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Submanifolds with constant mean curvature

Irwen Valle Guadalupe

0. General data.

Let M" be an n-dimensional (n> 2), riemannian C* manifold iso-
metrically C* immersed into an (n+ p)-dimensional riemannian C*
manifold M"*? of constant sectional curvature c. Let | B| denote the
norm of the second fundamental form B and H the mean curvature normal
(vector field) of this immersion.

1. Introduction.

In [14] Simons proved the following inequality in case M"*? = §"*»
(= standard sphere) and M" oriented, minimal and compact:

Ln {(2 ~ %) |B||*—n| B ||2} dv >0 (1.1) .

where dv is the volume element of M". If follows that if M" is not totally
=1 =
geodesicand || B ||> = 2—% n,then || B|J*> = 2—% n. Using (1.1)

Chern, do Carmo and Kobayashi determined in [5] all compact minimal
submanifolds of S"*? satisfying

=1
I3 = (2= ) *

the condition (*) was subsequently generalized by Braidi and Hsiung
(see [2]).
A submanifold M" of a riemannian manifold M"*? is said to have
constant mean curvature if H is parallel as a section of the normal bundle.
The purpose of the > _present paper is to determine all isometric
immersions of M" intc M"*+? (where the constant c is 0 or —1) with
constant mean curvature, such that || B|| is constant (this condition is

* This work was supported in part by FINEP-Brazil.
Recebido em 09/05/83.
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automatically satisfied if M" is compact) and which satisfy a condition
analogous to (*).

2. The main integral formula.

Suppose we are given the Data of §0. We choose locally an “M"-
-adapted” orthonormal frame field (e, ..., e,+,) of M"*?, which means
that the vector fields ey, ..., e,, restricted to M", are tangent to M" and
hence e, 1, ..., e, ,, restricted to M", are normal to M". In this situation
we make the following conventions: the ranges of the indices

ol o eliging 0 A v TR |k Sl
are

1< ABC..antp L2k . S8 st saby. .. £04p

and all sums extend always over the respective ranges of repeated indices.
Thus, for all vector fields X, Y on M" we have by definition of the
second fundamental form B:

BX,Y) =Y (VyYepe, = Y CH(X, Y)e, 2.1)

where H, denotes the self adjoint tensorfield of type (1.1) on M" cha-
racterized by

ERXNEY = ey L ey =B vileb )

Hence the matrix (h;); j=,, ..., of H, with respect to e,,..., e, satisfies

,,,,,

hij = CHoe), ;> = Ble;, €)), €,). (23)

i urthermore, the covariand derivate VB 'of the second fundamental form
is (of type T* @ T* @ T* ®L) defined as usual (see e.g. Kobayashi-
-Nomizu II, p. 25) by

(VB)(X,Y,Z) = (V,B)(X,Y) =
= V4(B(X, Y)) — B(VX, Y) — B(X,V,Y) (2.4)

where V* is the normal connection and one defines:
uk i <(VB)(€,, j’ek)’ ea> =0 <(VekB)(ei,ej)a ea> (25)

(which is in concordance with the notation (2.10) of [ 2]). Moreover we define
the “Hessian” V2B = VVB of B (which is of type T* @ T* @ T* @ T* ®1)
by (see 2.4.)):

(V’B)(X, Y, Z, W) = (Vp(V;B)(X, Y) — (Vy,,.B)(X,Y)  (26)
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and the “Laplacian” AB of B as the trace of the Hessian V2B of B (which
is again of the same type T* ® T* ® L as B) by

(AB)(X,Y) =Y (V*B)(X, Y, &, &) 2.7
k

which is a contraction of V?B independent of the special choice of the
orthonormal frame field ey, ..., e,. If we define (again in concordance with
(2.13) and. (2.18) of [2]):

%jkt’ e <(VZB)(ei, €;, €y, €r), €,
and

Al = {(AB)(e;; ¢;), e,y (2.8)
then
(AB)(e;, e)) = Z (Ah;)e Z Ik e, (2.9)

For tensor fields 4, A4 of type T7* ® T on M we define their inner
product as usual (with A* = adjoint of A4) by

(A, Ay = tr(4* . Z (A(e;), ;) (Aley), e = Z a3 (2.10)

and the norm by

A lloe d0 4 4>

For tensor fields B, B of type T* ® T* ® L (i.e. of the type of the second
fundamental form) we define the inner product, resp. the norm, by
(B,By = ¥ (Blei.e;)e,><Bles.e)).e.), tesp. | B| = /B, By.  (211)
i,J,a

(again independent of the special choice of the orthonormal frame
Bl

Analogous definitions yield inner products for tensor fields of other
types and the canonically induced connections for these tensor fields are

metric with respect to these inner products.
As an example we obtain from (2.3), (2.4), (2.5), (2.9):

<Ha,Hﬂ> = Zh" h” (2.12)

B = Z W =Ll | (2.13)
|VBI* = 0 Hw)* = 3. <VeuB, Ve, B )
(B,AB) = Z Iight = JZ AR, (2.15)
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Moreover the metricity of the corresponding connections yields for the
Laplacian of the function || B|* as usual (using (2.7), (2.14)).

