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On relative stability of function-germs

Paulo Ferreira da Silva Porto Junior(*)

Introduction.

This work was firstly suggested by observing very simple examples:

1. The following unstable function germs have quite different behavior:

f :(R,0) - (R,0) flx) = x3
g :(R,0) > (R,0) gix) =

If we compare f with the germ of a function h whose restriction to
R_ = {xeR|x <0} coincides with the restriction of f to R_, it is possible
to conjugate f and h through the germ of a diffeomorphism ¢ whose
restriction to R_ coincides with the identity. The same doesn’t happen
with g, since it is always possible to obtain a function germ which vanishes
when restricted to R_, but which behaves (even topologically) quite
differently from g.

2. Such an observation gets more interesting in higher dimensions. In
dimension two, working again with germs at the origin, one can check
that:

(a) The germ f,(x,y)= x*+ y* is (right) finitely determined, stable and
it is clearly possible to conjugate f; and h through the germ of a diffeo-
morphism ¢ of R?, whose restriction to R% = {(x,y)e R* | x <0} is the
identity, if we assume that f; and h coincide when restricted to R%.
(b) The germ f,(x,y)= (x* + y?)* is not (right) finitely determined but
it is determined by its infinite jet and it also has the same property as
the germ f, with respect to the mentioned conjugation and for the same
subespace R2.

(c) The germ f5(x, y) = x? is not (right) finitely determined neither infinitely
determined but . it also satisfies the same conjugation property (with
respect to R%) that f, and f, satisfy.

(d) The germ fu(x,y)=0 is not (right) finitely or 1nﬁn1te1y determmed
However, it is possible to obtain a germ h, whose restriction to R2 coincides
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with the restriction of f, to R%,but behaves (even topologically) different
from f,. In other words, f, doesn’t satisfy the conjugation property with
respect to R%.

This suggests us to define “S-relative equivalence”, where S is a
submanifold with non empty boundary, having the same dimension as
the manifold and consequently, to introduce the “S-stability” concept
(def. 1.3).

After the introduction of basic terminology, we define “infinitesimal
stability relative to S” (S-infinitesimal stability). The main theorem in
this section shows that S-infinitesimal stability implies S-stability (th. 1.7).

Then, we introduce the “Jacobian-Lojasiewicz condition relative to
S” and we prove that it is a sufficient condition for S-infinitesimal stability
(th. 2.5).

Finally, it is proved that S-stability implies Jacobian-Lojasiewicz
condition relative to S (th. 2.7).

These results, alltogether, give us a final one: S-infinitesimal stability
is equivalent to S-stability (corol. 2.8).

1

Since this paper is concerned with a local study, we usually consider
germs and jets at 0, of mappings between euclidean spaces and suitable
sets of R" containing the origin. The following notations are used:

We denote by S a submanifold of R” with the same dimension and
with non empty boundary

G S =RT =" x% .., X" e R¥| xt< 0}),

1.1 Let f:(R",0) > (R?,0) be a differentiable germ. ¢(f, S; n, p) denotes
the set of germs at 0 € R" of smooth mappings from R" to R?, whose
restriction to S coincides with the restriction of f to S.

If p=1 or f =0, we omit it in this notation. Hence, &(S; n) is the
set of germs in .#(n) which vanishes when restricted to S.
1.2 R4(n) = A is the set of germs at 0, of local diffefomorphisms of %",
whose restriction to S coincides with the identity. We also observe that

AR is a subgroup of £, which acts on the right, on &(f, S; n), in a natural
way:

If gee(f,S;n) and ¢ e Ay, then go ¢ is the germ, at 0, of the com-
position:

go(i):R"%R.
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Of course, a germ f € .#(n) is S-equivalent to another germ g € &(f, S; n)
(equivalent relative to %) if g belongs to the Zg-orbit of f.

1.3 Definition. f € .#(n)is S-stable iffis S-equivalent to any g€ ¢(f, S; n).
In other words, if the %-orbit of f contains &(f, S; n).

