Submanifolds with constant mean curvature

Irwen Valle Guadalupe

0. General data.

Let M^n be an *n*-dimensional $(n \ge 2)$, riemannian C^{∞} manifold isometrically C^{∞} immersed into an (n+p)-dimensional riemannian C^{∞} manifold \widetilde{M}^{n+p} of constant sectional curvature c. Let $\|B\|$ denote the norm of the second fundamental form B and H the mean curvature normal (vector field) of this immersion.

1. Introduction.

In [14] Simons proved the following inequality in case $\widetilde{M}^{n+p} = S^{n+p}$ (= standard sphere) and M^n oriented, minimal and compact:

$$\int_{M^n} \left\{ \left(2 - \frac{1}{p} \right) \|B\|^4 - n \|B\|^2 \right\} dv \ge 0 \tag{1.1}$$

where dv is the volume element of M^n . If follows that if M^n is not totally geodesic and $||B||^2 = \left(2 - \frac{1}{p}\right)^{-1} n$, then $||B||^2 = \left(2 - \frac{1}{p}\right)^{-1} n$. Using (1.1) Chern, do Carmo and Kobayashi determined in [5] all compact minimal submanifolds of S^{n+p} satisfying

$$||B||^2 = \left(2 - \frac{1}{p}\right)^{-1} n;$$
 (*)

the condition (*) was subsequently generalized by Braidi and Hsiung (see [2]).

A submanifold M^n of a riemannian manifold \widetilde{M}^{n+p} is said to have constant mean curvature if H is parallel as a section of the normal bundle.

The purpose of the present paper is to determine all isometric immersions of M^n into \widetilde{M}^{n+p} (where the constant c is 0 or -1) with constant mean curvature, such that ||B|| is constant (this condition is

^{*} This work was supported in part by FINEP-Brazil. Recebido em 09/05/83.

Submanifolds with constant mean curvature

automatically satisfied if M^n is compact) and which satisfy a condition analogous to (*).

2. The main integral formula.

Suppose we are given the Data of §0. We choose locally an " M^n -adapted" orthonormal frame field (e_1, \ldots, e_{n+p}) of \widetilde{M}^{n+p} , which means that the vector fields e_1, \ldots, e_n , restricted to M^n , are tangent to M^n and hence e_{n+1}, \ldots, e_{n+p} , restricted to M^n , are normal to M^n . In this situation we make the following conventions: the ranges of the indices

$$A, B, C, \ldots, i, j, k, \ldots, \alpha, \beta, \gamma, \ldots,$$

are

$$1 \leq A, B, C, \ldots \leq n+p, \ 1 \leq i, j, k, \ldots \leq n, \ n+1 \leq \alpha, \beta, \gamma, \ldots \leq n+p,$$

and all sums extend always over the respective ranges of repeated indices.

Thus, for all vector fields X, Y on M^n we have by definition of the second fundamental form B:

$$B(X, Y) = \sum_{\alpha} \langle \widetilde{\nabla}_X Y, e_{\alpha} \rangle e_{\alpha} = \sum_{\alpha} \langle H_{\alpha}(X, Y) \rangle e_{\alpha}$$
 (2.1)

where H_{α} denotes the self adjoint tensorfield of type (1.1) on M^n characterized by

$$\langle H_{\alpha}(X), Y \rangle = -\langle \widetilde{\nabla}_X e_{\alpha}, Y \rangle = \langle \widetilde{\nabla}_X Y, e_{\alpha} \rangle = \langle B(X, Y), e_{\alpha} \rangle.$$
 (2.2)

Hence the matrix $(h_{ij}^{\alpha})_{i,j=1,\ldots,n}$ of H_{α} with respect to e_1,\ldots,e_n satisfies

$$h_{ij}^{\alpha} = \langle H_{\alpha}(e_i), e_j \rangle = \langle B(e_i, e_j), e_{\alpha} \rangle.$$
 (2.3)

