has a canonical basis C_0, C_1, \ldots, C_n such that $C_0^2 = C_0$, $C_0C_i = \frac{1}{2}C_i$ $(i=1,\ldots,n)$ and $C_iC_j = 0$ $(1 \le i,j \le n)$. By duplication, we obtain a canonical basis $C_i^*C_j$ $(0 \le i \le j \le n)$ of

Z(n + 1,2), the zygotic algebra of the same diploid and (n + 1)-allelic population. The multiplication is given by

$$(C_0 * C_0)^2 = C_0 * C_0, (C_0 * C_0)(C_0 * C_i) = \frac{1}{2} C_0 * C_i \quad (i = 1, ..., n),$$

$$(C_0 * C_i)(C_0 * C_j) = \frac{1}{4} C_i * C_j (1 \le i, j \le n) \text{ and } (C_i * C_j)(C_k * C_\ell) = 0$$

when $1 \le i \le j \le n$ or $1 \le k \le \ell \le n$. Let us decompose Z(n+1,2) as $Z(n+1,2) = V_0 \oplus V_1 \oplus V_2$ where $V_0 = \langle C_0 * C_0 \rangle$, $V_1 = \langle C_0 * C_i : i = 1, ..., n \rangle$ and $V_2 = \langle C_i * C_j : 1 \le i \le j \le n \rangle$ ($\langle ... \rangle$ indicates the subspace generated by ...). Observe that $V_1 \oplus V_2$ is the kernel of the weight function, which is 1 for $C_0 * C_0$ and 0 otherwise.

Theorem 1. Suppose $\delta: Z(n+1,2) \to Z(n+1,2)$ is a derivation. Then there exist A, B_1, \ldots, B_n in V_1 such that

(i) $\delta(C_0 * C_0) = A$;

(ii) For each $1 \le i \le n$, $\delta(C_0 * C_i) = B_i + 2A(C_0 * C_i)$;

(iii) For each $1 \le i \le j \le n$, $\delta(C_i * C_j) = 4(C_0 * C_i)B_j + 4(C_0 * C_j)B_i$.

Conversely, given A, B_1 , ..., B_n in V_1 , there exists one and only one derivation δ of Z(n+1,2) such that (i), (ii) and (iii) hold.

Proof. (i): By ([1], th. 1) we have $\omega \in \delta = 0$. Call $\delta(C_0 * C_0) = A + z_2$ with $A \in V_1$ and $z_2 \in V_2$. As $(C_0 * C_0)^2 = C_0 * C_0$ we have

$$A + z_2 = \delta(C_0 * C_0) = 2(C_0 * C_0)\delta(C_0 * C_0) = 2(C_0 * C_0)(A + z_2) =$$

= 2(C_0 * C_0)A + 2(C_0 * C_0)z_2 = A.

Equating components we have $z_2 = 0$. It rests $\delta(C_0 * C_0) = A$.

(ii): Call $\delta(C_0 * C_i) = B_i + D_i$ with $B_i \in V_1$, $D_i \in V_2$. From $(C_0 * C_0)(C_0 * C_i) = \frac{1}{2} C_0 * C_i$ we obtain

$$A(C_0 * C_i) + (C_0 * C_0)(B_i + D_i) = \frac{1}{2}(B_i + D_i) \text{ or } A(C_0 * C_i) + \frac{1}{2}B_i = \frac{1}{2}(B_i + D_i).$$

But $A(C_0^*C_i) \in V_2$, so $A(C_0^*C_i) = \frac{1}{2}D_i$, which means $\delta(C_0^*C_i) = B_i + 2A(C_0^*C_i)$.

(iii): From
$$C_i^*C_j = 4(C_0^*C_i)(C_0^*C_j)$$
 $(1 \le i \le j \le n)$ we obtain
$$\delta(C_i^*C_j) = 4[\delta(C_0^*C_i)(C_0^*C_j) + (C_0^*C_i)\delta(C_0^*C_j)] =$$
$$= 4[[B_i + 2A(C_0^*C_i)](C_0^*C_j) + (C_0^*C_i)[B_j + 2A(C_0^*C_j)]] =$$
$$= 4[B_i(C_0^*C_j) + (C_0^*C_i)B_j].$$

Conversely, given $A, B_1, ..., B_n$ in V_1 define $\delta: Z(n+1,2) \to Z(n+1,2)$ by the formulae above. It is routine to verify that δ is indeed a derivation. Also the unicity of δ is clear.

Corollary. The derivation algebra of Z(n+1,2) has dimension n(n+1) and so every derivation of Z(n+1,2) is the duplicate of one and only one derivation of G(n+1,2).

3. Polyploidy only

The gametic algebra G(2,2m) has a canonical basis C_0, C_1, \dots, C_m such that $C_iC_i = 0$ when i+j > m and $C_iC_i = t_{i+j}C_{i+j}$ when $i+j \le m$, where $t_k(k=0, 1, ..., m)$ are the t-roots of G(2,2m). Hence Z(2,2m) has a canonical basis $C_i * C_i$ $(0 \le i \le j \le m)$ where the multiplication is given by

$$(C_i^* C_j)(C_k^* C_{\ell}) = \begin{cases} 0 \text{ when } i+j > m \text{ or } k+\ell > m \\ t_{i+j} t_{k+\ell} C_{i+j}^* C_{k+\ell} \text{ when } i+j \le m \text{ and } k+\ell \le m \end{cases}$$

The t-roots of Z(2,2m) are $t_0, t_1, ..., t_m$ (where $t_k = {2m \choose k}^{-1} {m \choose k}$) and 0, this one with multiplicity m(m+1)/2. The weight function ω of Z(2,2m) is given by $\omega(C_0^*C_0) = 1$ and $\omega(C_i^*C_i) = 0$ for all $(i, j) \neq (0, 0)$.

