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On the derivation algebra of zygotic algebras for
polyploidy with multiple alleles

R. Costa

1. Introduction

The terminology and notations of this paper are those of [1] of
which this one is a natural continuation. In that one, we have calculated
the derivation algebra of G(n+ 1,2m), the gametic algebra of a 2m-ploid
and n + 1-allelic population. In particular, it was shown that the dimension
of this derivation algebra depends only on n. The integer m is related to
the nilpotence degree of certain nilpotent derivations of a basis ([1],
th. 3 and 4), as it is easily seen.

The problem now is the determination of the derivations of Z(n + 1,2m),
the zygotic algebra of the same 2m-ploid and n + 1-allelic population.
As Z(n + 1,2m) is the commutative duplicate for G(n + 1,2m) ([10], Ch. 6C),
the first idea to obtain derivations in Z(n + 1,2m) is to try to duplicate
derivations of G(n + 1,2m). We recall briefly. that given a genetic algebra 4
with a canonical basis Cy, C,,..., C, then the set of symbols Ci*C;
(0=i=<j=n)is a basis of the duplicate 4*4 of 4 ([10], Ch. 6C). In par-
ticular if dim A =n-+ 1 then dim (4*4)="FD0+2) o o itiplica-

tion in 4*4 is given by
(Ci*Cj)(Ck*Cf) = (CiCj)*(Cka)

where C;C; (resp. C,C,) is the product, in 4, of C; and C; (resp. C; and C, ).
An intrinsic construction of 4*4 is the following: take the tensor product
vector space 4 ® A and define a multiplication by (¢ ® b) (¢ ® d) =
= (ab) ® (cd). Then let J be the two-sided ideal generated by the elements
a®b—b®a, a,be A and take A*4=(4 ® A)/J ([10]).

Lemma 1. Let 6 : A— A be a derivation. There exists one and only one
derivation 6*: A*A — A*A such that 6*(a*b)= d(a)*b + a*d(b) for all a, b in A.
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Proof. Let 0 : 4 x A— A ® A be the the canonical bilinear mapping given
by 0(a,b)=a®b. Then 0 - (6 x 1,) : A x A—> A® A is bilinear. The same
holds for 0. (1,x6):AxA—>A® A. Hence 0o (6x 1,)+ 0. (1% d) is
again bilinear and induces 0:A®A—> A® A, linear and satisfying
Ha®b)=6(a) @b+ a®dib) for all a,b in 4. This mapping J satisfies
5(J)cJ. In fact, take one generator a®b—b®a of J. We have

a®b—b®a) = da®b) — db®a) =
Ma)®b + a®dib) — db)®a — bR a) =
= (@ ®b—b®d(a) + (a® d(b) — 5(b)®a),
which is an element of J. By the well known lemma on quotients, ¢ induces
0" : A*4A— A*A such that 6%(a*b) = a*d(b) + d(a)*b for all a,b in A. It

rests to prove that ¢ is a derivation of 4*4. As A*A is generated by the
elements a*b, a,b in 4, it is enough to prove the following equality:

0"((a*b) (c*d)) = 6*(a*b) (c*d) + (a*b)0*(c*d)
for all a,b,c,d in A. In fact, we have:

5*((a*b) (c*d)) = 8*(ab)*(cd)) = o(ab)*(cd) + (ab)*d(cd) =
= (8(a)b + ad(b))*(cd) + (ab)*(d(c)d + cd(d)) =
= d(a)b*(cd) + ad(b)*(cd) + (ab)*(c)d + (ab)*cd(d) =
= (8(a)*b) (c*d) + (a*3(b)) (c*d) + (a*b) (3(c)*d) + (a*b) (c*d(d)) =
= [8(@)*b + a*3(b)] (c*d) + (a*b) [0(c)*d + c*3(d)] =
= 8"(a*b) (c*d) + (a*b)3*(c*d).
The unicity of 6* is clear.

We shall call 6" the duplicate of § and the correspondence &— *
the duplication mapping.

Proposition 1. The correspondence 6— 6" is an injective homomorphism
of Lie algebras.