1.4 Theorem. Letfe .#(n)and S = R". Suppose that for any w e &S n),
there. exists £ € ¢&(S;n,n) such that w(x)= f'(x)(&(x)). Then f is S-stable.

Proof. 1t follows the usual procedure and can be found in [2— §1.2—
proposition 1.13].

Remark. Let us denote by {df ) the Jacobian ideal of f. If f € .#(n) satisfies .
the hypothesis of theorem 1.4, that is, if:

&(S; n) < &S; n) df ),
then we say that f is S-infinitesimally stable.

1.5 Corollary. Let f € .#(n) be S-infinitesimally stable and g € &(f, R"™-S; n).
Then g is S-stable.

1.6 Theorem. Let f e .#(n) be (right) finitely determined and S = R" .
Then f is S-stable.

Remark. This Theorem is also proved in [2 — 1.2] by using results of
relative finite determinacy. We prove it here, directly.

Proof. It is enough to show that f is S-infinitesimally stable. Since f is
(right) finitely determined, we have:
M*(n) = M(n)<df > for some positive integer ¢.

Now, let we &(S; n). One can check that w(x) = xkw,(x), with w, € &S; n),
for any positive integer k. We let k= ¢, to get that:

; (x)é,(x) ¢0)=0
and
& AR i
w(X) = we(x) ) 1 (x)Eix) = ), 5 x)ni(x),
i=1 i=1
Where n=(n;,1,,...,n,) satisfies n|s=0.
Therefore, we &(S; n) {df ).



102 Paulo Ferreira da Silva Porto Junior

Remarks:

1. Theorem 1.6 gives an answer to the problem which was suggested
in the introduction. The germs f(x) = x* and f,(x, y) = x* + y* are S-stable
(S=R_ or RZ%, respectively), since they are (right) finitely determined.

2. We have just proved that (right) finite determinacy is a sufficient con-
dition for S-stability.

However it is not necessary, since it is possible to check that:

The germ f,€.#(2), fo(x,y)=(x*+y*)? is not (right) finitely de-
termined, but it is S-stable, with S = R% . It is enough to show that given
any we &S;2), one can find ¢, &, € &(S; 2), satisfying the following con-
dition:

w(x, y)
4x* + %)

that gives S-infinitesimal stability for f. But such an equation has a well
known solution.

= xél(x,Y) + }’fz(x,)’)’

3. We also observe that f, is determined by its infinite jet [3 — pg. 101].
Next theorem shows that remark 3 is a general observation and not
an isolated fact.

1.7 Theorem. Let f € .#(n) be (right) infinitely determined and S = R".
Then f is S-stable.

We use the following lemma:

1.8 Lemma. Let f € #*(n). Then, f = gh, where he .M*(n), g € #*(n) and
g(x)>0 Vx#0.
Proof of the lemma.
For each non negative integer i, we denote by
B, = B(0,1/2)) = {xe R"| |x| < 1/2'},
F;=B;— Bis;

and for each positive integer i,
G;=R"—B;_;)uv §i+2'

Clearly, d(F;, G;)> 1/2'*2.
By using [3 — lemma IV — 3.3], we conclude that there exist o;€ &(n)
such that:
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Ot,-l,.-i= 1, a,-lGi= 0, ociZO
and there also exist constants C,, independent of i€ N, such that:
| o; l,. = C,2i'

where |a; |, = sup | D¥ay(x)|.
; lkI<r
.Smce f e #%(n), for each positive integer r one can associate a
positive integer u(r) such that:

|/ F<|xI” vxeB,, (1)

We can assume that the sequence u(r) is increasing, and lim u(r) = oo.
r— o

We also construct a sequence B(i) of positive integers, by:
Bl) =1, if uir) < i< plr + 1).
From (1), it turns out that:
Y /2P
i=p(1)

converges uniformly as well as its derivatives. Let g be its limit (g € .#(n)).

Clearly, g(x)>0 if x #0.