We have also a direct sum decomposition $Z(2,2m) = V_0 \oplus V_1 \oplus ... \oplus V_{2m}$ where $V_k(0 \le k \le 2m)$ is the subspace of Z(2,2m) generated by the vectors $C_i^*C_i$, $0 \le i \le j \le n$, such that i+j=k. In particular $V_0 = \langle C_0^*C_0 \rangle$, $V_1 = \langle C_0^* C_1 \rangle$, $V_2 = \langle C_0^* C_2, C_1^* C_1 \rangle$ and so on. The dimension of V_k is $\frac{k}{2} + 1$ when k is even and $\frac{k+1}{2}$ when k is odd. From the multipli-

cation table of Z(2,2m) we see that every element of V_k is an absolute divisor of zero if $m+1 \le k \le 2m$. This means that if $v_k \in V_k$ and $m+1 \le k \le 2m$, for every $x \in Z(2,2m)$ we have $xv_k = 0$. Also we have the following relation for $v_k \in V_k$ and $0 \le k \le m$: $(C_0 * C_0)v_k$ is a scalar multiple of $C_0 * C_k$. In fact, if $v_k = \alpha_0 C_0 * C_k + \alpha_1 C_1 * C_{k-1} + ...$ we have

$$(C_0 * C_0)v_k = \alpha_0(C_0 * C_0)(C_0 * C_k) + \alpha_1(C_0 * C_0)(C_1 * C_{k-1}) + \dots =$$

= $\alpha_0 t_k C_0 * C_k + \alpha_1 t_k C_0 * C_k + \dots = t_k (\sum_i \alpha_i) C_0 * C_k.$

In order to simplify the notations we call ϕ the linear form on Z(2,2m)given by $\phi(C_i * C_i) = 1$ for all $0 \le i \le j \le m$. We have shown that $(C_0 * C_0)v_k = 1$ $= t_k \phi(v_k) C_0 * C_k$ for $0 \le k \le m$. As $C_0 * C_k$ plays a special role in the multiplication by $C_0 * C_0$, we call it the special element of V_k $(0 \le k \le m)$.

We know ([1] th. 1) that every derivation δ of Z(2,2m) satisfies $\omega \circ \delta = 0$.

The following lemmas 4 to 7 will describe the action of a derivation δ on the subspaces $V_0, V_1, \dots, V_m, \dots, V_{2m}$ of Z(2,2m).

Lemma 4. For every derivation δ of Z(2,2m), we have $\delta(C_0*C_0) = \alpha C_0*C_1$ for some $\alpha \in \mathbb{R}$.

Proof. Call $\delta(C_0 * C_0) = v_1 + v_2 + ... + v_{2m}$ with $v_i \in V_i$ (i = 1, ..., 2m). Then

$$2(C_0 * C_0)(v_1 + \dots + v_{2m}) = v_1 + \dots + v_{2m} \quad \text{or}$$

$$2\phi(v_1)t_1C_0 * C_1 + \dots + 2\phi(v_m)t_mC_0 * C_m = v_1 + \dots + v_m + \dots + v_{2m}.$$

Equating the components we have:

$$\begin{cases} 2\phi(v_k)t_kC_0^*C_k = v_k & (1 \le k \le m) \\ v_{m+1} = \dots = v_{2m} = 0. \end{cases}$$

The first equality reads $2\phi(v_1)t_1C_0*C_1=v_1$, thereby $t_1=\frac{1}{2}$. Hence $v_1 = \alpha C_0 * C_1$ for some $\alpha \in \mathbb{R}$. The equations corresponding to $2 \le k \le m$ have only the trivial solution $v_k = 0$. In fact, call $v_k = \mu_0 C_0 * C_k +$ $+ \mu_1 C_1 * C_{k-1} + \dots$ Then we have $2(\mu_0 + \mu_1 + \dots)t_k C_0 * C_k = \mu_0 C_0 * C_k + \dots$ $+ \mu_1 C_1 * C_{k-1} + \dots$ which implies

$$\begin{cases} 2t_k(\mu_0 + \mu_1 + \dots) = \mu_0 \\ \mu_1 = \dots = 0 \end{cases}$$

This system reduces to $2t_k\mu_0 = \mu_0$ and so $\mu_0 = 0$ because $t_k = {2m \choose k}^{-1} {m \choose k} < \frac{1}{2}$ when $2 \le k \le m$. Then $v_k = 0$ for all $2 \le k \le m$. It rests $\delta(C_0 * C_0) = v_1 = 0$ $=\alpha C_0 * C_1$, for some real number α .

Lemma 5. For every $1 \le k \le m-1$, we have

$$\delta(C_0^*C_k) = \alpha_k C_0^*C_k + \alpha t_1 \frac{t_{k+1}}{t_k - t_{k+1}} C_0^*C_{k+1} + \alpha t_1 C_1^*C_k,$$

where $\alpha_k \in R$ and α is as in lemma 4.

Proof. Again, call $\delta(C_0 * C_k) = u_1 + ... + u_m + ... + u_{2m}, u_i \in V_i$. The equality $(C_0 * C_0)(C_0 * C_k) = t_k(C_0 * C_k)$ implies

$$\alpha(C_0 * C_1)(C_0 * C_k) + (C_0 * C_0)(u_1 + \dots + u_{2m}) = t_k(u_1 + \dots + u_{2m})$$

$$\alpha t_1 t_k (C_1 * C_k) + \sum_{i=1}^m \phi(u_i) t_i C_0 * C_i = t_k (\sum_{i=1}^{2m} u_i).$$
 But $C_1 * C_k \in V_{k+1}$,

so we must have:

$$\begin{cases} \phi(u_i)t_i(C_0^*C_i) = t_k u_i, & i = 1, ..., m, i \neq k+1, \\ \phi(u_{k+1})t_{k+1}(C_0^*C_{k+1}) + \alpha t_1 t_k(C_1^*C_k) = t_k u_{k+1}, \\ u_{m+1} = ... = u_{2m} = 0. \end{cases}$$

The equations in the first row, with $i \neq k$, have only the trivial solution $u_i = 0$, as in the preceding lemma. The equation $\phi(u_k)t_kC_0*C_k = t_ku_k$ reduces to $\phi(u_k)C_0*C_k = u_k$ which gives $u_k = \alpha_kC_0*C_k$ for some real number α_k . The equation in the middle has the following solution: if

$$u_{k+1} = \lambda_0(C_0 * C_{k+1}) + \lambda_1(C_1 * C_k) + \lambda_2(C_2 * C_{k-1}) + \dots,$$

then

$$(\lambda_0 + \lambda_1 + \lambda_2 + \dots)t_{k+1}(C_0 * C_{k+1}) + \lambda t_1 t_k (C_1 * C_k) =$$

$$= t_k (\lambda_0 (C_0 * C_{k+1}) + \lambda_1 (C_1 * C_k) + \lambda_2 (C_2 * C_{k-1}) + \dots)$$

and so

$$\begin{cases} (\lambda_0 + \lambda_1 + \lambda_2 + \dots)t_{k+1} = t_k \lambda_0 \\ \alpha t_1 t_k = t_k \lambda_1 \\ t_k \lambda_2 = \dots = 0 \end{cases}$$

From this system, we have $\lambda_2 = \dots = 0$, $\lambda_1 = \alpha t_1 = \alpha/2$ and the first equality reduces to $\lambda_0 = \alpha t_1 \frac{t_{k+1}}{t_k - t_{k+1}}$. Hence the result.