Proof. Let 6, and §, be derivations of A4, a,be A. We have:

(01 + 05)(@*b) = (5, + 3,) (@)*b + a ¥y +3,) (b) =
= 0,(a)*b + 6,(a)*b + a*6,(b) + a*d,(b) =
= 0,(a)*b + a*d,(b) + ,(a)*b + a*d,(b) =
= 01(a*b) + 63(a*b) = (67 + 6%) (a*b).
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As a*b, with a, be A4, is a generating set of A*4, we have (0, + J,)' =

=} + d%. In a similar way, we prove that (10)* = 20" for all e R.
Now

(61005 — 830 0,)(a*b) = [(0, 0 0,)" — (3, 00,)] (a*h) =
= 6,(0,(a)*b + a*6,(92(b)) — 6,(0,(a) )*b — a*0,(6,(b)) =
31(62(a)*b + 02(a)*0,(b) + a*6,(0,(b)) + 6,(a)*d,(h) —
— 65(6,(a))*b — 6,(a)*d,(b) — 0*52(51(b)) — 0y(@)*0,(b) =
= 01(0,(a)*b) + 61(a*d,(b)) — 63(6,(a)*b) — &3(a*d,(b)) =
= (0} 0 83) (@*b) — (6%« 8%) (a*h) = (0} o 6% — 8% - 07) (a*b) and so
(0100 —08500,) =0} 005 — d5.07.
We show now that ¢* = 0 implies 6 = 0. Take a basis C,, Cy, ..., C, of A.
If o(C Z @ (= 0L ) ithen s

i=oi(@ 5@ =" (@ )C+C*(>(C = 2C*3(C)) =

= 2C%( Z i Ci) = Z 20,,C*C; + Z B

k=0 k=i+1
Al =01, .0 As LM, o CRCEHC .  C*C are pail
of a basis of 4*4 we have oc,“_O for ke =0 8lisiiig andise:r o = 0!

Remark. In general the correspondence 6 — 0" is not an isomorphism
of Lie algebras. We give an example of a class of genetic algebras where
0 — 0* is not an isomorphism. But, in contrast to this, we will have an iso-
morphism for every one of the gametic algebras G(n + 1,2m).

For each n > 1, we call K, the trivial genetic algebra of dimension
n+ 1 having a basis Cy, Cy, ..., C, such that C3 = C, and all other pro-
ducts are zero. The weight function o : K,— R is given by o(C,)=1

andSa(@;) = 0 (= 1,0 ) wGiven oo — a6, Z o;C; e K, and

i=1

y=0()Co+ > B,C; we have xy = w(x)w(y)Co. The algebra K, is the

Jj=1
Bernstein algebra of dimension n+ 1 and type (1,n) ([10], Chap. 9B,
th. 9.10).

Lemma 2. The derivations of K, are the linear mappings o : K,— K, such
that w -« d=0 and 6(Cy)=0. Hence the derivation algebra of K, has di-
mension n>.
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Proof. Suppose o is a derivation. Then o . 6 = 0 Ve, S0 A1
0(Co) =ue Ker w then Cj= C, implies
u = d(Co) = 2Co(Co) = 2Cou = 0.
Suppose now 6 : K,— K, satisfies w o d=0 and §(C,)=0. Then
o(xy) = d((x)w(y)Co) = w(x)w(y)5(Cy) = 0.
On the other hand,
Ax)y + x6(y) = o(3(x)w(y)Co + (x)(3(y)Co = 0

and so ¢ is a derivation of K,.

We have shown that ¢ is completely determined by §(C,), ..., 8(C,)
with 6(C;))e Ker w, (i=1,...,n) and so there is a one-to-one correspon-
dence between derivations and sequences 4, ..., 4, of elements of Ker o.
This completes the proof.

i ! K
Lemma 3. For each n=1, K,*K,, is isomorphic to —2n+3).

Proof. 1t is enough to prove that (K*K)? is a one dimensional algebra
spanned by Cy*C,. In fact, if Cy, Cy, ..., C, is a basis of K,, then 4 B
with 0 <i<j<n is a canonical basis of K, *K,.

Now

(CO*CO)2 = CO*CO and (C,*Cj)(ck*cl») = C,'Cj*CkC( = O,
Lk ort+0
Corollary. For each K,, n= 1, the duplication mapping is not an isomor-
phism.
Proof. By lemmas 2 and 3, the derivation algebra of K,*K, has dimension

%(nz(n+3)2) which is greater than n?.

2. Multiallelism only

It is well known that G(n+ 1,2) has a canonical basis o @O

By duplication, we obtain a canonical basis C*C s 0Zigicn) of
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Z(n+ 1,2), the zygotic algebra of the same diploid and (1 + 1)-allelic po-
pulation. The multiplication is given by

(CO*Co)Z = CO*CO’ (CO*CO) (CO*CI) - % CO*C,' (l = 1, ieina ”)q
(Co*CYC*C) = 5 CFC,(1 S ij S m) and (CACHCHC = 0

whenlli=j<j=pior ll=k=¢=pn Let us decompose Z(n+ 1,2) as
Zin+1.2)= I, @V, @V, where V,=(C,*Cp), Vi=LCHC.ii=1,.... ny
and V,={C*C;:1<i<j=<n) ({...) indicates the subspace generated
by...). Observe that ¥, @V, is the kernel of the weight function, which
is 1 for Cy*C, and 0 otherwise.