The quo@ient flg is well defined and infinitely differentiable, for
x # 0. It remains to prove that we can extend this quotient to he .#*(n).
Observe that:

if x€ B,y — Byy+1), then xe Fj, u(r) <j < p(r + 1).
This implies that:
gx) = (1/27Y9 = (1/2y = | x|", (2

Also, for any non negative integer s, there exist constants C, such
that:

| flgls < C;?g)—)li—l yxe ByL (o) 3)

Hence, for any integer r>s+2 and x€ B,y — Byy+1),

g i fies o Gl o ool
|f/g |S = CS (g(x))s+1 = (g(x))s+1 = Cslxl( v

and this implies that:

if |x|—+0, then If/g‘:—»(),



104 Paulo Ferreira da Silva Porto Janior

thus we can extend the quotient to he .#“(n).

Proof of theorem 1.7.
Since f is (right) infinitely determined,
M*(n) < df ) [4. th. 1.2]
and then:
M= (n)e(S;n) < &(S;n) df ). (1)
Observe that:
M ()e(S; n) = &S; n). (2)

For this, take f €&(S;n). By lemma 1.8, since f e .#*(n), f =gh,
where g, he #*(n) and g(x) >0 if x #0. ’

Since f |s=0, it follows easily that i |s=0, and the other inclusion
of (2) is obvious.

‘Now, from (1) and (2), we have:

&(S; n) < e(S; n) df ».
So, f is S-stable.

2.1 Definitions:

(a) Let S be a closed set of R" containing the origin and f € .#(n). Then
f verifies a Lojasiewicz inequality with respect to S (f satisfies Z(S; n))
if for each germ of a compact set K = R”" containing the origin, there exist
constants ¢ >0 and >0 such that:

| f(x)| = cd(x,S)* VxeK.

(b) Let .# be an ideal finitely generated of e(n) and S be a closed subset
of R", containing 0. Then .# is a Lojasiewicz ideal with respect to S if
there exists f € .# such that f satisfies Z(S; n). In this case, if { /1, f, ..., f,}
is an arbitrary system of generators of .#, then

Y [fi] or ¥ f3 satisfies Z(S;n) (see [3 — V.4]).
i=1 i=1

(c) Let f and S be as in 2.1, (a) and (b). Then f is Jacobian-Lojasiewicz
relative to S or f satisfies a Jacobian-Lojasiewicz condition with respect
to S, if the Jacobian ideal {df ) of f is a Lojasiewicz ideal wich respect
to S, or equivalently, if |V f | satisfies Z(S; n).
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2.2 Definition. Let {b;} be a sequence of positive real numbers which
converges to 0. A sequence of real numbers {a;} is flat along b, if, for each
r>0 there is an N such that i > N implies | a;| < b'. A sequence of vectors,
matrices or co-jets is flat along b, if each entry is, and is flat along x; in R",
if it is flat along |x;|.

. We observe that a germ g doesn’t satisfy #(S; n) if and only if there
exists a sequence {x;} converging to 0 such that g(x;) is flat along d(x;, S).

2.3 Definition. We denote by M(S;n) the set of functions ¢ which are
defined in R" — S and satisfy the following condition:

For each germ of a compact set K = R" containing the origin and for
each n-uple ke N", there exist constants ¢ >0, a> 0, such that:

| DF(x) | = cd(x, 8)7* YxeK ~ §.
M(S; n) is the space of the multipliers of the ideal MZ(n), of function

germs which are flat at S.
One proves that:

2.4 Theorem. Let ¢ e #(S;n) and f MT(n). Then it is possible to extend
the function ¢ f on S in such a way that its germ, now also denoted by ¢ f,
belongs to M (n).

The proof follows [3. IV prop. 4.2], adjusted in terms of germs.
We are now able to prove:

2.5 Theorem. Let fe.#(n) and S=R". Assume that f satisfies the
Jacobian-Lojasiewicz condition relative to S. Then, f is S-infinitesimally
stable and therefore S-stable.

Proof. We firstly observe that:

MG (n) = Mga(n) = &(S; n).
Since (df) = <6f of af>,wgt: can take g = i (g-f—>2

B o bty

We want to prove that .#(n) = #F(n) {df ), or equivalently, that
&(S; n) = e(S; n) df ).