A(| B||>) = A{B,B) = {AB, B} + 2{VB,VB) + {B,AB),

1c

|VBI? = 5 A( B|) — <B.AB. (2.16)

Remark. Thé left-hand side, resp. the right-hand side, of (2.16) is a
differential operator applied to B of order one, resp. two, (the left-hand
side usually called the “15* Beltrami operator of B”). We want to show
now that the part of (B, AB) which involves derivatives of B of order 2
(or 1) does only depend on the Hessian of the mean curvature normal
field H of B, all the rest depending in a purely algebraic way on B,
involving some selfadjoint tensor field C of type L* ® L (i. e. an endomor-
phism field of the normal bundle L of M) derived from B. So we start with
some definitions: the mean curvature normal (vector field) H is defined as

1 1 1
H = WZB(ei,ei) (5)72(“‘ Ha)ea = 72 h?iefl’ (217)

thus
n’||H|? = ZtrH)2 Y (h5)> (2.18)

a, i

Moreover, using the fact that covariant differentiation commutes with

contractions, we get from (2.17) by covariant differentiation V* with
respect to the normal connection:

(VH)(X) = -3 Vi(Ble, e) = - L(VB)e e X)  @19)

and for the Hessian V* V* H of H which is of type T* ® T* ® L (like B):
(VAV* H)(X, V) = - ¥ (V*B)(e,, ¢, X, Y). (2.20)

Thus we get from (2.5), (2.19), resp. from (2.8), (2.20):

(V- H)(e) = V4H = — ¥ hiye,

i,k,a

2.21)

TS K e,
Nikea
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Consequently we get from (2.11), (2.3), (2.21):
R<BVYV-Hy= ) .. (2:22)

Lkt o

Moreover we define the following self-adjoint endomorphism C of the
normal bundle L of M" in M"*P:

Z(B e;,e;)E) Ble;, e;) for every normal vector &. (2.23)
Evidently the €lements of the matrix of C with respect to e,,,...,€,+,
are

C,p = {Cle,), e ol Zh“ hY = L <H1,H,,> (2.24)
(2.3) iJ
hence
i 2l 2
wC =Y I H|* 3,1 B (2.25)
and

| CAR = i Cs Ch
i 2 2, = Z(Ha,Hﬁ>2 > ke hB g, b, (2.26)

(2. 24; i
Finally we introduce for abbreviation:

6= Y tr(HHH)twr(Hp)= Y h3hb i ht,, (2.27)
a.p h

i,j, k¢

a function which is (as a double contraction) independent of the special
choice of &y, ....€.. ;.
Using a computation of Braldl and Hsiung in [2] we get then:

Proposition 1. Under the hypothesis of §0 and if H,, C and ¢ are defined
as in (2.2), (2.23) and (2.27) respectively, then

1
| VB|]?* = 7V(|| B|]*) = n<{B,V*V*H) +

B0 e e sl gl e e B + ) (225)

Proof. This is a direct consequence of (2.16) and the formula (3.2) of Braidi

and Hsiung (see [2]) for (B, AB) [which in sum is a generalization of a

formula of Nomizu and Smyth (see [12]) for (B, AB) in the hypersurface
case p=1 to the case of a general codimension p =1 of M" in M"*"]
one simply has to translate formula (3.2) of [2] term by term using our



92 Irwen Valle Guadalupe

formulas (2.15), (2.22), (2.13), (2.18), (2.27), (2.26) and (2.10) respectively
to obtain:

(BAB) = n<BV' V- H) + nc||BIP ~’c||HIP +0 —
—(lcl? + ZBH HiH = H B,

which together with (2.16) implies (2.28).
Moreover we get:

Proposition 2. Under the hypothesis of §0 and if H,, C and ¢ are defined
as in (2.2), (2.23) and (2.27) respectively, then one has the inequality:

ICIF + 51|t~ H | < (2= )13

and we discuss the equality in (2.29):

i (2.29)

(i) if p=1, then equality sign holds in (2.29) always.
(i) If p=2 and if the equality sign holds in (2.29), then H =0 (i.e. M"
is a minimal submanifold in M"*?), in particular
L (2.30)

(iii) If p > 3, then the equality sign holds in (2.29) if and only if B=0
(i.e., M" is totally geodesic in M""P).