Furthermore, the covariand derivate ∇B of the second fundamental form is (of type $T^* \otimes T^* \otimes T^* \otimes \bot$) defined as usual (see e.g. Kobayashi-Nomizu II, p. 25) by

$$(\nabla B)(X, Y, Z) = (\nabla_Z B)(X, Y) =$$

$$= \nabla_Z^{\perp}(B(X, Y)) - B(\nabla X, Y) - B(X, \nabla_Z Y)$$
(2.4)

where ∇^{\perp} is the normal connection and one defines:

$$h_{ijk}^{\alpha} = \langle (\nabla B)(e_i, e_j, e_k), e_{\alpha} \rangle = \langle (\nabla_{e_k} B)(e_i, e_j), e_{\alpha} \rangle$$
 (2.5)

(which is in concordance with the notation (2.10) of [2]). Moreover we define the "Hessian" $\nabla^2 B = \nabla \nabla B$ of B (which is of type $T^* \otimes T^* \otimes T^* \otimes T^* \otimes \bot$) by (see 2.4.)):

$$(\nabla^2 B)(X, Y, Z, W) = (\nabla_W(\nabla_Z B))(X, Y) - (\nabla_{\nabla_W Z} B)(X, Y)$$
 (2.6)

and the "Laplacian" ΔB of B as the trace of the Hessian $\nabla^2 B$ of B (which is again of the same type $T^* \otimes T^* \otimes \bot$ as B) by

$$(\Delta B)(X, Y) = \sum_{k} (\nabla^{2} B)(X, Y, e_{k}, e_{k})$$
 (2.7)

which is a contraction of $\nabla^2 B$ independent of the special choice of the orthonormal frame field e_1, \ldots, e_n . If we define (again in concordance with (2.13) and (2.18) of [2]):

$$h_{ijk\ell}^{\alpha} = \langle (\nabla^2 B)(e_i, e_j, e_k, e_\ell), e_\alpha \rangle$$

and

$$\Delta h_{ii}^{\alpha} = \langle (\Delta B)(e_i, e_i), e_{\alpha} \rangle \tag{2.8}$$

then

$$(\Delta B)(e_i, e_j) = \sum_{\alpha} (\Delta h_{ij}^{\alpha}) e_{\alpha} = \sum_{\alpha, k} h_{ijkk}^{\alpha} e_{\alpha}.$$
 (2.9)

For tensor fields A, \widetilde{A} of type $T^* \otimes T$ on M we define their inner product as usual (with $A^* =$ adjoint of A) by

$$\langle A, \widetilde{A} \rangle = \operatorname{tr}(A^* \circ \widetilde{A}) = \sum_{i,j} \langle A(e_i), e_j \rangle \langle \widetilde{A}(e_i), e_j \rangle = \sum_{i,j} a_{ij} \widetilde{a}_{ij}$$
 (2.10)

and the norm by

$$||A|| = \sqrt{\langle A, A \rangle}.$$

For tensor fields B, \widetilde{B} of type $T^* \otimes T^* \otimes \bot$ (i.e. of the type of the second fundamental form) we define the inner product, resp. the norm, by

$$\langle B, \widetilde{B} \rangle = \sum_{i,j,\alpha} \langle B(e_i, e_j), e_{\alpha} \rangle \langle \widetilde{B}(e_i, e_j), e_{\alpha} \rangle, \text{ resp. } ||B|| = \sqrt{\langle B, B \rangle}.$$
 (2.11)

(again independent of the special choice of the orthonormal frame e_1, \ldots, e_{n+p}).

Analogous definitions yield inner products for tensor fields of other types and the canonically induced connections for these tensor fields are *metric* with respect to these inner products.

As an example we obtain from (2.3), (2.4), (2.5), (2.9):

$$\langle H_{\alpha}, H_{\beta} \rangle = \sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta}$$
 (2.12)

$$||B||^2 = \sum_{i,j,\alpha} (h_{ij}^{\alpha})^2 = \sum_{\alpha} ||H_{\alpha}||^2$$
 (2.13)

$$\|\nabla B\|^2 = \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 = \sum_{k} \langle \nabla_{e_k} B, \nabla_{e_k} B \rangle$$
 4)

$$\langle B, \Delta B \rangle = \sum_{i,j,k,\alpha} h_{ij}^{\alpha} h_{ijkk}^{\alpha} = \sum_{i,j,\alpha} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha}.$$
 (2.15)