Theorem 1. Suppose o : Z(n+12)— Z(n+ 1,2) is a derivation. Then there
exist A,B,, ..., B, in V; such that

(1) 3(Co*Cy) = 4
() For each | £ign ML"C.) = Btk 24(C*C);
(1) For each | 2isign MCHC)) = 4(Co*C;)B;+ 4Cy*C)B;.

Conversely, given A, By, ..., B, in V,, there exists one and only one derivation
o of Z(n+1.2) such that (i), (ii) and (iii) hold.

Proof. (i): By ([1], th. 1) we have w3 = 0. Call §(Cy*Cy)= A + =, with
AeV, and z,e V. As (Co*Cy)* = Co*C, we have
A+ 2;=3Co*Cp) = 2(Co*C)H(C*Co) = 2ACo*Co) (A + z,) =
= ACo*Co)A + 2(Co*Cp)z, = A.
Equating components we have z, =0. It rests §(Co*Cy) = A..

(i) Call o(Cy*C)= B, + D, with B e Vi, D'el;. From

(@200 (@hE = % Cy*C; we obtain

A(CO*Ci)+(C0*C0)(B,»+D,)=%(B,~+D,-) or A(CO*Ci)—I—%B,-=~:IZ—(B,~+D,-).

But A€ "Cre Vi, 80 AC*Co) = iD,-, which means §(C,*C;) = B; +
+ 24(Co*C,). 2
(iii): From C*C;=4(Cy*C;)(Co*C;) (1 £i <j < n) we obtain

= 4[[B; + 24(Cy*C; )](CO*Cj) + (Co*Cy)[B; + 24(Co*C)]] =
= 4[B{(Cy*C;) + (Co*C;) B;].
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Conversely, given 4, B,, ..., B, in V; define 6 : Z(n+1,2)— Z(n+ 1,2) by
the formulae above. It is routine to verify that ¢ is indeed a derivation.
Also the unicity of § is clear.

Corollary. The derivation algebra of Z(n+ 1,2) has dimension n(n+ 1) and
so every derivation of Z(n+ 1,2) is the duplicate of one and only one deriva-
tion of G(n+ 1,22).

3. Polyploidy only

The gametic algebra G(2,2m) has a canonical basis C,,C,, ..., C,,
such that C;C;=0 when i+j>m and C,C;=t;,,C;;; when i+j<m,
where t,(k=0, 1, ..., m) are the t-roots of G(2,2m). Hence Z(2,2m) has a
canonical basis C;*C; (0 =i <j < m) where the multiplication is given by

0 when i+j>m or k+ ¢ >m

@r@ (@@ =
( NGICe) {IHJ»IH,C,-H*CH(when,H—jgmandk+(§m

The t-roots of Z(2,2m) are ty, t,, ..., t,, (Where t,=(*")"'(")) and 0, this
one with multiplicity m(m+ 1)/2. The weight function » of Z(2,2m) is
given by w(Co*Co)=1 and o(C*C;)=0 for all (i) (0,0).

We have also a direct sum decomposition Z(2,2m)=V, @V, ® ... ® V,,
where V(0 <k < 2m) is the subspace of Z(2,2m) generated by the vectors
CHC; O0=igj=n, such that v+ j=k In paticular =00 ,*Cp),
Vi=(Ce*C ), Vo= H{C*C,, C,*C,> and so o Tie! dimnension of
V, is % + 1 when £ is even and /i21 when k is odd. From the multipli-
cation table of Z(2,2m) we see that every element of V, is an absolute divisor
of zero if m+ 1=k <2m. This means that if v,e V, and m+ 1 <k <2m,
for every x € Z(2,2m) we have xv, =0. Also we have the following relation
for v,e Vi and 0 =k =m: (Co*Cy)v, is a scalar multiple of Cy*C,. In
fact; if o, = oo GGt G G . iwe have

(Co*Colvx = ap(Co*Co) (Co*Cy) + a1 (Co*Co) (C1*C_y) + ... =
= aOtkCO*Ck + O(ltkCO*Ck + ee. = tk(z O([)CO*Ck.