Remark. In the case (ii), in addition, we can see that for every point x
in M" there exists an M"-adapted orthonormal frame e,,...,e,., of
T .M"*2, such that the matrices of H,,,, resp. H,,,, with respect to
ey s e rare At

1 0 0 1

B p R vl et Bl i 1ok 3 10
i 5 0 |0 S LeSpach > 0 |0 )

Proof. 1In case p=1 the equality (2.29) follows trivially from (2.25) and
(2.26). We have to study therefore only

p>2 (2.32)

Proposition 2 depends then on two inequalities, stated in the following
two Lemmas.

Suppose that ey, ..., e, is any orthonormal frame of 7.M, such that
the matrix of H, with respect to ey, ..., e, is diagonal (such a frame exists,
since H, is self adjoint).
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Lemma 1. Under the hypothesis of Proposition 2 we have for all o, B:
| HH, — By < 2]\ B, 2|, |2 23

Moreover, if the equality sign holds in (2.33) for xe M" and || H,|| and
|| Hy || are both different from zero (hence o # p), then the matrix of H,,
resp. of Hy, with respect to the above frame equals (after a suitable renum-
bering of the e, ...,e,):

with A, u # 0; (2.34)

in particular:

trH,=trHy =0, (2.35)
and (observe that o # f):
|| Ha ||

75

Proof. The proof of Lemma 3.1 in [2] by Braidi and Hsiung yields
exactly the statement of our Lemma 1.

[Hy |

|4] = M:—:Eram<Hpr:0 (2.36)

Suppose now x € M" and that the frame (e, , ..., €,+ ;) of the normal
space L, of M" at the point x is chosen such that the matrix of C (see
(2.23)) with respect to e,;,...,€,+, is diagonal, ie. (see (2.24)):

Cuyp=<H, Hp) =0 for o B(*). (2.37)

Lemma 2. Under the hypothesis of Proposition 2,,we.have at the point x:
1

S LA e e ETCE
aFp 14
and the equality sign holds in (2.38) if and only if

| Ho |l = | Hg || for all o, B. (2.39)

(*) Such a choice of the frame (e, ,, ..., e, ,) is always possible, since C is a self adjoint
endomorphism of L.
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Warning. The sum Y || H,|]*|| H;|* (since it is not a full contraction

aFp
of the tensor field (H, ,H:><{H.,,H,) of type L* ® L* R AEEG I the
sum being extended only over a # 8) does not have an invariant geometric
meaning but does depend on the choice of the frame (e,:1,...,€,4,)
of L, as the trivial example with n=p =2 of the circular cylinder

M? = {xeR*|x}+ x3=1 and x, =0} in M* = R*

really shows. Therefore the conclusions (2.38), (2.39) are in general bound
to the special choice of (€41, ..., e,+,) With the property (2.37).

Proof. We can express the symmetric polynomial ) (x,— x)* in the p
a<p

indeterminates X, , ..., X, + , as usual in terms of the elementary symmetric

~ functions of the x, and one finds:

Y %, = X =020 2p. 7 %% (2.40)

a<p a<p

Therefore we get, using (2.26) and our hypothesis (2.37):

Rl e Bl = Bellt 2 LRURIHy |
T AL el e (e AR e O R

= (1+ EED) I -5 = DE NI -

—2p 3 || H|* | Hgl*

a<p
The last equation yelds therefore together with (2.13) and (2.40):
, 1
NClP+2 X |1 Ha|? || He |2 =<2——)|IB||“—
atp 14
{ (241)
= L MH gl
14 a<p
from where the statement of Lemma 2 follows immediately.

Proof of proposition 2 under the hypothesis (2.32): p = 2. For the following
we fix an arbitrary point x e M" and all considerations about the tensors
involved happen at x: since (e.g. due to (2.28)) the sum

;3 | H.Hy — HpH, || = 2‘; | H.Hy — H Hy ||?
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is independent of the special choice of the frame e, {, ..., e, ,, we might
assume that the orthonormal frame (e, {, ...,e,+,) of L, is chosen such
that (2.37) is fulfilled. Then the inequality (2.29) follows by composing
the inequalities (2.33), (2.38). That the equality sign holds in (2.29) if
B =0, is trivial. Assume oppositely that the equality sign holds in (2.29)
on M. Then the equality sign must hold in (2.38) and in (2.33) for all a,
with a# f at xe M. We distinguish two cases:

17 CASE: B, # 0: then, due to (2.1), there exists € {n+ 1, ...,n + p} such
that H,# 0, consequently, according to (2.39):

|Hg|| = || Has1]| #0 forall Be{n+1,...,n+ p}. (2.42)

