On relative stability of function-germs

Paulo Ferreira da Silva Porto Júnior(*)

Introduction.

This work was firstly suggested by observing very simple examples:

1. The following unstable function germs have quite different behavior:

$$f:(R,0) \to (R,0)$$
 $f(x) = x^3$
 $g:(R,0) \to (R,0)$ $g(x) = 0$

If we compare f with the germ of a function h whose restriction to $R_- = \{x \in R \mid x \le 0\}$ coincides with the restriction of f to R_- , it is possible to conjugate f and h through the germ of a diffeomorphism ϕ whose restriction to R_- coincides with the identity. The same doesn't happen with g, since it is always possible to obtain a function germ which vanishes when restricted to R_- , but which behaves (even topologically) quite differently from g.

- 2. Such an observation gets more interesting in higher dimensions. In dimension two, working again with germs at the origin, one can check that:
- (a) The germ $f_1(x, y) = x^2 + y^2$ is (right) finitely determined, stable and it is clearly possible to conjugate f_1 and h through the germ of a diffeomorphism ϕ of R^2 , whose restriction to $R^2 = \{(x, y) \in R^2 \mid x \le 0\}$ is the identity, if we assume that f_1 and h coincide when restricted to R^2 .
- (b) The germ $f_2(x, y) = (x^2 + y^2)^2$ is not (right) finitely determined but it is determined by its infinite jet and it also has the same property as the germ f_1 with respect to the mentioned conjugation and for the same subespace R_-^2 .
- (c) The germ $f_3(x, y) = x^2$ is not (right) finitely determined neither infinitely determined but it also satisfies the same conjugation property (with respect to R^2) that f_1 and f_2 satisfy.
- (d) The germ $f_4(x, y) = 0$ is not (right) finitely or infinitely determined. However, it is possible to obtain a germ h, whose restriction to R^2 coincides

^(*) Partially supported by the brazilian agencies: FAPESP, CNPq and FINEP. Recebido em 20/06/83.

with the restriction of f_4 to R_-^2 , but behaves (even topologically) different from f_4 . In other words, f_4 doesn't satisfy the conjugation property with respect to R_-^2 .

This suggests us to define "S-relative equivalence", where S is a submanifold with non empty boundary, having the same dimension as the manifold and consequently, to introduce the "S-stability" concept (def. 1.3).

After the introduction of basic terminology, we define "infinitesimal stability relative to S" (S-infinitesimal stability). The main theorem in this section shows that S-infinitesimal stability implies S-stability (th. 1.7).

Then, we introduce the "Jacobian-Lojasiewicz condition relative to *S*" and we prove that it is a sufficient condition for *S*-infinitesimal stability (th. 2.5).

Finally, it is proved that S-stability implies Jacobian-Lojasiewicz condition relative to S (th. 2.7).

These results, alltogether, give us a final one: S-infinitesimal stability is equivalent to S-stability (corol. 2.8).

1.

Since this paper is concerned with a local study, we usually consider germs and jets at 0, of mappings between euclidean spaces and suitable sets of \mathbb{R}^n containing the origin. The following notations are used:

We denote by S a submanifold of R^n with the same dimension and with non empty boundary

(w.
$$\ell$$
. g. $S = R_-^n = \{(x^1, x^2, ..., x^n) \in R^n \mid x^1 \le 0\}$).

1.1 Let $f:(R^n,0) \to (R^p,0)$ be a differentiable germ. $\varepsilon(f,S;n,p)$ denotes the set of germs at $0 \in R^n$ of smooth mappings from R^n to R^p , whose restriction to S coincides with the restriction of f to S.

If p = 1 or $f \equiv 0$, we omit it in this notation. Hence, $\varepsilon(S; n)$ is the set of germs in $\mathcal{M}(n)$ which vanishes when restricted to S.