In order to simplify the notations we call ¢ the linear form on Z(2,2m)
given by ¢(C;*C;) = 1forall0 < i < j < m. We have shown that (C,*Cy)v, =
= 1P(v) Co*Cy for 0 <k <m. As Cy*C, plays a special role in the mul-
tiplication by C,*C,, we call it the special element of V, (0 <k <m).-

We know ([1] th. 1) that every derivation & of Z(2,2m) satisfies
w:0=0.
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The following lemmas 4 to 7 will describe the action of a derivation

oliontithelsubspaces RTINS e e Rl I o Z(2:0m).

Lemma 4. For every derivation o of Z(2,2m), we have 3(C,*C) = 2C,*C,
for some a€R.

Proof. Call 5(Co*Co)=v, 4+ v;+ ... + v, with v;€ V; (i=1, ..., 2m). Then
2@ Aol FiEiE by ) =0 B sl e
SOl OOyt o F 20 Wl o Cr im0 e 0 b Bl
Equating the components we have:

{Z(b(vk)fkco*ck = l=ksm)

Umpt | = eon = UZm:O'

The first equality reads 2¢(v,)r;Cy*C, =v,, thereby t, ="'/,. Hence
v, =aCy*C, for some a e R. The equations corresponding to 2 <k <m
have only the ‘trivial solution 'v, =0."In fact, call v, = pyC*Cy +
+ 1, C*Cy_y + .... Then we have 2(uy + p; + .. ):Co*Cr = 11,Co*Ci +
4+ 1,C*C— + ... which implies

2t (o + 1y + --) = U

This system reduces to 2t,p=p and so uo=0 because t,=(*"y () < —;
when 2 <k <m. Then v,=0 for all 2<k <m. It rests §(Co*Cy)=v,=
=2Cy*C,, for some real number a.

Lemma 5. For every 1 Sk<m—1, we have
NCo*Cy) = a4, Co*Cy + at, riil_CO*Ck;l sheiaty € S
BT
where a,€ R and o is as in lemma 4.
Proof. Again, call 6(Co*Cy)=uy+ ...+t + ... + Uy, u; € V;. The equality
(CO*CO)(CO*CI\'): tk(CO*Ck) lmplleS
UCo*C1)(Co*Cy) + (Co*Co) (uy + ... + uzpm) = tiluy + ... + uzp)

or

m 2m
SEE ) + N I C,C = 1 Y w) But €,*C, eV,
i=1

i=1
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so we must have:

¢(ui)ti(C0*Ci) T tkuh = la cee, M, i # k ar la
O+ 1)t 1(Co*Cry ) + at 8(C*CL) = g4y,
u’n+1=¢-¢:u2m:O-

The equations in the first row, with i # k, have only the trivial solution
u;=0, as in the preceding lemma. The equation @(u,)t,Co*Cy = i,

reduces to ¢(u; )Co*Cy = u; which gives u, = ,C*C, for some real number
;. The equation in the middle has the following solution: if

U+ = AO(COl*Ck+1) AL * )+ Aol Y L

then

(Ao 41 + Ag M 0o Coul + AN n(C,*Ch) =
= tfAo(Co*Cis 1) + 4(C1*Cy) + A(C*Cy_ ) + ..)
and so
(o + A1 + 25 + )iy = tido
O(l‘ll‘k == tkil
tklZ R = 0
From this system, we have A, = ... =0, 4, = at, = /2 and the first equality
reduces to Ao = at, _"+1 Hence the result.
U ilp 1

The effect of 6 on the vector Cy*C,, is given by
H(Co*Cp) = 0, Co*Cpy) + at((C1*C,)

where a,, is some real number. The proof is similar to that given in lemma 5.
Having obtained the effect of & on the vectors Co*C, (1 <k <m)
we can now obtain §(C*C;) for 1 <i<j<m.

Lemma 6. For every 1 <i<j<m—1, we have

CF*Cj) = (o;+ a)C*C; + at [#H— (Ci+1*Cj)+T[‘j+l—(Ci*Cj+ 1

il i Lt

where o; and o; are as in lemma 5.