Moreover the metricity of the corresponding connections yields for the Laplacian of the function $||B||^2$ as usual (using (2.7), (2.14)).

$$\Delta(\parallel B \parallel^2) = \Delta \langle B, B \rangle = \langle \Delta B, B \rangle + 2 \langle \nabla B, \nabla B \rangle + \langle B, \Delta B \rangle,$$

i.e.

$$\|\nabla B\|^2 = \frac{1}{2}\Delta(\|B\|^2) - \langle B, \Delta B \rangle. \tag{2.16}$$

Remark. The left-hand side, resp. the right-hand side, of (2.16) is a differential operator applied to B of order one, resp. two, (the left-hand side usually called the "1st Beltrami operator of B"). We want to show now that the part of $\langle B, \Delta B \rangle$ which involves derivatives of B of order 2 (or 1) does *only* depend on the Hessian of the mean curvature normal field B, all the rest depending in a purely algebraic way on B, involving some selfadjoint tensor field C of type $L^* \otimes L$ (i. e. an endomorphism field of the normal bundle L of M) derived from B. So we start with some definitions: the mean curvature normal (vector field) D is defined as

$$H = \frac{1}{n} \sum_{i} B(e_i, e_i) \underset{(\overline{2.1})}{=} \frac{1}{n} \sum_{\alpha} (\operatorname{tr} H_{\alpha}) e_{\alpha} = \frac{1}{n} \sum_{\alpha, i} h_{ii}^{\alpha} e_{\alpha}, \qquad (2.17)$$

thus

$$n^2 \| H \|^2 = \sum_{\alpha} (\operatorname{tr} H_{\alpha})^2 = \sum_{\alpha, i} (h_{ii}^{\alpha})^2.$$
 (2.18)

Moreover, using the fact that covariant differentiation commutes with contractions, we get from (2.17) by covariant differentiation ∇^{\perp} with respect to the normal connection:

$$(\nabla^{\perp}H)(X) = \frac{1}{n} \sum_{i} \nabla_{X}^{\perp}(B(e_i, e_i)) = \frac{1}{n} \sum_{i} (\nabla B)(e_i, e_i, X)$$
 (2.19)

and for the Hessian $\nabla^{\perp} \nabla^{\perp} H$ of H which is of type $T^* \otimes T^* \otimes \bot$ (like B):

$$(\nabla^{\perp}\nabla^{\perp} H)(X, Y) = \frac{1}{n} \sum_{i} (\nabla^{2} B)(e_{i}, e_{i}, X, Y). \tag{2.20}$$

Thus we get from (2.5), (2.19), resp. from (2.8), (2.20):

$$(\nabla^{\perp} H)(e_k) = \nabla^{\perp}_{e_k} H = \frac{1}{n} \sum_{i,k,\alpha} h^{\alpha}_{iik} e_{\alpha},$$

$$(\nabla^{\perp} \nabla^{\perp} H)(e_k, e_{\ell}) = \frac{1}{n} \sum_{i,k,\ell} h^{\alpha}_{iik\ell} e_{\alpha}$$

$$(2.21)$$

Consequently we get from (2.11), (2.3), (2.21):

$$n \langle B, \nabla^{\perp} \nabla^{\perp} H \rangle = \sum_{i,k,\ell,\alpha} h_{k\ell}^{\alpha} h_{iik\ell}^{\alpha}.$$
 (2.22)

Moreover we define the following self-adjoint endomorphism C of the normal bundle \perp of M^n in \widetilde{M}^{n+p} :

$$C(\xi) = \sum_{i,j} \langle B(e_i, e_j) \, \xi \rangle B(e_i, e_j) \text{ for every normal vector } \xi.$$
 (2.23)