1.2 $\mathcal{R}_S(n) = \mathcal{R}_S$ is the set of germs at 0, of local diffeomorphisms of \mathcal{R}^n , whose restriction to S coincides with the identity. We also observe that \mathcal{R}_S is a subgroup of \mathcal{R} , which acts on the right, on $\varepsilon(f, S; n)$, in a natural way:

If $g \in \varepsilon(f, S; n)$ and $\phi \in \mathcal{R}_S$, then $g \circ \phi$ is the germ, at 0, of the composition:

$$g \circ \phi : \mathbb{R}^n \to \mathbb{R}$$
.

Of course, a germ $f \in \mathcal{M}(n)$ is S-equivalent to another germ $g \in \varepsilon(f, S; n)$ (equivalent relative to \mathcal{R}_S) if g belongs to the \mathcal{R}_S -orbit of f.

- 1.3 **Definition.** $f \in \mathcal{M}(n)$ is S-stable if f is S-equivalent to any $g \in \varepsilon(f, S; n)$. In other words, if the \mathcal{R}_S -orbit of f contains $\varepsilon(f, S; n)$.
- 1.4 **Theorem.** Let $f \in \mathcal{M}(n)$ and $S = \mathbb{R}^n$. Suppose that for any $w \in \varepsilon(S; n)$, there exists $\xi \in \varepsilon(S; n, n)$ such that $w(x) = f'(x)(\xi(x))$. Then f is S-stable.

Proof. It follows the usual procedure and can be found in $[2 - \S 1.2 - \text{proposition } 1.13]$.

Remark. Let us denote by $\langle df \rangle$ the Jacobian ideal of f. If $f \in \mathcal{M}(n)$ satisfies the hypothesis of theorem 1.4, that is, if:

$$\varepsilon(S; n) \subset \varepsilon(S; n) \langle df \rangle$$
,

then we say that f is S-infinitesimally stable.

- 1.5 **Corollary.** Let $f \in \mathcal{M}(n)$ be S-infinitesimally stable and $g \in \varepsilon(f, \mathbb{R}^n S; n)$. Then g is S-stable.
- 1.6 **Theorem.** Let $f \in \mathcal{M}(n)$ be (right) finitely determined and $S = \mathbb{R}^n_-$. Then f is S-stable.

Remark. This Theorem is also proved in [2-1.2] by using results of relative finite determinacy. We prove it here, directly.

Proof. It is enough to show that f is S-infinitesimally stable. Since f is (right) finitely determined, we have:

$$\mathcal{M}^{e}(n) \subset \mathcal{M}(n) \langle df \rangle$$
 for some positive integer ℓ .

Now, let $w \in \varepsilon(S; n)$. One can check that $w(x) = x_1^k w_k(x)$, with $w_k \in \varepsilon(S; n)$, for any positive integer k. We let $k = \ell$, to get that:

$$x_1^{\ell} = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x)\xi_i(x), \ \xi_i(0) = 0$$

and

$$w(x) = w_{\ell}(x) \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x)\xi_{i}(x) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x)\eta_{i}(x),$$

Where $\eta = (\eta_1, \eta_2, ..., \eta_n)$ satisfies $\eta \mid_S = 0$. Therefore, $w \in \varepsilon(S; n) \langle df \rangle$.

Remarks:

- 1. Theorem 1.6 gives an answer to the problem which was suggested in the introduction. The germs $f(x) = x^3$ and $f_1(x, y) = x^2 + y^2$ are S-stable $(S = R_- \text{ or } R_-^2, \text{ respectively})$, since they are (right) finitely determined.
- 2. We have just proved that (right) finite determinacy is a sufficient condition for S-stability.

However it is not necessary, since it is possible to check that:

The germ $f_2 \in \mathcal{M}(2)$, $f_2(x,y) = (x^2 + y^2)^2$ is not (right) finitely determined, but it is S-stable, with $S = R_-^2$. It is enough to show that given any $w \in \varepsilon(S; 2)$, one can find $\xi_1, \xi_2 \in \varepsilon(S; 2)$, satisfying the following condition:

$$\frac{w(x,y)}{4(x^2+y^2)} = x\xi_1(x,y) + y\xi_2(x,y),$$

that gives S-infinitesimal stability for f. But such an equation has a well known solution.