The effect of δ on the vector $C_0 * C_m$ is given by

$$\delta(C_0 * C_m) = \alpha_m (C_0 * C_m) + \alpha t_1 (C_1 * C_m)$$

where α_m is some real number. The proof is similar to that given in lemma 5. Having obtained the effect of δ on the vectors $C_0 * C_k$ $(1 \le k \le m)$ we can now obtain $\delta(C_i * C_j)$ for $1 \le i \le j \le m$.

Lemma 6. For every $1 \le i \le j \le m-1$, we have

$$\delta(C_i^*C_j) = (\alpha_i + \alpha_j)C_i^*C_j + \alpha t_1 \left[\frac{t_{i+1}}{t_i - t_{i+1}} (C_{i+1}^*C_j) + \frac{t_{j+1}}{t_j - t_{j+1}} (C_i^*C_{j+1}) \right],$$

where α_i and α_j are as in lemma 5.

Proof. We have $(C_0 * C_i)(C_0 * C_j) = t_i t_j (C_i * C_j)$ and so

$$\begin{split} \delta(C_{i}^{*}C_{j}) &= \frac{1}{t_{i}t_{j}} \left[\delta(C_{0}^{*}C_{i})(C_{0}^{*}C_{j}) + (C_{0}^{*}C_{i})\delta(C_{0}^{*}C_{j}) \right] = \\ &= \frac{1}{t_{i}t_{j}} \left[\left[\alpha_{i}(C_{0}^{*}C_{i}) + \alpha t_{1} \left[\frac{t_{i+1}}{t_{i}-t_{i+1}}(C_{0}^{*}C_{i+1}) + (C_{1}^{*}C_{i}) \right] (C_{0}^{*}C_{j}) + \right. \\ &+ \left. \left(C_{0}^{*}C_{i} \right) \left[\alpha_{j}(C_{0}^{*}C_{j}) + \alpha t_{1} \left[\frac{t_{j+1}}{t_{j}-t_{j+1}}(C_{0}^{*}C_{j+1}) + (C_{1}^{*}C_{j}) \right] \right] = \\ &= \frac{1}{t_{i}t_{j}} \left[\alpha_{i}t_{i}t_{j}(C_{i}^{*}C_{j}) + \alpha t_{1} \frac{t_{i+1}^{2}t_{j}}{t_{i}-t_{i+1}}(C_{i+1}^{*}C_{j}) + \alpha t_{1}t_{i+1}t_{j}(C_{i+1}^{*}C_{j}) + \right. \\ &+ \left. \left(\alpha_{j}t_{i}t_{j}(C_{i}^{*}C_{j}) + \alpha t_{1} \frac{t_{i+1}^{2}}{t_{j}-t_{j+1}}(C_{i}^{*}C_{j+1}) + \alpha t_{1}t_{i}t_{j+1}(C_{i}^{*}C_{j+1}) \right] = \\ &= \left. \left(\alpha_{i} + \alpha_{j} \right)(C_{i}^{*}C_{j}) + \alpha t_{1} \left(\frac{t_{i+1}^{2}}{t_{i}(t_{i}-t_{i+1})} + \frac{t_{i+1}}{t_{i}} \right)(C_{i}^{*}C_{j}) + \right. \\ &+ \left. \left(\frac{t_{j+1}^{2}}{t_{j}(t_{j}-t_{j+1})} + \frac{t_{j+1}}{t_{j}} \right)(C_{i}^{*}C_{j+1}) = \\ &= \left. \left(\alpha_{i} + \alpha_{j} \right)(C_{i}^{*}C_{j}) + \alpha t_{1} \left[\frac{t_{i+1}}{t_{i}-t_{i+1}}(C_{i+1}^{*}C_{j}) + \frac{t_{j+1}}{t_{j}-t_{j+1}}(C_{i}^{*}C_{j+1}) \right]. \end{split}$$

In a similar way we prove the relations

$$\delta(C_i^*C_m) = (\alpha_i + \alpha_m)(C_i^*C_m) + \alpha t_1 \frac{t_{i+1}}{t_i - t_{i+1}}(C_{i+1}^*C_m) (1 \le i \le m-1)$$

and

$$\delta(C_m * C_m) = 2\alpha_m (C_m * C_m).$$

The effect of δ on the canonical basis of Z(2,2m) will be completely known after the following lemma.

Lemma 7. The real numbers $\alpha_j (j = 1, ..., m)$ appearing in the formulae for $\delta(C_0 * C_j)$ satisfy $\alpha_j = j\alpha_1$ (j = 1, ..., m).

Proof. The equality is trivial for j = 1 and suppose we have already proved for $1 \le i < m$. From the equality

$$(C_1 * C_i)^2 = t_{i+1}^2 (C_{i+1} * C_{i+1}),$$

we obtain:

$$2(C_1 * C_i)\delta(C_1 * C_i) = t_{i+1}^2 \delta(C_{i+1} * C_{i+1})$$

or

$$2(C_1 * C_i) \left[(\alpha_1 + \alpha_i) (C_1 * C_i) + \alpha \frac{t_1 t_2}{t_1 - t_2} (C_2 * C_i) + \alpha \frac{t_1 t_{i+1}}{t_i - t_{i+1}} (C_1 * C_{i+1}) \right] =$$

$$= t_{i+1}^2 \left[2\alpha_{i+1} (C_{i+1} * C_{i+1}) + 2 \frac{t_1 t_{i+2}}{t_{i+1} - t_{i+2}} (C_{i+1} * C_{i+2}) \right].$$

The comparison of components in the directions of $C_{i+1} * C_{i+1}$ and $C_{i+1} * C_{i+2}$ gives $\alpha_1 + \alpha_i = \alpha_{i+1}$ (our desired result) and an identity in the *t*-roots, as in [1], th. 3.