-
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Proof. We have (Co*Ci)(Co*Cj) =11 (C*C;) and so

1 X

)

1 t; X
= ”I“t“ [[“i(Co*Ci) S0y l:t ':1 (Co*Civy) + (Cl*Ci)J (CO*CJ) =t
i

i il

a (CO*Ci)[aj(CO*Cj). o [%;1_ (Co*Cjs1) + (Cl*Cj)JJ =
1

J s
1 * tiaty *
:7[“1'11'[,(('1' Cj)+at1_“'(ci+l Cj)+atl[i+ltj(ci+l*Cj)+
(L] i i+
* ti2+l
+ @ (CrC) + aty e (C*Ci0) + wE bt (C*C 0] =
Jj gt 1

£ t;
A aj) (Ci*Cj) e ('ti(ti :tli+ 1) i trl ) (CHI*Cj) b

2 ;
+oat [—HL 4 Rl (C*Cjuy) =
tt;

= bl b

i Ly Lins bty

= (0(,-+ O(j)(Ci*Cj) =k oy I:t fisy (Ci+l*Cj) ap _IL(Ci*Cj%l )J

In a similar way we prove the relations

L o SRS Vol PR SR, HER ST RGPS e PR
T i~ lti+
and
(A oy T el

The effect of 6 on the canonical basis of Z(2,?:m) will be completely
known after the following lemma.
Lemma 7. The real numbers %;(j = 1,...,m) appearing in the formulae

Jor ACo"C;) satisfy a,=fa; (=1, ..., M)

Proof. The equality is trivial for j = 1 and suppose we have already proved
for 1 i< m. From the equality

(Cl*Ci)z = ti2+1(Ci+1*Ci+l)>
we obtain:

AC*C (0 *C = thi8(Cs 1*Cis1)
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or

ACHC [ + @) (C*Ci) + o 2 (C*C 0 (€4, )] =

) L Lol

£t
= t71[2041(Cis 1 *Cipy) + 2 — 12 (Ciy *Ciyl)]
: Ll Livo
The comparison of components in the directions of C,,,*C;,, and
Cii1*Ciy, gives oy +o;=0;,; (our desired result) and an identity in
the t-roots, as in [1], th. 3.

The results of the preceding lemmas can be put together in the
following set of equations:

r5(Co*Co) = o(Co*Cy) ;
o(Co*Cy) = kB(Co*Cy) + at, [&(CO*CH ) 5t Cl*CkJ

P

(*)4 5((,-*C,-)=(i+j)/3(C,-*C,-)+°“x [%(C‘“*wa

R A

4 ustal dave o)
Bl

—

where' 1 k' Sm, leizism t,.,=0.and o, BeR.

Theorem 2. The derivation algebra of Z(2,2m) has dimension 2. In particular,
every derivation of Z(2,2m) is the duplicate of one and only one derivation of
G(2,2m).

Proof. The preceding lemmas provide the relations (*). It is easy to see
that if we choose arbitrarily o, f € R and define d : Z(2,2m)— Z(2,2m) by
the relations (*), we obtain a derivation. This means exactly that the deri-
vation algebra of Z(2,2m) has dimension 2. Since every duplicate of a
derivation of G(2,2m) yields a derivation of Z(2,2m) and the derivation
algebra of G(2,2m) has dimension 2 (cf. [1]) we get the desired result.

4. Multiallelism and polyploidy

In the general case of multiallelism and polyploidy, we follow the
same ideas of §§2,3.

The gametic algebra G(n+ 1,2m) corresponding to a n+ 1-allelic and
2m-ploid population has a canonical basis consisting of all monomials
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X§X'...X;» in commuting variables such that ig+i,+...4+i,=m
([4]. [5], [1]- This basis is ordered lexicographically by the exponents,
that is, X§X{ ... X}» precedes X% X' ... Xi» when the first non vanishing
difference i, — j, (k =0, 1, ..., n) is positive. The multiplication in G(n+ 1,2m)
is given by

B.ED NS L0063 ¢ il ¢

2y e T S bt in R
<m> <m Xpri-myitic | Xintin if m < i+ jo

In particular,

v1 .
XPXEXE . Xy = (2[””) (m;"’)X{;’X{‘ ey

which says the t-roots of G(n+ 12m) are 1, !/, ..., 1/(2,,,) with multiplicities

(m+n— 1> .
il o0 respectively.
m

Now we consider the duplicate Z(n+ 1,2m) of G(n+ 1,2m). One

-canonical basis of Z(n+ 1,2m) is the set of all “double monomials”

(XEXY ... Xim) * (X#X] ... X]r) where the first one precedes the second,

and, of course, iy + ... +i,=jo+ ... +j,=m. We recall (see [1]) that

3 ,

dim G(n+ 1,2m):<””Jr ”> and so dim Z(n+ 1,2m)= 1/2[<’"+”> it <M+ ”M
m

m m

and that the weight function w is defined by (X7 * X7) = 1 and 0 otherwise.