Evidently the elements of the matrix of C with respect to e_{n+1}, \ldots, e_{n+p} are

$$C_{\alpha\beta} = \langle C(e_{\alpha}), e_{\beta} \rangle \underset{(2.3)}{=} \sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta} \underset{(2.10)}{=} \langle H_{\alpha}, H_{\beta} \rangle, \tag{2.24}$$

hence

tr
$$C = \sum_{\alpha} ||H_{\alpha}||^2 = ||B||^2$$
 (2.25)

and

$$||C||^{2} = \operatorname{tr}(C \circ C) =$$

$$= \sum_{\alpha,\beta} C_{\alpha\beta}^{2} = \sum_{(2,24)} \sum_{\alpha,\beta} \langle H_{\alpha}, H_{\beta} \rangle^{2} = \sum_{\alpha} h_{ij}^{\alpha} h_{ij}^{\beta} h_{k\ell}^{\alpha} h_{k\ell}^{\beta}.$$
(2.26)

Finally we introduce for abbreviation:

$$\delta = \sum_{\alpha,\beta} \operatorname{tr} (H_{\alpha} H_{\beta} H_{\alpha}) \operatorname{tr} (H_{\beta}) = \sum_{i,j,k,\ell} h_{ij}^{\alpha} h_{jk}^{\beta} h_{ki}^{\alpha} h_{\ell\ell}^{\beta}, \qquad (2.27)$$

a function which is (as a double contraction) independent of the special choice of e_1, \ldots, e_{n+p} .

Using a computation of Braidi and Hsiung in [2] we get then:

Proposition 1. Under the hypothesis of $\S 0$ and if H_{α} , C and σ are defined as in (2.2), (2.23) and (2.27) respectively, then

$$\|\nabla B\|^{2} = \frac{1}{2}\nabla(\|B\|^{2}) - n\langle B, \nabla^{\perp}\nabla^{\perp}H\rangle + + (\|C\|^{2} + \sum_{\alpha,\beta} \|H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha}\|^{2}) + n^{2}c\|H\|^{2} - (nc\|B\|^{2} + \sigma)$$
 (2.28)

Proof. This is a direct consequence of (2.16) and the formula (3.2) of Braidi and Hsiung (see [2]) for $\langle B, \Delta B \rangle$ [which in sum is a generalization of a formula of Nomizu and Smyth (see [12]) for $\langle B, \Delta B \rangle$ in the hypersurface case p=1 to the case of a general codimension $p \ge 1$ of M^n in \widetilde{M}^{n+p}]: one simply has to translate formula (3.2) of [2] term by term using our

formulas (2.15), (2.22), (2.13), (2.18), (2.27), (2.26) and (2.10) respectively to obtain:

$$\langle B, \Delta B \rangle = n \langle B, \nabla^{\perp} \nabla^{\perp} H \rangle + nc \| B \|^{2} - n^{2} c \| H \|^{2} + \sigma - (\| C \|^{2} + \sum_{\alpha, \beta} \| H_{\alpha} H_{\beta} - H_{\beta} H_{\alpha} \|^{2}),$$

which together with (2.16) implies (2.28).

Moreover we get:

Proposition 2. Under the hypothesis of $\S 0$ and if H_{α} , C and σ are defined as in (2.2), (2.23) and (2.27) respectively, then one has the inequality:

$$\|C\|^2 + \sum_{\alpha,\beta} \|H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha}\| \le \left(2 - \frac{1}{p}\right) \|B\|^4,$$
 (2.29)

and we discuss the equality in (2.29):

(i) if p = 1, then equality sign holds in (2.29) always.

(ii) If p = 2 and if the equality sign holds in (2.29), then $H \equiv 0$ (i.e. M^n is a minimal submanifold in \widetilde{M}^{n+p}), in particular

$$\sigma = 0 \tag{2.30}$$

(iii) If $p \ge 3$, then the equality sign holds in (2.29) if and only if $B \equiv 0$ (i.e., M^n is totally geodesic in \widetilde{M}^{n+p}).

Remark. In the case (ii), in addition, we can see that for every point x in M^n there exists an M^n -adapted orthonormal frame e_1, \ldots, e_{n+2} of $T_x \widetilde{M}^{n+2}$, such that the matrices of H_{n+1} , resp. H_{n+2} , with respect to e_1, \ldots, e_n are (at x):

$$\pm \frac{\|B\|}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix}, \text{ resp. } \pm \frac{\|B\|}{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix}. (2.31)$$

Proof. In case p = 1 the equality (2.29) follows trivially from (2.25) and (2.26). We have to study therefore only

$$p \ge 2 \tag{2.32}$$

Proposition 2 depends then on two inequalities, stated in the following two Lemmas.