- 3. We also observe that f_2 is determined by its infinite jet [3 pg. 101]. Next theorem shows that remark 3 is a general observation and not an isolated fact.
- 1.7 **Theorem.** Let $f \in \mathcal{M}(n)$ be (right) infinitely determined and $S = \mathbb{R}^n_-$. Then f is S-stable.

We use the following lemma:

1.8 **Lemma.** Let $f \in \mathcal{M}^{\infty}(n)$. Then, f = gh, where $h \in \mathcal{M}^{\infty}(n)$, $g \in \mathcal{M}^{\infty}(n)$ and $g(x) > 0 \ \forall x \neq 0$.

Proof of the lemma.

For each non negative integer i, we denote by

$$B_i = B(0, 1/2^i) = \{x \in \mathbb{R}^n \mid |x| < 1/2^i\},\$$

 $F_i = \overline{B}_i - \overline{B}_{i+1};$

and for each positive integer i,

$$G_i = (R^n - B_{i-1}) \cup \overline{B}_{i+2}.$$

Clearly, $d(F_i, G_i) > 1/2^{i+2}$.

By using [3 - lemma IV - 3.3], we conclude that there exist $\alpha_i \in \varepsilon(n)$ such that:

$$\alpha_i|_{F_i} = 1$$
, $\alpha_i|_{G_i} = 0$, $\alpha_i \ge 0$

and there also exist constants C_r , independent of $i \in N$, such that:

$$|\alpha_i|_r \leq C_r 2^{ir}$$

where $|\alpha_i|_r = \sup_{|k| \le r} |D^k \alpha_i(x)|$.

Since $f \in \mathcal{M}^{\infty}(n)$, for each positive integer r one can associate a positive integer $\mu(r)$ such that:

$$|f|_r^x \le |x|^{r^2} \ \forall x \in B_{\mu(r)}. \tag{1}$$

We can assume that the sequence $\mu(r)$ is increasing, and $\lim \mu(r) = \infty$.

We also construct a sequence $\beta(i)$ of positive integers, by:

$$\beta(i) = r$$
, if $\mu(r) \le i < \mu(r+1)$.

From (1), it turns out that:

$$\sum_{i=\mu(1)}^{\infty} (1/2^i)^{\beta(i)} \alpha_i$$

converges uniformly as well as its derivatives. Let g be its limit $(g \in \mathcal{M}^{\infty}(n))$.

Clearly, g(x) > 0 if $x \neq 0$.

The quotient f/g is well defined and infinitely differentiable, for $x \neq 0$. It remains to prove that we can extend this quotient to $h \in \mathcal{M}^{\infty}(n)$. Observe that:

if
$$x \in B_{\mu(r)} - B_{\mu(r+1)}$$
, then $x \in F_j$, $\mu(r) \le j < \mu(r+1)$.

This implies that:

$$g(x) \ge (1/2^j)^{\beta(j)} = (1/2^j)^r \ge |x|^r.$$
 (2)

Also, for any non negative integer s, there exist constants C'_s such that:

$$|f/g|_s^x \le C_s' \frac{|f|_s^x}{(g(x))^{s+1}} \ \forall x \in B_0 - \{0\}.$$
 (3)

Hence, for any integer $r \ge s + 2$ and $x \in B_{\mu(r)} - B_{\mu(r+1)}$,

$$|f/g|_s^x \le C_s' \frac{|f|_s^x}{(q(x))^{s+1}} \le \frac{|f|_s'}{(q(x))^{s+1}} \le C_s' |x|^{r(r-s-1)}$$

and this implies that:

if
$$|x| \to 0$$
, then $|f/g|_s^x \to 0$;

thus we can extend the quotient to $h \in \mathcal{M}^{\infty}(n)$.