Let V,,_, be the subspace of Z(n+ 1,2m) generated by the double
monomials (X§ ... Xi*)* (X% ... Xj») such that iy + jo=r. As 0< i, <m,
0=/, =m, we must have 0 <2m—r <2m. We list now some properties
oft“thc"subspaces Vil i lo:

(1) First of all, we have the direct sum decomposition Z(n+ 1,2m)=
=1heVae...®V,,, by the own definition of the subspaces. In addition,
V®...®V,, is the kernel of the weight function w.

(2) Vo 1s generated by the idempotent X7* X{.

(3) V, is generated by the double monomials XZ*X% !X, (i=1,...,n)
and so dim V, =n. & e

(4) Every element of V,,,,®...® V,,, is an absolute divisor of zero in
Z(n+ 1,2m). In order to prove this, it is enough to prove that each double
monomial belonging to one of these subspaces is an absolute divisor of
zero. If

(oXi, X (XPXD... X)e W,
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and m+ 1 <k <2m, then iy, + j, <m (definition of V,) and so, given an
arbitrary double monomial,

ReEdXery . XV AT . A
we have
p[XBXE .. Xy * (XX ... X)] =
= [Xpxr . xeg(Xoye . gagleig iy i Fa 0L YT
= [(X&X] ... XV (XX { ... X)]*0 = 0.

(5) If 0 =k =m, V, is an invariant subspace of the linear mapping
z— (X0*X0)z, ze Z(n+ 1,2m). In fact, if we take a double monomial
(XgoX ' ... XIMy*(X¥X ] ... Xjn)in V,, then 2m—i,— j, = k, which implies
10+10;m and so

(XS*XEV [(XEX{ .. XX PX .. Xi)] =
=AM TR e e L
S [er(;r*XOio+jo—leil+jx X";n"'jn e ka

because 2m—m—i,—j,+m=2m—i,—j,=k. Observe that in generdl the
double monomials (X°X ' ... X )* (XX {' ... Xj") e Vi, k=2m—iy—jo.
are not proper vectors of the above linear mapping. The elements
X0*X3 7 X" ... X,re V, are proper vectors, so there are ("%~ ') linearly
independent proper vectors in V. These double monomials will be called
special.
(6) We introduce the following equivalence relation in the basis of
V0 =k =m): Two double monomials u and u' eV, are equivalent if
and only if (XT*X7)(u — u')=0. As the special double monomials are
proper vectors of the linear mapping z — (X3*X7)z, we see immediately
that any two of them are not equivalent. On the other hand, every double
monomial is equivalent to one of the special double monomials. In fact,
(XX . XX B XX is equivalent to X PR Xt mxi b h | xtn i
a special one (see (5) above). It is also clear that two double monomials
(XE... X)X ... X)) and (X7P... X;m)*(X¥... X;7) are equivalent if and
only if i, +jk="ri+ sk for all k=0, 1, ..., n. Hence every double monomial
[e V is equivalent to one and only one special double monomial in V,.
From this, it is possible to separate the basis of V in equivalence
classes, one for each special double monomial and consequently we have
a direct sum decomposition of ¥, as follows: Call u,, ..., u, the special
double monomials in ¥, where s = (**k~!), and let V,; be the subspace
of V, generated by the equivalence class of y; (i=1,...,s). Then
Vi=Va @ ... @ W
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(7) Observe now that each ¥}, is again an invariant subspace of the linear
mapping z— (X§*X§)z, ze Z(n+ 1,2m). Moreover if we call ¢ the linear
form on Z(n + 1,2m) taking the value 1 on each double monomial of the
canonical basis, we have for any ze ;. (X" XD =t

(X0*X5)z = typ(z)u
(8) We call V;*” the subspace of V; generated by the special double monomials
in the basis of V;. In particular V,*” = V, . The subspace V;”@® V. Te..evy

of Z(n+ 1.2m) is isomorphic, as a vector space, to G(n + 1,2m). The iso-
morphism is given by

EOOR N X X X e G e 1 0m) e
O=k =m
(9) In the following, double monomials will be denoted by

RS v e SNl 66

Js

where r=s and L= = ... 5L, 20 181, 2 ... 5. 2 n Given such 1.
with r + s <2m—l and r <s, we can define y), ..., y, by u,=
~X{§' . WX XX L X fand, i m<s, we can define
o by d »

e g DML e b GO SRRy

Js

In any case where 1" and g, both exist, they are in V,, ., and are equi-
valent ((6) above). We can, of course, iterate this process. In particular we
have

XAT. oR R Ry, K= ROAX B Xy S

G
Js ) (1)
Recall that for every derivation & of Z(n + 1,2m) we have v & = 0.