Choose now the orthonormal frame (e, ...,e,) of T.M such that H,,
has a diagonal matrix with respect to e,,...,e,. Then because of (2.42)
and Lemma 1 the matrix of H, with respect to e,,...,e, for f>n+1
must be equal to

l|H"+1” # 0

i

with' | s | =
|

and therefore (observe (2.32)): for all
a,feln+2,...n+p}, (H,Hpp =+ | H,.;|]* #0. (2.43)
But according to (2.36) we have: for all

a,fe{n+2,...,n+ p} with a # , (H,,Hg) =0. (2.44)

So (2.43) and (2.44) imply (together with (2.32)):
p=2. (2.45)

Furthermore we get from (2.35): tr H,,, =tr H,,, =0, which yields by
(2.17), (2.45): H=0 resp. by (2.27), (2.45): ¢ = 0. Moreover according to
(2.13), (2.45) we have _

I BI* = | Hus 1 |I* + || Has

2

b

thus by (2.42):

2 o
| Hue || = || Has2 || 7z

and therefore (2.34) and (2.36) imply (2.31).
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2" CASE: B, = 0: then it follows trivially from (2.17), (2.27), that. H =0
and 0 =0 at x, and hence for p=2 the statement (ii) is trivially true.

Thus we have shown: if there exists at least some point x e M"
with B, # 0, then necessarily p=2 and the statement (ii) holds at all
points of M". If therefore p =3, we must have B=0.

This ends the proof of Proposition 2.

The combination of Proposition 1 and Proposition 2 allows to get
the following:

Theorem. Let M" be an n-dimensional (n = 2) riemannian C* manifold
isometrically C* immersed into an (n+ p)-dimensional riemannian C*
manifold M"*? of constant curvature c. Let || B|| denote the norm of the
second fundamental form B and H the mean curvature normal vector field
of this immersion. Then:

(i) On M" the following inequality holds:

||VB||2<i A(| B — n<B, VLVLH>+<2—?>HBH“+

+ n*c||H|* — (nc||B||* + o), (2.46)

which in case p = 1 is always true as the equality, and if p = 2 and the equality
sign holds in (2.46), we have for p=2:

M" is a minimal immersed submanifold| of M"*?2; (2.47)
p > 3: M"is a totally geodesic immersed submanifold of M"*?  (2.48)

(ii) If || B|| is constant, M" has constant mean curvature and
<2 "%>HBH“ + || H|* = ne|| B + o, (249)

then

- s . T in Mrtp ]
VB =0, i.e. M" is immersed in M wzth} (2.50)

parallel second fundamental form,

in particular for
p=1: M" is immersed in M"*" as an isoparametric hypersurface (2.51)

and in case p = 2 we have in addition to (2.50) that (2.47) and (2.48) are true.

Remark. If M" is compact and oriented, the integral

J A(| B [2).do = f div grad (| B [2) do

Mn M"
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vanishes according to the divergence (= STOKES’) theorem and therefore
parallelity of H gives, integrating (2.46):

J ((2 s %) 1B + n2c|| H| = nc|| B|]? — a) W20 (249
M"

and the equality sign in (2.49'), which -e.g. follows from (2.49), implies
then by (2.46): VB=0, in particular the constancy of || B||.

Proof. For (i): one gets (2.46) by composing the equation (2.28) with
the inequality (2.29) and the equality sign implies the conclusions (i), (ii),
(iii) of Prop. 2 which give (2.47), (2.48).

For (ii): in this case the hypothesis imply the vanishing of the right-
-hand side of (2.46), in particular imply therefore (see (2.46)) VB =0 and
that the equality sign holds in (2.46), thus proving (2.47) and (2.48).

Suppose now that p=1. Then it follows from (2.50) that H,,, is
parallel and therefore (see e.g. Satz 1 a) of Walden [15]) that all the prin-
cipal curvatures of (H,. ;, i.e. ot) M" in M™*! are constant, i.e. M" is an
isoparametric hypersurface of M"*! (see e.g. Nomizu [11]).

This ends the proof of the Theorem.

Final Remarks.

(i) The problem of determining all isoparametric hypersurfaces of
M"*' of constant sectional curvature c is

(a) completely solved for c <0, see [3], [4], [10] and [13];
(b) not completely solved for ¢ > 0. For the status of that problem
see Ferus, Karchen and Miinzner [9].

(ii) For immersions of n-dimensional riemannian manifolds M" into
(n + p)-dimensional, riemannian manifolds M"*? of constant
curvature ¢ with parallel second fundamental form and arbitrary
codimension p >1 see for the case

(a) ¢ =0, the papers of Ferus [7], [8] and Walden [15],
(b) ¢ <0, the thesis of Baches [1].
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