Proof of theorem 1.7.

Since f is (right) infinitely determined,

$$\mathcal{M}^{\infty}(n) \subset \langle df \rangle$$
 [4. th. 1.2]

and then:

$$\mathcal{M}^{\infty}(n)\varepsilon(S;n) \subset \varepsilon(S;n) \langle df \rangle. \tag{1}$$

Observe that:

$$\mathscr{M}^{\infty}(n)\varepsilon(S;n) = \varepsilon(S;n). \tag{2}$$

For this, take $f \in \varepsilon(S; n)$. By lemma 1.8, since $f \in \mathcal{M}^{\infty}(n)$, f = gh, where $g, h \in \mathcal{M}^{\infty}(n)$ and g(x) > 0 if $x \neq 0$.

Since $f|_{S} = 0$, it follows easily that $h|_{S} = 0$, and the other inclusion of (2) is obvious.

Now, from (1) and (2), we have:

$$\varepsilon(S; n) \subset \varepsilon(S; n) \langle df \rangle$$
.

So, f is S-stable.

2.1 Definitions:

(a) Let S be a closed set of \mathbb{R}^n containing the origin and $f \in \mathcal{M}(n)$. Then f verifies a Lojasiewicz inequality with respect to S (f satisfies $\mathcal{L}(S;n)$) if for each germ of a compact set $K \subset \mathbb{R}^n$ containing the origin, there exist constants c > 0 and $\alpha \ge 0$ such that:

$$|f(x)| \ge cd(x, S)^{\alpha} \ \forall x \in K.$$

(b) Let \mathcal{I} be an ideal finitely generated of $\varepsilon(n)$ and S be a closed subset of \mathbb{R}^n , containing 0. Then \mathcal{I} is a Lojasiewicz ideal with respect to S if there exists $f \in \mathcal{I}$ such that f satisfies $\mathcal{L}(S; n)$. In this case, if $\{f_1, f_2, \dots, f_r\}$ is an arbitrary system of generators of I, then

$$\sum_{i=1}^{r} |f_i| \text{ or } \sum_{i=1}^{r} |f_i|^2 \text{ satisfies } \mathcal{L}(S; n) \text{ (see } [3-V.4]).$$

(c) Let f and S be as in 2.1, (a) and (b). Then f is Jacobian-Lojasiewicz relative to S or f satisfies a Jacobian-Lojasiewicz condition with respect to S, if the Jacobian ideal $\langle df \rangle$ of f is a Lojasiewicz ideal wich respect to S, or equivalently, if $|\nabla f|$ satisfies $\mathcal{L}(S; n)$.

2.2 **Definition.** Let $\{b_i\}$ be a sequence of positive real numbers which converges to 0. A sequence of real numbers $\{a_i\}$ is flat along b_i if, for each r > 0 there is an N such that $i \ge N$ implies $|a_i| \le b_i^r$. A sequence of vectors, matrices or ∞ -jets is flat along b_i if each entry is, and is flat along x_i in \mathbb{R}^n , if it is flat along $|x_i|$.

We observe that a germ q doesn't satisfy $\mathcal{L}(S; n)$ if and only if there exists a sequence $\{x_i\}$ converging to 0 such that $g(x_i)$ is flat along $d(x_i, S)$.

2.3 **Definition.** We denote by M(S; n) the set of functions ϕ which are defined in $R^n - S$ and satisfy the following condition:

For each germ of a compact set $K \subset \mathbb{R}^n$ containing the origin and for each n-uple $k \in \mathbb{N}^n$, there exist constants c > 0, $\alpha > 0$, such that:

$$|D^k \phi(x)| \le cd(x, S)^{-\alpha} \ \forall x \in K - S.$$

M(S;n) is the space of the multipliers of the ideal $M_S^{\infty}(n)$, of function germs which are flat at S.