Suppose that $e_1, ..., e_n$ is any orthonormal frame of T_xM , such that the matrix of H_α with respect to $e_1, ..., e_n$ is diagonal (such a frame exists, since H_α is self adjoint).

Lemma 1. Under the hypothesis of Proposition 2 we have for all α , β :

$$||H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha}||^{2} \le 2||H_{\alpha}||^{2}||H_{\beta}||^{2}.$$
 (2.33)

Moreover, if the equality sign holds in (2.33) for $x \in M^n$ and $||H_x||$ and $||H_\beta||$ are both different from zero (hence $\alpha \neq \beta$), then the matrix of H_α , resp. of H_β , with respect to the above frame equals (after a suitable renumbering of the e_1, \ldots, e_n):

$$\lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix}, resp. \mu \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix} with \lambda, \mu \neq 0; \qquad (2.34)$$

in particular:

$$tr H_{\alpha} = tr H_{\beta} = 0, \tag{2.35}$$

and (observe that $\alpha \neq \beta$):

$$|\lambda| = \frac{\|H_{\alpha}\|}{\sqrt{2}}, |\mu| = \frac{\|H_{\beta}\|}{\sqrt{2}} \text{ and } \langle H_{\alpha}, H_{\beta} \rangle = 0$$
 (2.36)

Proof. The proof of Lemma 3.1 in [2] by Braidi and Hsiung yields exactly the statement of our Lemma 1.

Suppose now $x \in M^n$ and that the frame $(e_{n+1}, ..., e_{n+p})$ of the normal space \perp_x of M^n at the point x is chosen such that the matrix of C (see (2.23)) with respect to $e_{n+1}, ..., e_{n+p}$ is diagonal, i.e. (see (2.24)):

$$C_{\alpha\beta} = \langle H_{\alpha}, H_{\beta} \rangle = 0 \text{ for } \alpha \neq \beta(*).$$
 (2.37)

Lemma 2. Under the hypothesis of Proposition 2, we have at the point x:

$$||C||^2 + 2 \sum_{\alpha \neq \beta} ||H_{\alpha}||^2 ||H_{\beta}||^2 \le \left(2 - \frac{1}{p}\right) ||B||^4$$
 (2.38)

and the equality sign holds in (2.38) if and only if

$$||H_{\alpha}|| = ||H_{\beta}||$$
 for all α, β . (2.39)

(*) Such a choice of the frame $(e_{n+1}, \ldots, e_{n+p})$ is always possible, since C is a self adjoint endomorphism of \bot_x .

Warning. The sum $\sum_{\alpha \neq \beta} \|H_{\alpha}\|^2 \|H_{\beta}\|^2$ (since it is *not* a full contraction of the tensor field $\langle H_{\xi_1}, H_{\xi_2} \rangle \langle H_{\xi_3}, H_{\xi_4} \rangle$ of type $\bot^* \otimes \bot^* \otimes \bot^* \otimes \bot^*$, the sum being extended only over $\alpha \neq \beta$) does not have an invariant geometric meaning but does depend on the choice of the frame $(e_{n+1}, \ldots, e_{n+p})$ of \bot_x , as the trivial example with n=p=2 of the circular cylinder

$$M^2 = \{x \in \mathbb{R}^4 \mid x_1^2 + x_2^2 = 1 \text{ and } x_4 = 0\} \text{ in } \widetilde{M}^4 = \mathbb{R}^4$$

really shows. Therefore the conclusions (2.38), (2.39) are in general bound to the special choice of $(e_{n+1}, \ldots, e_{n+p})$ with the property (2.37).