Lemma 8. For every derivation 6 of Z(n+1.2m), d(XT*X™)e V,.

Proof. Call d(XG*X3)=A+v,+ ...+ Vp+ Vpss + ... +v,, where A€ Vv,
and v, €V, (k=2,....2m). The idempotence of X{*X" implies

XGXS A F s R o L v = A 05+ I E L
But v, , ..., v,, are absolute divisors of zero so we are reduced to
AXT*XTIA + 2AXGT* X+ .+ 2AXP* X W= A+ 03+ ... ¥ 15,
As each V, (0 <k <m) is invariant ((5) above), we must have
2AXT*XT)A = A4
2AXTEXT o, — vl =24 im)

vm+1=---=vzm:0-
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The elements of V, are all proper vectors of the linear mapping
z— (X3*X7)z, corresponding to the proper value t, =!/,, so the first
equality is an identity in 4. The equations corresponding to k=2, ..., m
have only the trivial solution v, =0 because otherwise v, would be a
proper vector corresponding to the proper value t, = !/, and so
v €V; N V=0, a contradiction.

From now on, we will call

n
HXT*XT)=A= ) a0 XP*XT ' X, where a,, ..., o, are ‘real nunibérs:
i=1 i

Lemma 9. Let & be a derivation of Z(n+ 1.2m) and
pe AR DX el 2k me )

a special double monomial. Then

n

t L 3
) = Pty |:Z T T 4 B Y a®

= =ty =1

where P; ...; is some element of Vi¥ depending on p.

J
.Proof. Call é(u)=v,+v,+...4v,, with v,eV. (i=1,...,2m). To
(X0*X%)u=t,u we apply 6 and obtain |

Al.l + (X(')n*X'(;l)(Ul + e +U2m) = tk(Ul + +Uzm).

By the invariance of the subspaces V;, the fact that AueV,,, and
Vma1s--+» Uy are absolute divisors of zero, we must have

(X'(;'*X'él)vl=l‘kvl (l: ],,m but l#k‘i‘])
Ap + (XT*XG it 1 = Lkt

Um+l i et Uniietee 0

In the first set of equations we distinguish i =k and i# k. When
i # k, we must have v; =0 as the only solution, because otherwise v; would
be a proper vector of the linear mapping z— (X§*X7)z corresponding
to the proper value t, and so v;e V. V, =0, a contradiction.

Now the case i = k. We will prove that v, is a linear combination of
the special double monomials in V. For this let u, ..., u, be the special
double monomials in V;, so s = (""}"!). Let now ¥, be the subspace of V,
generated by the equivalence class of y; ((6) above), so V=V, @D ... ® Vj,.
We have the decomposition v, = v,y + ... + vy, v4; € Vi;. The equation

(XT* X7 ), = v, becomes (XT*XT) (g + ... + vyy) = ti(vg; + ... +04).
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But each ¥}, is invariant ((7) above) so the equation splits in the following
system of s equations:

(XT*X0)oer = tylx

(X'(;l* Xr(;l )Uks T [kvkx

Take one of these equations, say (X7*X™)v,; = t,v,; (1 i <'s). Call
ul = p;, 1i, ..., uf the double monomials equivalent to y;, that is, the
basis of V,;. We must have v,; = f,u! + fouf + ... + Buf for some real
numbers f,, ..., #,. Then:

LBttt + oo+ Bot?) = By + - + Bt

which implies, by comparison of coordinates, that f, = ... = f,=0 hence
vei = P11 It follows that v, is a linear combination of the special double
monomials g, ..., i, that is, v, € V;’?. We denote, from now on, v, by
le 2o Jge e !
We turn now to the more difficult equation

Ap + (XG*XG k41 = sy

As we have noticed before the lemma, we have in V;, , the special double

monomials '), ..., u™ and the non-special ones u ..., - In Viij
there are (**11" ')=(;1") special double monomials and so we may
suppose that ¢V, ..., ™ are the first n of them. Having made this conven-

tion,  we decompose V,,, according to (6) above:
berim sin® oo ® Vo5 @ .. D Wiy, Where r = (335).