The results of the preceding lemmas can be put together in the following set of equations:

$$\delta(C_0 * C_0) = \alpha(C_0 * C_1)$$

$$\delta(C_0 * C_k) = k\beta(C_0 * C_k) + \alpha t_1 \left[\frac{t_{k+1}}{t_k - t_{k+1}} (C_0 * C_{k+1}) + C_1 * C_k \right]$$

$$\delta(C_i * C_j) = (i+j)\beta(C_i * C_j) + \alpha t_1 \left[\frac{t_{i+1}}{t_i - t_{i+1}} (C_{i+1} * C_j) + \frac{t_{j+1}}{t_j - t_{j+1}} (C_i * C_{j+1}) \right]$$

where $1 \le k \le m$, $1 \le i \le j \le m$, $t_{m+1} = 0$ and $\alpha, \beta \in R$.

Theorem 2. The derivation algebra of Z(2,2m) has dimension 2. In particular, every derivation of Z(2,2m) is the duplicate of one and only one derivation of G(2,2m).

Proof. The preceding lemmas provide the relations (*). It is easy to see that if we choose arbitrarily $\alpha, \beta \in R$ and define $\delta : Z(2,2m) \to Z(2,2m)$ by the relations (*), we obtain a derivation. This means exactly that the derivation algebra of Z(2,2m) has dimension 2. Since every duplicate of a derivation of G(2,2m) yields a derivation of Z(2,2m) and the derivation algebra of G(2,2m) has dimension 2 (cf. [1]) we get the desired result.

4. Multiallelism and polyploidy

In the general case of multiallelism and polyploidy, we follow the same ideas of §§ 2,3.

The gametic algebra G(n+1,2m) corresponding to a n+1-allelic and 2m-ploid population has a canonical basis consisting of all monomials

 $X_0^{i_0}X_1^{i_1}\dots X_n^{i_n}$ in commuting variables such that $i_0+i_1+\dots+i_n=m$ ([4], [5], [1]). This basis is ordered lexicographically by the exponents, that is, $X_0^{i_0}X_1^{i_1}\dots X_n^{i_n}$ precedes $X_0^{j_0}X_1^{j_1}\dots X_n^{j_n}$ when the first non vanishing difference i_k-j_k ($k=0,1,\dots,n$) is positive. The multiplication in G(n+1,2m) is given by

$$\begin{cases} (X_0^{i_0} X_1^{i_1} \dots X_n^{i_n}) (X_0^{j_0} X_1^{j_1} \dots X_n^{j_n}) = \\ \left(2m \atop m \right)^{-1} {i_0 + j_0 \choose m} X_0^{i_0 + j_0 - m} X_1^{i_1 + j_1} \dots X_n^{i_n + j_n} & \text{if } m \le i_0 + j_0 \\ 0 & \text{if } i_0 + j_0 < m. \end{cases}$$

In particular,

$$X_0^m(X_0^{j_0}X_1^{j_1}\dots X_n^{j_n}) = \binom{2m}{m}^{-1} \binom{m+j_0}{m} X_0^{j_0}X_1^{j_1}\dots X_n^{j_n},$$

which says the *t*-roots of G(n+1,2m) are $1, \frac{1}{2}, \dots, \frac{1}{\binom{2m}{m}}$ with multiplicities $1, n, \dots, \binom{m+n-1}{m}$ respectively.

Now we consider the duplicate Z(n+1,2m) of G(n+1,2m). One canonical basis of Z(n+1,2m) is the set of all "double monomials" $(X_0^{i_0}X_1^{i_1}\dots X_n^{i_n})*(X_0^{j_0}X_1^{j_1}\dots X_n^{j_n})$ where the first one precedes the second, and, of course, $i_0+\dots+i_n=j_0+\dots+j_n=m$. We recall (see [1]) that $\dim G(n+1,2m)=\binom{m+n}{m}$ and so $\dim Z(n+1,2m)=\frac{1}{2}\binom{m+n}{m}^2+\binom{m+n}{m}$

and that the weight function ω is defined by $\omega(X_0^m * X_0^m) = 1$ and 0 otherwise.

Let V_{2m-r} be the subspace of Z(n+1,2m) generated by the double monomials $(X_0^{i_0} \dots X_n^{i_n}) * (X_0^{j_0} \dots X_n^{j_n})$ such that $i_0 + j_0 = r$. As $0 \le i_0 \le m$, $0 \le j_0 \le m$, we must have $0 \le 2m - r \le 2m$. We list now some properties of the subspaces $V_0, V_1, \dots V_{2m}$.

- (1) First of all, we have the direct sum decomposition $Z(n+1,2m) = V_0 \oplus V_1 \oplus \ldots \oplus V_{2m}$, by the own definition of the subspaces. In addition, $V_1 \oplus \ldots \oplus V_{2m}$ is the kernel of the weight function ω .
- (2) V_0 is generated by the idempotent $X_0^m * X_0^m$.
- (3) V_1 is generated by the double monomials $X_0^m * X_0^{m-1} X_i$ (i = 1, ..., n) and so dim $V_1 = n$.
- (4) Every element of $V_{m+1} \oplus ... \oplus V_{2m}$ is an absolute divisor of zero in Z(n+1,2m). In order to prove this, it is enough to prove that each double monomial belonging to one of these subspaces is an absolute divisor of zero. If

$$(X_0^{i_0}X_1^{i_1}\dots X_n^{i_n}) * (X_0^{j_0}X_1^{j_1}\dots X_n^{j_n}) \in V_k$$

and $m+1 \le k \le 2m$, then $i_0+j_0 < m$ (definition of V_k) and so, given an arbitrary double monomial,

$$\mu = (X_0^{r_0} X_1^{r_1} \dots X_n^{r_n}) * (X_0^{s_0} X_1^{s_1} \dots X_n^{s_n}),$$

we have

$$\mu[X_0^{i_0}X_1^{i_1}\dots X_n^{i_n})*(X_0^{j_0}X_1^{j_1}\dots X_n^{j_n})] =$$

$$= [X_0^{r_0} X_1^{r_1} \dots X_n^{r_n}) (X_0^{s_0} X_1^{s_1} \dots X_n^{s_n})] * [X_0^{i_0} X_1^{i_1} \dots X_n^{i_n}) (X_0^{j_0} X_1^{j_1} \dots X_n^{j_n})] =$$

$$= [(X_0^{r_0} X_1^{r_1} \dots X_n^{r_n}) (X_0^{i_0} X_1^{j_1} \dots X_n^{j_n})] * 0 = 0.$$