Proof. We can express the symmetric polynomial $\sum_{\alpha < \beta} (x_{\alpha} - x_{\beta})^2$ in the p indeterminates x_{n+1}, \dots, x_{n+p} as usual in terms of the elementary symmetric functions of the x_{α} and one finds:

$$\sum_{\alpha < \beta} (x_{\alpha} - x_{\beta})^2 = (p - 1) (\sum_{\alpha} x_{\alpha})^2 - 2 p \sum_{\alpha < \beta} x_{\alpha} x_{\beta}.$$
 (2.40)

Therefore we get, using (2.26) and our hypothesis (2.37):

$$||C||^{2} + 2 \sum_{\alpha \neq \beta} ||H_{\alpha}||^{2} ||H_{\beta}||^{2} = \sum_{\alpha} ||H_{\alpha}||^{4} + 2 \sum_{\beta < \alpha} ||H_{\alpha}||^{2} ||H_{\beta}||^{2} + 2 \sum_{\alpha < \beta} ||H_{\alpha}||^{2} ||H_{\beta}||^{2} = (\sum_{\alpha} ||H_{\alpha}||^{2})^{2} + 2 \sum_{\alpha < \beta} ||H_{\alpha}||^{2} ||H_{\beta}||^{2} =$$

$$= \left(1 + \frac{p-1}{p}\right) (\sum_{\alpha} ||H_{\alpha}||^{2})^{2} - \frac{1}{p} (p-1) (\sum_{\alpha} ||H_{\alpha}||^{2})^{2} - 2p \sum_{\alpha < \beta} ||H_{\alpha}||^{2} ||H_{\beta}||^{2}.$$

The last equation yelds therefore together with (2.13) and (2.40):

$$\|C\|^{2} + 2 \sum_{\alpha \neq \beta} \|H_{\alpha}\|^{2} \|H_{\beta}\|^{2} = \left(2 - \frac{1}{p}\right) \|B\|^{4} - \frac{1}{p} \sum_{\alpha \leq \beta} (\|H_{\alpha}\|^{2} - \|H_{\beta}\|^{2}),$$
(2.41)

from where the statement of Lemma 2 follows immediately.

Proof of proposition 2 under the hypothesis (2.32): $p \ge 2$. For the following we fix an arbitrary point $x \in M^n$ and all considerations about the tensors involved happen at x: since (e.g. due to (2.28)) the sum

$$\sum_{\alpha \neq \beta} \| H_{\alpha} H_{\beta} - H_{\beta} H_{\alpha} \|^2 = \sum_{\alpha, \beta} \| H_{\alpha} H_{\beta} - H_{\alpha} H_{\beta} \|^2$$

is independent of the special choice of the frame e_{n+1}, \ldots, e_{n+p} , we might assume that the orthonormal frame $(e_{n+1}, \ldots, e_{n+p})$ of \bot_x is chosen such that (2.37) is fulfilled. Then the inequality (2.29) follows by composing the inequalities (2.33), (2.38). That the equality sign holds in (2.29) if $B \equiv 0$, is trivial. Assume oppositely that the equality sign holds in (2.29) on M. Then the equality sign must hold in (2.38) and in (2.33) for all α, β with $\alpha \neq \beta$ at $x \in M$. We distinguish two cases:

1st CASE: $B_x \neq 0$: then, due to (2.1), there exists $\alpha \in \{n+1, ..., n+p\}$ such that $H_\alpha \neq 0$, consequently, according to (2.39):

$$||H_{\beta}|| = ||H_{n+1}|| \neq 0 \text{ for all } \beta \in \{n+1, ..., n+p\}.$$
 (2.42)

Choose now the orthonormal frame (e_1, \ldots, e_n) of T_xM such that H_{n+1} has a diagonal matrix with respect to e_1, \ldots, e_n . Then because of (2.42) and Lemma 1 the matrix of H_β with respect to e_1, \ldots, e_n for $\beta > n+1$ must be equal to

$$\mu_{\beta} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix} \text{ with } |\mu_{\beta}| = \frac{\|H_{n+1}\|}{\sqrt{2}} \neq 0$$

and therefore (observe (2.32)): for all

$$\alpha, \beta \in \{n+2, ..., n+p\}, \langle H_{\alpha}, H_{\beta} \rangle = \pm \|H_{n+1}\|^2 \neq 0.$$
 (2.43)