For 1Zi<n, Vi, has a basis formed by u®, u; and some other double
monomials. Decompose v,,, of the abave equation as

B2 Bl i (0 Sl sl sl P s iy

We have

A= Nep(XORXE IO ek T iy e
i=1

i=

0 XT T XXX, - X)) = 1t Y ditty s

i=1

= it}

(e

Il
—

L

which belongs to Vi1 @ ... ® Viyy,. Our equation becomes:

iy Z ity FAXGFXG VW1 F o F 010V = tlogh 4 F i F 01T

i=1
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and so we must have:

titdtily + (X0* X0 )ory 1 = [’kvk+l,i (1<i<n)

(XO* X0kt 1= i1y M+ 1=Zi=r)

The last r-n equations of this system have only the trivial solution v, , ;=0
by the proper vector argument used above. We analyse now an equation
corresponding to 1 =i <n. Decompose v, ; as 2/1(,)+ 2 4+ u where
4,/ € R and u is a linear combination of monomials in the basis of Vk+1 b
different from p;, and u®. So:

Gt ity + e (A + 2+ ) = (e + 2 p® + w).

By comparison of coordinates we have:

fx,-tll‘k = ;“tk

tesr1(A+ A+ o) = 6,4

0 - [ku

. t
Henoce u =0, A =ui anad A &laptoll
b= it
This means that
t ;
Uksr,i = L0l + 1 —22 L ou®
S P

which gives

r n n n
Tk+1 (
Uk+1 = Z Uil = Z Unkiin=4 [Z il +t—t~— Z o "
i=1 i=1

i=1 kT kAL =1
The following lemma 10 has a similar but easier proof.

Lemma 10. Let d be a derivation of Zin+12m), p=Xg*X; ... X

n

a special double monomial. Then o(u)= P;,...; +1t, Y o where Pj .

i=1

ek

Jm

is some element of V,F depending on p.

If we make the convention ¢, , = 0, then lemma 10 can be absorbed
by lemma 9.

We remark that Au=1t,1, Y au and so it is usefull to denote by
i=1

n
Ay the “conjugate” t,1, Y au®e V;*#,. With these notations we have
i=1

for p=Xg*X07*X; ... X, € i*¥ that
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e Dty

\ 1 t Ty
)= Py .+ |:A,u + LA/.[J.
i i
In the following we will abbreviate
1 Tl i
Tl e L2 1
Ik =l

by (4, u). Observe that (4, u) is a bilinear function of 4 and p.
Having obtained the effect of 6 on special double monomials, we can
now obtain its effect on non-special ones. If

/1 = Xr(;l—rXiL "'Xir*X'(;l_szl ...st, Wlth ik g S,

then taking
. L eVtand'n, = xrexnex, Uy ey

we have p,u,=ttu and so

D Py, + (Ao pi2) + P, + (A, )] =

rs

o) =

1
T 7 [(/11le -'-js+ﬂ2Pi( “-ir) o (NI(A’ .Uz) 60 #Z(Aa ﬂl))] € Vr+s &) Vr+s+ 1-

From Lemma 9, we have 6(Xg* X3~ 'X,)= P, + (4, XZ* X2~ X,) for

every 1 <i<n, where P;eV,. Suppose now
Jie ARYXO R e
Then p is equivalent to
= X'S‘1X,~;("‘X'5""“Xil s ., 8N 80 (XT*XT i = (X0 * X0 )Mty
This equality gives the following equality between components of their
derivatives in the subspace V,:
Lt (XT*XTIP;s, i, =
=5 (Xréi*Xgl) [(X’(;I*X’(;'_IXU() Pix"'ik—l 7 (Xr(;l*X:)nhk+1Xi| Xik—l) Pik]‘
But (XG*XG) Pi,...i, = t,P;, ...;, because P; .., €V and this implies
Pfx"'fk T n__l__(X'(;l*Xgl) [X'S*Xghlxik)Pil---ikAl T
[ylk— Tk

ARG AR X X, )P,

a recurrence relation which shows that each P; .., 2<k <m) can be
expressed linearly as a function of the elements P,,..., P, V.
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Theorem 3. The duplication mapping is an isomorphism of Lie algebras
for every G(n+ 1,2m).

Proof. From the preceding lemmas, we see that given a derivation § of
Z(n+ 1,2m), we can associate to it a sequence (4, Py, ..., P,) of elements
of V,, given by

A=05(Xg"™X7) and S(XT*XT™'X;)= P+ (4, X3*X57'X;) for 1Zi<n.

Conversely if we give a sequence (4, P,, ..., P,) of elements of V,, we
define 4 by d(Xg* X )= A (AT XT AN = Pry () XD X0 1K) ex-
tending to the whole basis by the recurrence formulae appearing in the
lemmas. It is not difficult to prove that & is indeed a derivation of
Z(n+ 1,2m). The correspondence 6 — (4, P,, ..., P,) is clearly linear and
bijective. This means that the dimension of the derivation algebra of
Z(n+1,2m) is n*+n, which shows that the duplication mapping is an
isomorphism.
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