One proves that:

2.4 **Theorem.** Let $\phi \in \mathcal{M}(S; n)$ and $f \mathcal{M}_{S}^{\infty}(n)$. Then it is possible to extend the function ϕ f on S in such a way that its germ, now also denoted by ϕ f, belongs to $\mathcal{M}_{s}^{\infty}(n)$.

The proof follows [3. IV prop. 4.2], adjusted in terms of germs. We are now able to prove:

2.5 **Theorem.** Let $f \in \mathcal{M}(n)$ and $S = \mathbb{R}^n$. Assume that f satisfies the Jacobian-Lojasiewicz condition relative to S. Then, f is S-infinitesimally stable and therefore S-stable.

Proof. We firstly observe that:

$$\mathcal{M}_{S}^{\infty}(n) = \mathcal{M}_{R^{n}}^{\infty}(n) = \varepsilon(S; n).$$

Since
$$\langle df \rangle = \left\langle \frac{\partial f}{\partial x^1}, \frac{\partial f}{\partial x^2}, \dots, \frac{\partial f}{\partial x^n} \right\rangle$$
, we can take $g = \sum_{i=1}^n \left(\frac{\partial f}{\partial x^i} \right)^2$.

We want to prove that $\mathcal{M}_{S}^{\infty}(n) \subset \mathcal{M}_{S}^{\infty}(n) \langle df \rangle$, or equivalently, that $\varepsilon(S; n) \subset \varepsilon(S; n) \langle df \rangle$.

So, let g' be a representative of g. The proof follows easily, if we assume that $1/g' \in \mathcal{M}(S; n)$:

Let's take $h \in \mathcal{M}_{S}^{\infty}(n)$ and let h' be its representative.

By theorem 2.4 (and also by using its notation):

$$h = \left[h'id\right] = \left[h'\frac{1}{g'}g'\right] = \left[h'\frac{1}{g'}\right]g = \left(h\frac{1}{g}\right)g \in \mathcal{M}_S^\infty(n) \langle df \rangle.$$

In order to prove that $1/g' \in \mathcal{M}(S; n)$, we observe that by Leibinz's formula, applied to $D^k(1/g')$, there exists a constant c' such that:

$$\left| D^{k} \left(\frac{1}{g'} \right) (x) \right| \leq \frac{c'}{\left| g'(x) \right|^{\left| k \right| + 1}} \forall x \in K, \tag{1}$$

and by hypothesis:

$$|g'(x)| \ge cd(x, S)^{\alpha} \ \forall x \in K.$$
 (2)

From (1) and (2) it follows that:

$$\left| D^k \frac{1}{g'}(x) \right| \le c d(x, S)^{-\alpha} \ \forall x \in K - S,$$

which implies that $1/g' \in \mathcal{M}(S; n)$.

Remark. Now it is clear why the germ f_3 in the introduction is S-stable, since it satisfies Jacobian-Lojasiewicz condition with respect to S.

Next lemma is very important for the proof of the last theorem, which completes our work.

2.6 **Lemma.** Let $f \in \mathcal{M}(n)$, $S = \mathbb{R}^n_-$, $w_i \in \mathbb{R} \times J^1(n, 1)$, $i \in \mathbb{N}$ and let also $\{x_i\} = \{(x_i^1, x_i^2, \dots, x_i^n)\}$ be a sequence in \mathbb{R}^n , converging to 0, in such a way that:

$$q_i = w_i - j^1 f(x_i)$$
 is flat along x_i .

Then, there exists $g \in \varepsilon(f, S; n)$ such that $w_i = j^1 g(x_i)$ holds, for a subsequence of $\{x_i\}$.

Proof. It follows [4 - lemma 3.3] and we begin by transforming each w_i into an infinite jet in such a way that all the terms of order greater than 1 of q_i are zero. Thus, we can work with infinite jets.

Let Q be the Taylor field, given by q_i at x_i and by the zero series at points of S.