(5) If $0 \le k \le m$, V_k is an invariant subspace of the linear mapping $z \to (X_0^m * X_0^m)z$, $z \in Z(n+1,2m)$. In fact, if we take a double monomial $(X_0^{i_0} X_1^{i_1} \dots X_n^{i_n})^* (X_0^{j_0} X_1^{j_1} \dots X_n^{j_n})$ in V_k , then $2m - i_0 - j_0 = k$, which implies $i_0 + j_0 \ge m$ and so

$$\begin{split} &(X_0^{m*}X_0^m)\left[(X_0^{i_0}X_1^{i_1}\dots X_n^{i_n})^*(X_0^{j_0}X_1^{j_1}\dots X_n^{j_n})\right] = \\ &= X_0^{m*}(_m^{2m})^{-1}(_{m}^{i_0+j_0})X_0^{i_0+j_0-m}X_1^{i_1+j_1}\dots X_n^{i_n+j_n} = \\ &= t_kX_0^{m*}X_0^{i_0+j_0-m}X_1^{i_1+j_1}\dots X_n^{i_n+j_n} \in V_k, \end{split}$$

because $2m-m-i_0-j_0+m=2m-i_0-j_0=k$. Observe that in general the double monomials $(X_0^{i_0}X_1^{i_1}\dots X_n^{i_n})^*(X_0^{j_0}X_1^{j_1}\dots X_n^{j_n})\in V_k$, $k=2m-i_0-j_0$, are not proper vectors of the above linear mapping. The elements $X_0^{m*}X_0^{m-k}X_1^{i_1}\dots X_n^{i_n}\in V_k$ are proper vectors, so there are $\binom{n+k-1}{k}$ linearly independent proper vectors in V_k . These double monomials will be called special.

(6) We introduce the following equivalence relation in the basis of $V_k(0 \le k \le m)$: Two double monomials μ and $\mu' \in V_k$ are equivalent if and only if $(X_0^{m*}X_0^m)(\mu-\mu')=0$. As the special double monomials are proper vectors of the linear mapping $z \to (X_0^{m*}X_0^m)z$, we see immediately that any two of them are not equivalent. On the other hand, every double monomial is equivalent to one of the special double monomials. In fact, $(X_0^{i_0}X_1^{i_1}\dots X_n^{i_n})^*(X_0^{i_0}X_1^{j_1}\dots X_n^{j_n})$ is equivalent to $X_0^{m*}X_0^{i_0+j_0-m}X_1^{i_1+j_1}\dots X_n^{i_n+j_n}$, a special one (see (5) above). It is also clear that two double monomials $(X_0^{i_0}\dots X_n^{i_n})^*(X_0^{i_0}\dots X_n^{j_n})$ and $(X_0^{r_0}\dots X_n^{r_n})^*(X_0^{s_0}\dots X_n^{s_n})$ are equivalent if and only if $i_k+j_k=r_k+s_k$ for all $k=0,1,\dots,n$. Hence every double monomial $\mu \in V_k$ is equivalent to one and only one special double monomial in V_k .

From this, it is possible to separate the basis of V_k in equivalence classes, one for each special double monomial and consequently we have a direct sum decomposition of V_k as follows: Call μ_1, \ldots, μ_s the special double monomials in V_k where $s = \binom{n+k-1}{k}$, and let V_{ki} be the subspace of V_k generated by the equivalence class of μ_i $(i = 1, \ldots, s)$. Then $V_k = V_{k1} \oplus \ldots \oplus V_{ks}$.

(7) Observe now that each V_{ki} is again an invariant subspace of the linear mapping $z \to (X_0^{m*} X_0^m)z$, $z \in Z(n+1,2m)$. Moreover if we call ϕ the linear form on Z(n+1,2m) taking the value 1 on each double monomial of the canonical basis, we have for any $z \in V_{ki}$, $(X_0^{m*} X_0^m)z = t_k \phi(z)u_i$.

$$(X_0^{m*}X_0^m)z = t_k\phi(z)\mu_i.$$

(8) We call V_k^{sp} the subspace of V_k generated by the special double monomials in the basis of V_k . In particular $V_1^{sp} = V_1$. The subspace $V_0^{sp} \oplus V_1^{sp} \oplus \ldots \oplus V_m^{sp}$ of Z(n+1,2m) is isomorphic, as a vector space, to G(n+1,2m). The isomorphism is given by

 $X_0^{m*}X_0^{m-k}X_1^{i_1}\dots X_n^{i_n} \to X_0^{m-k}X_1^{i_1}\dots X_n^{i_n} \in G(n+1,2m), \ i_1+\dots+i_n=k \ \text{ and } 0 \le k \le m.$

(9) In the following, double monomials will be denoted by

$$\mu = X_0^{m-r} X_{i_1} \dots X_{i_r} X_0^{m-s} X_{j_1} \dots X_{j_s}$$

where $r \le s$ and $1 \le i_1 \le ... \le i_r \le n$, $1 \le j_1 \le ... \le j_s \le n$. Given such μ , with $r + s \le 2m - 1$ and r < s, we can define $\mu_{(1)}, ..., \mu_{(n)}$ by $\mu_{(i)} = X_0^{m-r-1} X_{i_1} ... X_{i_r} ... X_{i_r} X_s^{m-s} X_{j_1} ... X_{j_s}$ and, if m < s, we can define $\mu^{(1)}, ..., \mu^{(n)}$ by

$$\mu^{(i)} = X_0^{m-r} X_{i_1} \dots X_{i_r} * X_0^{m-s-1} X_{j_1} \dots X_{i_r} \dots X_{j_s}$$

In any case where $\mu^{(i)}$ and $\mu_{(i)}$ both exist, they are in V_{r+s+1} and are equivalent ((6) above). We can, of course, iterate this process. In particular we have

$$X_0^{m-r}X_{i_1}\dots X_{i_r}*X_0^{m-s}X_{j_1}\dots X_{j_s}=(X_0^{m*}X_0^{m-s}X_{j_1}\dots X_{j_s})_{(i,j)\cdots(i_s)}.$$

Recall that for every derivation δ of Z(n+1,2m) we have ω , $\delta=0$.