But according to (2.36) we have: for all

$$\alpha, \beta \in \{n+2, ..., n+p\} \text{ with } \alpha \neq \beta, \langle H_{\alpha}, H_{\beta} \rangle = 0.$$
 (2.44)

So (2.43) and (2.44) imply (together with (2.32)):

$$p=2. (2.45)$$

Furthermore we get from (2.35): $\operatorname{tr} H_{n+1} = \operatorname{tr} H_{n+2} = 0$, which yields by (2.17), (2.45): H = 0 resp. by (2.27), (2.45): $\sigma = 0$. Moreover according to (2.13), (2.45) we have

$$||B||^2 = ||H_{n+1}||^2 + ||H_{n+2}||^2,$$

thus by (2.42):

$$||H_{n+1}|| = ||H_{n+2}|| = \frac{||B||}{\sqrt{2}}$$

and therefore (2.34) and (2.36) imply (2.31).

2.nd CASE: $B_x = 0$: then it follows trivially from (2.17), (2.27), that H = 0 and $\sigma = 0$ at x, and hence for p = 2 the statement (ii) is trivially true.

Thus we have shown: if there exists at least some point $x \in M^n$ with $B_x \neq 0$, then necessarily p = 2 and the statement (ii) holds at all points of M^n . If therefore $p \geq 3$, we must have $B \equiv 0$.

This ends the proof of Proposition 2.

The combination of Proposition 1 and Proposition 2 allows to get the following:

Theorem. Let M^n be an n-dimensional $(n \ge 2)$ riemannian C^∞ manifold isometrically C^∞ immersed into an (n+p)-dimensional riemannian C^∞ manifold \widetilde{M}^{n+p} of constant curvature c. Let $\|B\|$ denote the norm of the second fundamental form B and H the mean curvature normal vector field of this immersion. Then:

(i) On M^n the following inequality holds:

$$\|\nabla B\|^{2} \leq \frac{1}{2} \Delta (\|B\|^{2}) - n \langle B, \nabla^{\perp} \nabla^{\perp} H \rangle + \left(2 - \frac{1}{p}\right) \|B\|^{4} + n^{2} c \|H\|^{2} - (nc \|B\|^{2} + \sigma), \tag{2.46}$$

which in case p = 1 is always true as the equality, and if $p \ge 2$ and the equality sign holds in (2.46), we have for p = 2:

 M^n is a minimal immersed submanifold of \widetilde{M}^{n+2} ; (2.47)

 $p \ge 3$: M^n is a totally geodesic immersed submanifold of \widetilde{M}^{n+p} (2.48)

(ii) If ||B|| is constant, M^n has constant mean curvature and

$$\left(2 - \frac{1}{p}\right) \|B\|^4 + n^2 c \|H\|^2 = nc \|B\|^2 + \sigma, \tag{2.49}$$

then

$$\nabla B = 0$$
, i.e. M^n is immersed in \widetilde{M}^{n+p} with parallel second fundamental form, $\{$

in particular for

p=1: M^n is immersed in \widetilde{M}^{n+1} as an isoparametric hypersurface (2.51) and in case $p \ge 2$ we have in addition to (2.50) that (2.47) and (2.48) are true.

Remark. If M^n is compact and oriented, the integral

$$\int_{M^n} \Delta(\parallel B \parallel^2) dv = \int_{M^n} \operatorname{div} \operatorname{grad} (\parallel B \parallel^2) dv$$

vanishes according to the divergence (= STOKES') theorem and therefore parallelity of H gives, integrating (2.46):

$$\int_{M^n} \left(\left(2 - \frac{1}{p} \right) \|B\|^4 + n^2 c \|H\|^2 - nc \|B\|^2 - \sigma \right) dv \ge 0$$
 (2.49')

and the equality sign in (2.49'), which e.g. follows from (2.49), implies then by (2.46): $\nabla B = 0$, in particular the constancy of ||B||.

Proof. For (i): one gets (2.46) by composing the equation (2.28) with the inequality (2.29) and the equality sign implies the conclusions (i), (ii), (iii) of Prop. 2 which give (2.47), (2.48).