Similarly as in [4 - lemma 3.3], it can be proved that Q is a C^{∞} Whitney field on $S \cup \{x_i\}$, since Q satisfies the following condition (see [3 - IV 1.5 and 1.6]):

For each m and for each multi index λ such that $|\lambda| \leq m$,

$$(R_y^m Q)^{\lambda}(x) = \circ (|x - y|^{m-|\lambda|}), \text{ where}$$

$$(R_y^m Q)^{\lambda}(x) = Q^{\lambda}(x) - \sum_{L \le m-|\lambda|} Q^{\lambda+L}(y) \frac{(x - y)^L}{L!}$$

for $x, y \in S \cup \{x_i\}$ and $|x - y| \to 0$;

This condition was already checked for $x, y \in \{x_i\} \cup 0$ in [4 - lemma 3.3] and it obviously holds for $x, y \in S$.

Then, by Whitney's Extension Theorem $[3 - IV \ 3.1]$ there is a $C^{\infty}q$ with $q(x_i) = q_i$ for a subsequence of $\{x_i\}$ and $j^{\infty}q |_{S} = 0$.

It remains to take g = f + q, to finish the lemma.

We are now able to prove:

2.7 **Theorem.** Let $S = R^n$ and $f \in \mathcal{M}(n)$, S-stable. Then f satisfies Jacobian-Lojasiewicz condition relative to S.

Proof. Suppose that f doesn't satisfy Jacobian-Lojasiewicz condition relative to S; we want to prove that f is not S-stable. Since two (right) equivalent germs have identical critical values and R_S -equivalence implies R-equivalence, it is enough to prove that there is $g \in \varepsilon(f, S; n)$ such that reg. val. $(f) \neq \text{reg. val.}$ (g).

By hypothesis, there is a sequence $\{x_i\}$ in \mathbb{R}^n , converging to 0, such that $|\nabla f(x_i)|$ is flat along $d(x_i, S)$ and consequently

$$|\nabla f(x_i)|$$
 is flat along x_i . (1)

By Sard's Theorem, it is possible to find a sequence $\{y_i\}$ converging to 0, y_i not a critical value of f, such that

$$f(x_i) - y_i$$
 is flat along x_i . (2)

From (1) and (2), it clearly follows that

$$w_i = (y_i, 0_n^1) - (f(x_i), j^1 f(x_i))$$

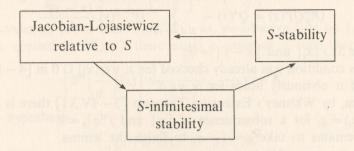
is flat along x_i .

Then, by lemma 2.6 we can find $g \in \varepsilon(f, S; n)$ such that $y_i = g(x_i)$ is a critical value of g.

2.8 Corollary. Let $f \in \mathcal{M}(n)$ and $S = \mathbb{R}^n$. Then, S-infinitesimal stability is equivalent to S-stability.

Proof. It follows immediately from theorems 1.4, 2.5 and 2.7.

We finally have the following diagram:



References

- [1] Brocker, Th. & Lander, L.; Differentiable Germs and Catastrophes, London Math. Society, Lecture Notes Series 17, Cambridge Un. Press. (1975).
- [2] Porto, P. F. S. & Loibel, G. F.; Relative finite determinacy and Relative Stability of Function Germs, Bol. Soc. Bras. Mat. Vol. 9, n.º 2 (1978).
- [3] Tougeron, J. C.; *Ideaux des Fonctions Differentiables*, Springer-Verlag, Berlin, Heidelberg, New York. (1972).
- [4] Wilson, L. C.; Infinitely determined Map Germs, Can. J. Math. Vol. XXXIII, n.° 3 (1981).

Paulo Ferreira da Silva Porto Junior Universidade de São Paulo Instituto de Ciências Matemáticas de São Carlos Departamento de Matemática 13560 – São Carlos – SP. Brazil