Lemma 8. For every derivation δ of Z(n+1,2m), $\delta(X_0^m * X_0^m) \in V_1$.

Proof. Call $\delta(X_0^{m*}X_0^m) = A + v_2 + ... + v_m + v_{m+1} + ... + v_{2m}$ where $A \in V_1$ and $v_k \in V_k$ (k = 2, ..., 2m). The idempotence of $X_0^{m*}X_0^m$ implies

$$2(X_0^{m*}X_0^m)(A+v_2+\ldots+v_m+\ldots+v_{2m})=A+v_2+\ldots+v_m+\ldots+v_{2m}$$

But v_{m+1}, \ldots, v_{2m} are absolute divisors of zero so we are reduced to

$$2(X_0^{m*}X_0^m)A + 2(X_0^{m*}X_0^m)v_2 + \dots + 2(X_0^{m*}X_0^m)v_m = A + v_2 + \dots + v_{2m}.$$

As each V_k $(0 \le k \le m)$ is invariant ((5) above), we must have

$$\begin{cases} 2(X_0^m * X_0^m)A = A \\ 2(X_0^m * X_0^m)v_k = v_k & (k = 2, ..., m) \\ v_{m+1} = ... = v_{2m} = 0. \end{cases}$$

The elements of V_1 are all proper vectors of the linear mapping $z \to (X_0^m * X_0^m)z$, corresponding to the proper value $t_1 = {}^1/{}_2$, so the first equality is an identity in A. The equations corresponding to k = 2, ..., m have only the trivial solution $v_k = 0$ because otherwise v_k would be a proper vector corresponding to the proper value $t_1 = {}^1/{}_2$ and so $v_k \in V_1 \cap V_k = 0$, a contradiction.

From now on, we will call

 $\delta(X_0^{m*}X_0^m) = A = \sum_{i=1}^n \alpha_i X_0^{m*}X_0^{m-1}X_i \text{ where } \alpha_1, \dots, \alpha_n \text{ are real numbers.}$

Lemma 9. Let δ be a derivation of Z(n+1,2m) and

$$\mu = X_0^{m*} X_0^{m-k} X_{j_1} \dots X_{j_k} \in V_k \quad (1 \le k \le m-1)$$

a special double monomial. Then

$$\delta(\mu) = P_{j_1 \dots j_k} + t_1 \left[\sum_{i=1}^n \alpha_i \mu_{(i)} + \frac{t_{k+1}}{t_k - t_{k+1}} \sum_{i=1}^n \alpha_i \mu^{(i)} \right]$$

where $P_{j_1...j_k}$ is some element of V_k^{sp} depending on μ .

Proof. Call $\delta(\mu) = v_1 + v_2 + \ldots + v_{2m}$ with $v_i \in V_i$ $(i = 1, \ldots, 2m)$. To $(X_0^m * X_0^m)\mu = t_k \mu$ we apply δ and obtain

$$A\mu + (X_0^{m*}X_0^m)(v_1 + \dots + v_{2m}) = t_k(v_1 + \dots + v_{2m}).$$

By the invariance of the subspaces V_i , the fact that $A\mu \in V_{k+1}$ and v_{m+1}, \dots, v_{2m} are absolute divisors of zero, we must have

$$\begin{cases} (X_0^{m*}X_0^m)v_i = t_k v_i & (i = 1, ..., m \text{ but } i \neq k+1) \\ A\mu + (X_0^{m*}X_0^m)v_{k+1} = t_k v_{k+1} \\ v_{m+1} = ... = v_{2m} = 0.. \end{cases}$$

In the first set of equations we distinguish i = k and $i \neq k$. When $i \neq k$, we must have $v_i = 0$ as the only solution, because otherwise v_i would be a proper vector of the linear mapping $z \to (X_0^m * X_0^m)z$ corresponding to the proper value t_k and so $v_i \in V_i \cap V_k = 0$, a contradiction.

Now the case i=k. We will prove that v_k is a linear combination of the special double monomials in V_k . For this let μ_1, \ldots, μ_s be the special double monomials in V_k , so $s=\binom{n+k-1}{k}$. Let now V_{ki} be the subspace of V_k generated by the equivalence class of μ_i ((6) above), so $V_k=V_{k1}\oplus\ldots\oplus V_{ks}$. We have the decomposition $v_k=v_{k1}+\ldots+v_{ks}, v_{ki}\in V_{ki}$. The equation

$$(X_0^m * X_0^m) v_k = t_k v_k$$
 becomes $(X_0^m * X_0^m) (v_{k1} + \dots + v_{ks}) = t_k (v_{k1} + \dots + v_{ks})$.

But each V_{ki} is invariant ((7) above) so the equation splits in the following system of s equations:

$$\begin{cases} (X_0^{m*} X_0^m) v_{k1} = t_k v_{k1} \\ \vdots \\ (X_0^{m*} X_0^m) v_{ks} = t_k v_{ks} \end{cases}$$

Take one of these equations, say $(X_0^{m*}X_0^m)v_{ki} = t_k v_{ki}$ ($1 \le i \le s$). Call $\mu_i^1 = \mu_i, \mu_i^2, \ldots, \mu_i^p$ the double monomials equivalent to μ_i , that is, the basis of V_{ki} . We must have $v_{ki} = \beta_1 \mu_i^1 + \beta_2 \mu_i^2 + \ldots + \beta_p \mu_i^p$ for some real numbers β_1, \ldots, β_p . Then:

$$t_k(\beta_1\mu_i^1 + \dots + \beta_p\mu_i^p) = (\beta_1 + \dots + \beta_p)t_k\mu_i^1$$

which implies, by comparison of coordinates, that $\beta_2 = ... = \beta_p = 0$ hence $v_{ki} = \beta_1 \mu_i$. It follows that v_k is a linear combination of the special double monomials $\mu_1, ..., \mu_s$, that is, $v_k \in V_k^{sp}$. We denote, from now on, v_k by $P_{j_1...j_k}$.