For (ii): in this case the hypothesis imply the vanishing of the right-hand side of (2.46), in particular imply therefore (see (2.46)) $\nabla B = 0$ and that the equality sign holds in (2.46), thus proving (2.47) and (2.48).

Suppose now that p=1. Then it follows from (2.50) that H_{n+1} is parallel and therefore (see e.g. Satz 1 a) of Walden [15]) that all the principal curvatures of $(H_{n+1}$, i.e. of) M^n in \widetilde{M}^{n+1} are constant, i.e. M^n is an isoparametric hypersurface of \widetilde{M}^{n+1} (see e.g. Nomizu [11]).

This ends the proof of the Theorem.

Final Remarks.

- (i) The problem of determining all isoparametric hypersurfaces of \widetilde{M}^{n+1} of constant sectional curvature c is
 - (a) completely solved for $c \le 0$, see [3], [4], [10] and [13];
 - (b) not completely solved for c > 0. For the status of that problem see Ferus, Karchen and Münzner [9].
- (ii) For immersions of *n*-dimensional riemannian manifolds M^n into (n+p)-dimensional, riemannian manifolds \widetilde{M}^{n+p} of constant curvature c with parallel second fundamental form and arbitrary codimension $p \ge 1$ see for the case
 - (a) c = 0, the papers of Ferus [7], [8] and Walden [15],
 - (b) c < 0, the thesis of Baches [1].

References

- [1] E. Baches; *Doctoral thesis*, Mathematiches Institut der Universität Lindenthol 86-90, D-5000 Köln, Federal Republic of Germany.
- [2] S. Braidi and C. C. Hsiung; Submanifolds of Spheres, Math. Z. 115(1970), 235-251.

- [3] E. Cartan, Familles de surfaces isoparamétriques dans les espaces á courbure constante, Ann. Mat. Pura Appl. 17(1938), 177-191.
- [4] E. Cartan; Sur quelques familles remarquables d'Hypersurfaces, C. P. Congrés Math. Liége (1939), 30-41.
- [5] S. S. Chern, M. do Carmo and S. Kobayaski; Minimal submanifolds of a sphere with second fundamental form of constant lenght; Functional Analysis and related Fields, Proc. Conf. in Honor of Marshall Stone, Springer, Berlin (1970), 57-75.
- [6] D. Ferus; Produkt-Zerlegungen Von Immersionen mit paralleler Zweiter Fundamentalform, Math. Ann. 211(1974), 1-5.
- [7] D. Ferus; Immersionen mit paralleler Zweiter Fundamentalform: Beispiele und Nicht-Beispiele, Manuscripta Math. 12(1974), 153-162.
- [8] D. Ferus; Immersions with Parallel Second Fundamental Form, Math. Z. 140(1974), 87-93.
- [9] D. Ferus, H. Karcher and H. F. Münzner; Cliffordalgebren und neue isoparametrishe Hyperflächen, Math. Z. 177(1981), 479-502.
- [10] T. Levi-Civita; Famiglie di superficie isoparametriche nell' ordinario spacio enclideo, Atti Accad. naz. Lincei Rend. Cl. Fis. Mat. Natur. 26(1937), 355-362.
- [11] K. Nomizu; Some results in E. Cartan's theory of isoparametric families of hypersurfaces, Bull. Am. Math. Soc. 79(1973), 1184-1188.
- [12] K. Nomizu and B. Smyth; A Formula of Simon's Type and Hypersurface with Constant Mean Curvature, J. Diff. Geometry 3(1969), 367-377.
- [13] B. Segre; Famiglie di ipersurficie isoparametriche negli spazi euclidei ad un qualunque numero di dimensioni, Atti Accad. naz. Lincei Rend. Cl. Fis. Mat. Natur. 27(1938), 203-207.
- [14] J. Simons; Minimal Varieties in Riemannian Manifolds, Ann. of Math. 88(1968), 62-105.
- [15] R. Walden; Untermannigfaltigkeiten mit paralleler zweiter Fundamentalform in euklidischen Räumen and Sphären, Manuscripta Math. 10(1973), 91-102.

Irwen Valle Guadalupe UNICAMP-IMECC Caixa Postal 6155 13.100 — Campinas, SP. BRASIL