So, let g’ be a representative of g. The proof follows easily, if we
assume that 1/g'e .#(S; n):

Let’s take he #g(n) and let h' be its representative.
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By theorem 2.4 (and also by using its notation):
1 1 2
h = [hid] = [hgig] - [h’ ﬂg i (hg)ge./ts () <df >

In order to prove that 1/g’ € #(S; n), we observe that by Leibinz’s
formula, applied to D*(1/g’), there exists a constant ¢’ such that:

(2o
g

and by hypothesis:

7

PGB ARESI NP ) (1)

o Ig/(x)||k|+l

|g'(x)| = cd(x,S)* Vxe K. )
From (1) and (2) it follows that:

D"—l—,(x) < cd(x,S)"* Vxe K — S,
g

which implies that 1/g’e .#(S; n).

Remark. Now it is clear why the germ f; in the introduction is S-stable,
since it satisfies Jacobian-Lojasiewicz condition with respect to S.

Next lemma is very important for the proof of the last theorem,
which completes our work.

2.6 Lemma. Let fe.#(n), S=R", w,e RxJ'(n,1), i€ N and let also
{x;} = {(x}, x2,...,x[)} be a sequence in R", converging to 0, in such a
way that:

q: = w; — j'f (x;) is flat along x;.

Then, there exists g € e(f, S; n) such that w; = jg(x;) holds, for a subse-
quence of {x;}.

Proof. It follows [4 —lemma 3.3] and we begin by transforming each
w; into an infinite jet in such a way that all the terms of order greater
than 1 of g; are zero. Thus, we can work with infinite jets.

Let Q be the Taylor field, given by g; at x; and by the zero series at
points of S.

Similarly as in [4 —lemma 3.3], it can be proved that Q is a C*
Whitney field on S uU {x;}, since Q satisfies the following condition (see
[3—1IV 15 and 16]): -
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For each m and for each multi index 4 such that |1|<m,

(RYQ*x) = o (| x — y|[™~'*1), where

L
BOR=00~ N greg e
Lxmethr L!
for x,yeSu {x;} and |x—y| - 0;
This condition was already checked for x, y € {x;} U 0 in [4 — lemma
3.3] and it obviously holds for x,yeS.
Then, by Whitney’s Extension Theorem [3 — IV 3.1] there is a C*g
with g(x;) =g, for a subsequence of {x;} and j*g|s=0.
It remains to take g= f + ¢, to finish the lemma.
We are now able to prove: :

2.7 Theorem. Let S=R" andfe .#(n), S-stable. Then f satisfies Jacobian-
-Lojasiewicz condition relative to S.

Proof. Suppose that f doesn’t satisfy Jacobian-Lojasiewicz condition
relative to S; we want to prove that f is not S-stable. Since two (right)
equivalent germs have identical critical values and Rg-equivalence implies
R-equivalence, it is enough to prove that there is g € ¢(f, S; n) such that

~reg. val. (f)#reg. val. (g9).

By hypothesis, there is a sequence {x;} in R", converging to 0, such
that | Vf(x;)| is flat along d(x;,S) and consequently

|Vf(x;)| is flat along x;. (1)

~ By Sard’s Theorem, it is possible to find a sequence {y;} converging
to 0, y; not a critical value of f, such that

f(x;) — y; is flat along x;. )
From (1) and (2), it clearly follows that
wi = (1,05 — (f(x), jf (x2)
is flat along x;. .

Then, by lemma 2.6 we can find g ee(f, S; n) such that y; = g(x;) is
a critical value of g.

2.8 Corollary. Let f € #(n) and S = R" . Then, S-infinitesimal stability
is equivalent to S-stability.
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Proof. It follows immediately from theorems 1.4, 2.5 and 2.7.

We finally have the following diagram:

Jacobian-Lojasiewicz
relative to S

it

<«—————| S-stability

S-infinitesimal
stability
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