We turn now to the more difficult equation

$$A\mu + (X_0^{m*}X_0^m)v_{k+1} = t_k v_{k+1}.$$

As we have noticed before the lemma, we have in V_{k+1} the special double monomials $\mu^{(1)}, \ldots, \mu^{(n)}$ and the non-special ones $\mu_{(1)}, \ldots, \mu_{(n)}$. In V_{k+1} there are $\binom{k+1+n-1}{k+1} = \binom{k+n}{k+1}$ special double monomials and so we may suppose that $\mu^{(1)}, \ldots, \mu^{(n)}$ are the first n of them. Having made this convention, we decompose V_{k+1} according to (6) above:

$$V_{k+1} = V_{k+1,1} \oplus ... \oplus V_{k+1,n} \oplus ... \oplus V_{k+1,r}$$
 where $r = \binom{n+k}{k+1}$.

For $1 \le i \le n$, $V_{k+1,i}$ has a basis formed by $\mu^{(i)}$, $\mu_{(i)}$ and some other double monomials. Decompose v_{k+1} of the above equation as

$$v_{k+1} = v_{k+1,1} + \dots + v_{k+1,n} + \dots + v_{k+1,r}.$$

We have

$$A\mu = \sum_{i=1}^{n} \alpha_i (X_0^{m*} X_0^{m-1} X_i) (X_0^{m*} X_0^{m-k} X_{j_1} \dots X_{j_k}) =$$

$$= t_1 t_k \sum_{i=1}^n \alpha_i (X_0^{m-1} X_i)^* (X_0^{m-k} X_{j_1} \dots X_{j_k}) = t_1 t_k \sum_{i=1}^n \alpha_i \mu_{(i)},$$

which belongs to $V_{k+1,1} \oplus ... \oplus V_{k+1,n}$. Our equation becomes:

$$t_1 t_k \sum_{i=1}^n \alpha_i \mu_{(i)} + (X_0^m * X_0^m) (v_{k+1,i} + \dots + v_{k+1,r}) = t_k (v_{k+1,1} + \dots + v_{k+1,r})$$

and so we must have:

$$\begin{cases} t_1 t_k \alpha_i \mu_{(i)} + (X_0^{m*} X_0^m) v_{k+1,i} = t_k v_{k+1,i} & (1 \le i \le n) \\ (X_0^{m*} X_0^m) v_{k+1,i} = t_k v_{k+1,i} & (n+1 \le i \le r) \end{cases}$$

The last r-n equations of this system have only the trivial solution $v_{k+1,i} = 0$ by the proper vector argument used above. We analyse now an equation corresponding to $1 \le i \le n$. Decompose $v_{k+1,i}$ as $\lambda \mu_{(i)} + \lambda' \mu^{(i)} + u$ where $\lambda, \lambda' \in R$ and u is a linear combination of monomials in the basis of $V_{k+1,i}$, different from $\mu_{(i)}$ and $\mu^{(i)}$. So:

$$\alpha_i t_1 t_k \mu_{(i)} + t_{k+1} (\lambda + \lambda' + \phi(u)) \mu^{(i)} = t_k (\lambda \mu_{(i)} + \lambda' \mu^{(i)} + u).$$

By comparison of coordinates we have:

$$\begin{cases} \alpha_i t_1 t_k = \lambda t_k \\ t_{k+1}(\lambda + \lambda' + \phi(u)) = t_k \lambda' \\ 0 = t_k u \end{cases}$$

Hence u = 0, $\lambda = \alpha_i t_1$ and $\lambda' = \alpha_i t_1 \frac{t_{k+1}}{t_k - t_{k+1}}$.

This means that

$$v_{k+1,i} = t_1 \alpha_i \mu_{(i)} + t_1 \frac{t_{k+1}}{t_k - t_{k+1}} \alpha_i \mu^{(i)}$$

which gives

$$v_{k+1} = \sum_{i=1}^{r} v_{k+1,i} = \sum_{i=1}^{n} v_{k+1,i} = t_1 \left[\sum_{i=1}^{n} \alpha_i \mu_{(i)} + \frac{t_{k+1}}{t_k - t_{k+1}} \sum_{i=1}^{n} \alpha_i \mu^{(i)} \right].$$

The following lemma 10 has a similar but easier proof.

Lemma 10. Let δ be a derivation of Z(n+1,2m), $\mu = X_0^m * X_{j_1} \dots X_{j_m} \in V_m$ a special double monomial. Then $\delta(\mu) = P_{j_1 \dots j_m} + t_1 \sum_{i=1}^n \alpha_i \mu_{(i)}$ where $P_{j_1 \dots j_m}$ is some element of V_m^{sp} depending on μ .

If we make the convention $t_{m+1} = 0$, then lemma 10 can be absorbed by lemma 9.

We remark that $A\mu = t_1 t_k \sum_{i=1}^n \alpha_i \mu_{(i)}$ and so it is usefull to denote by $\overline{A\mu}$ the "conjugate" $t_1 t_k \sum_{i=1}^n \alpha_i \mu^{(i)} \in V_{k+1}^{sp}$. With these notations we have for $\mu = X_0^{m*} X_0^{m-k} X_{j_1} \dots X_{j_k} \in V_k^{sp}$ that

 $\delta(\mu) = P_{j_1 \dots j_k} + \frac{1}{t_k} \left[A\mu + \frac{t_{k+1}}{t_k - t_{k+1}} \overline{A\mu} \right].$

In the following we will abbreviate

$$\frac{1}{t_k} \left(A\mu + \frac{t_{k+1}}{t_k - t_{k+1}} \overline{A\mu} \right) \in V_{k+1}$$

by (A, μ) . Observe that (A, μ) is a bilinear function of A and μ .

Having obtained the effect of δ on special double monomials, we can now obtain its effect on non-special ones. If

$$\mu = X_0^{m-r} X_{i_1} \dots X_{i_r} X_0^{m-s} X_{j_1} \dots X_{j_s}, \text{ with } r \leq s,$$

then taking

$$\mu_1 = X_0^{m*} X_0^{m-r} X_{i_1} \dots X_{i_r} \in V_r^{sp}$$
 and $\mu_2 = X_0^{m*} X_0^{m-s} X_{j_1} \dots X_{j_s} \in V_s^{sp}$ we have $\mu_1 \mu_2 = t_r t_s \mu$ and so

$$\delta(\mu) = \frac{1}{t_r t_s} \left[\mu_1(P_{j_1 \dots j_s} + (A, \mu_2)) + \mu_2(P_{i_1 \dots i_r} + (A, \mu_1)) \right] =$$

$$=\frac{1}{t_r t_s} \left[(\mu_1 P_{j_1 \dots j_s} + \mu_2 P_{i_1 \dots i_r}) + (\mu_1 (A, \mu_2) + \mu_2 (A, \mu_1)) \right] \in V_{r+s} \oplus V_{r+s+1}.$$

From Lemma 9, we have $\delta(X_0^{m*}X_0^{m-1}X_i) = P_i + (A, X_0^{m*}X_0^{m-1}X_i)$ for every $1 \le i \le n$, where $P_i \in V_1$. Suppose now

$$\mu = X_0^{m*} X_0^{m-k} X_{i_1} \dots X_{i_k} \in V_k^{sp}.$$

Then μ is equivalent to

$$\tilde{\mu}_{(i_k)} = X_0^{m-1} X_{i_k}^{**} X_0^{m-k+1} X_{i_1} \dots X_{i_{k-1}}$$
 and so $(X_0^{m*} X_0^m) \mu = (X_0^{m*} X_0^m) \tilde{\mu}_{(i_k)}$.

This equality gives the following equality between components of their derivatives in the subspace V_k :

$$t_1 t_{k-1} (X_0^m * X_0^m) P_{i_1 \dots i_n} =$$

$$= (X_0^{m*}X_0^m) \left[(X_0^{m*}X_0^{m-1}X_{i_k}) P_{i_1 \cdots i_{k-1}} + (X_0^{m*}X_0^{m-k+1}X_{i_1} \cdots X_{i_{k-1}}) P_{i_k} \right].$$

But $(X_0^m * X_0^m) P_{i_1 \dots i_k} = t_k P_{i_1 \dots i_k}$ because $P_{i_1 \dots i_k} \in V_k^{sp}$ and this implies

$$P_{i_{1}\dots i_{k}} = \frac{1}{t_{1}t_{k-1}t_{k}} (X_{0}^{m*}X_{0}^{m}) \left[X_{0}^{m*}X_{0}^{m-1}X_{i_{k}} \right) P_{i_{1}\dots i_{k-1}} +$$

$$+ (X_{0}^{m*}X_{0}^{m-k+1}X_{i_{1}}\dots X_{i_{k-1}}) P_{i_{k}} \right],$$

a recurrence relation which shows that each $P_{i_1 \dots i_k}$ $(2 \le k \le m)$ can be expressed linearly as a function of the elements $P_1, \dots, P_n \in V_1$.

R. Costa

Theorem 3. The duplication mapping is an isomorphism of Lie algebras for every G(n + 1,2m).

Proof. From the preceding lemmas, we see that given a derivation δ of Z(n+1,2m), we can associate to it a sequence $(A, P_1, ..., P_n)$ of elements of V_1 , given by

 $A = \delta(X_0^{m*}X_0^m)$ and $\delta(X_0^{m*}X_0^{m-1}X_i) = P_i + (A, X_0^{m*}X_0^{m-1}X_i)$ for $1 \le i \le n$.

Conversely if we give a sequence (A, P_1, \ldots, P_n) of elements of V_1 , we define δ by $\delta(X_0^m * X_0^m) = A$, $\delta(X_0^m * X_0^{m-1} X_i) = P_i + (A, X_0^m * X_0^{m-1} X_i)$, extending to the whole basis by the recurrence formulae appearing in the lemmas. It is not difficult to prove that δ is indeed a derivation of Z(n+1,2m). The correspondence $\delta \to (A, P_1, \ldots, P_n)$ is clearly linear and bijective. This means that the dimension of the derivation algebra of Z(n+1,2m) is n^2+n , which shows that the duplication mapping is an isomorphism.

References

- [1] Costa, R.: On the derivation algebra of gametic algebras for polyploidy with multiple alleles, Bol. Soc. Bras. Mat., 13.2 (1982), 69-81.
- [2] Etherington, I.M.H.: Genetic algebras. Proc. Roy. Soc. Edinburgh 59 (1939) 242-258.
- [3] Etherington, I.M.H.: Non-associative algebra and the symbolism of genetics. Proc. Roy. Soc. Edinburg B 61 (1941) 24-42.
- [4] Gonshor, H.: Special train algebras arising in genetics. Proc. Edinburgh Math. Soc. (2) 12 (1960) 41-53.
- [5] Gonshor, H.: Special train algebras arising in genetics II. Proc. Edinburg Math. Soc.(2) 14 (1965) 333-338.
- [6] Holgate, P.: Genetic algebras associated with polyploidy. Proc. Edinburgh Math. Soc.(2) 15 (1966) 1-9.
- [7] Heuch, I.: An explicit formula for frequency changes in genetic algebras. J. Math. Biol. 5 (1977) 43-53.
- [8] Heuch, I.: The genetic algebras for polyploidy with an arbitrary amount of double reduction. J. Math. Biol. 6 (1978) 343-352.
- [9] Jacobson, N.: Lie algebras. Interscience Publishers, New York, London, Sydney, 1962.
- [10] Wörz-Busekros, A.: Algebras in genetics, Lecture Notes in Biomathematics, 36, Springer-Verlag, 1980.
- [11] Wörz-Busekros, A.: Polyploidy with an arbitrary mixture of chromosome and chromatid segregation. J. Math. Biol. (1978) 353-365.

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

Universidade de São Paulo Cidade Universitária "Armando Salles de Oliveira" Caixa Postal n.º 20570 (Agência Iguatemi) São Paulo — Brasil