BOL. SOC. BRAS. MAT., VOL. 14 N.° 2 (1983), 109-123 109

A construction of %, -spaces and related Banach spaces

Jean Bourgain and Gilles Pisier

Abstract.

Let 4> 1. We prove that every separable Banach space E can be
embedded isometrically into a separable £2-space X such that X/E
has the RNP and the Schur property. This generalizes a result in [2].
Various choices of E allow us to answer several questions raised in the
literature. In particular, taking E = ¢,, we obtain a #/-space X with
the RNP such that the projective tensor product X @ X contains c,
and hence fails the RNP. Taking E = !, we obtain a #/-space failing
the RNP but nevertheless not containing c,,.

0. Introduction and background.

In the paper [2], the first example of a %, -space not containing c,
was constructed. This space has the RNP and the Schur property. In
this paper, we present another approach to such examples in a more general
framework: for any 4 > 1, we embed isometrically each separable Banach
space E into a separable #}-space, which we denote by %[E] in such
a way thet the quotient space %[ E]/E has the RNP and the Schur property.
The underlying idea is that, since this quotient can be viewed as “small”
(roughly), the space %,[E], although it is a. % -space, still does inherit
many of the properties of E such as weak sequential completeness, not
containing ¢, or L', the RNP or the Schur property.

Various choices of E give us several interesting examples of %, -spaces.
Taking E = {0} (and noting that we can ensure that £ [E] is always
infinite dimensional), we obtain a % -space with RNP and the Schur
property, which is one of the main results of [2]. Taking E = L', we obtain
a %, -space without the RNP but still not containing c,. This answers a
question raised in [1].

Taking E = ¢,, we obtain a % -space X with the RNP such that
the projective tensor product X ® X contains ¢, and hence fails the RNP.
This answers a question raised in [3]. :
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The general approach of our paper is to show that a certain class
of inductive limits of finite dimensional spaces have the RNP and the
Schur property (cf. theorem 1.6). This class includes also the examples
constructed in [7]; it is this observation, by the first author, which was the
starting point of this paper.

Let us recall some background.

A Banach space X is called a %}-space if there is a filtering increasing
family of finite dimensional subspaces X; X such that X = ( ] X; and
d(Xy; £ENTNE L

We refer to [1] for more information on %, -spaces as well as the Schur
property and the Radon-Nikodym property (in short RNP). For the
RNP, the standard reference is [3].

Let us briefly recall how an inductive limit of Banach spaces is defined.
Let (E,), , be a sequence of spaces, given together with a sequence of
isometric embeddings j, : E,— E,,,. Then, the inductive limit X of the
system (E,, j,) is defined as follows. We consider the subspace of T1E,
formed by all the sequences (x,) such that j,(x,) = x, .+, for all n sufficiently
large. We equip this space with the semi-norm || (x,) || = lim || x, ||. Let 2
be the normed space obtained after passing to the quotient by the kernel
of that semi-norm. The space X is then defined as the completion of the
space Z. Clearly, there is a system of isometric embeddings J, : E,— X
such that if X,=J,(E,) we have X, < X,,; and the union ()X, is
dense in X.

In practice, this construction shows that we may always do as if the
spaces E, formed an increasing sequence of subspaces of some larger

space, and we may then identify X simply with [ ] E,. We will need the
following result. '

Proposition 0.1. For a Banach space X, let P be any of the following
properties:

a) The Schur property .
b) The space X does not contain an isomorphic copy of c.

c) Weak sequential completeness.
d) The RNP,

Now let E be a closed subspace of X.
If both E and X|/E have the property P, then the same is true for X.

Proof. For a) and b), this is quite easy to prove.
For c) it was pointed. to the second author by Gilless GODEFROY.
For d) it was proved by Edgar (cf. [3] p. 211).
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We will also use the following well known fact:

Proposition 0.2. Let {x,} be a sequence tending weakly to zero in some
Banach space X. Then, for each ¢ >0, there are numbers o, =0 such that
2o, =1 and such that

0.1) max {|| Ze,anx, || ] g,= 11 s,

Proof. We can assume that X = C(K) for compact K. If x,— 0 weakly,
then the functions | x, | also tend to zero weakly (by dominated conver-
gence) to zero. Therefore, the convex hull of {|x, | | n =1} contains 0 in
its norm closure. In other words, for each ¢ > 0, there are numbers «, > 0
such that Za,=1 and :

02) sup {Za, |x,(8)| | ceK} <&
Clearly, (0.2) is equivalent to (0.1).

1. A certain class of inductive limits.

We start be recalling a known construction. This construction has
been very fruitful in [6], and more recently in [7]. It was used in [7]
repeatedly to construct Banach spaces enjoying certain special extension
properties. Since %, -spaces can be characterized in terms of extension
properties (cf.e.g. [1]) it is not surprising that we find this point of view
useful in this context also.

Lemma 1.1. Let E, B be Banach spaces, and let n <1. Let S be a (closed)

subspace of B and let u:S—E be an operator such that |ul|<n.
Then, there exist a Banach space E , an isometric embedding j : E - E,,

and an operator i : B—E, such that #i|S=ju and | ] <1.
Moreover, the spaces E,/E and B/S are isometric.

Proof. We consider B@ E, equipped with the norm || (b, e)||=||b|| + || ||
forallbin Band allein E. Let N = {(s, -us) | se S}. Welet E, = (B @ E)/N
and we denote by n the canonical surjection of B @ E into (B @ E)/N.
We let, for b in B and ¢ in E,

iib) = n(b,0) and j(e) = n(0, e).

It is then easy to check that || || <1 (actually we have always || 7 || = 1
if S+# B), that j is an isometric embedding, and that %|S = ju.

Finally, it is not hard to check that % : B— E, induces (after passing
to the quotient over S) an isometry between B/S and E,/E.
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Remark 1.2. We wow that if B/S is finite dimensional (in short f.d.)
then E,/E will be of the same finite dimension.

We will use the following remarkable (although simple) property
of the space E;: it is the solution of a universal problem (analogously
to amalgamated sums in the category of groups).

Proposition 1.3. i) The triplet (E, j, i) constructed above has the following
property: consider any commutative diagram

B i F

it

(where F is some Banach space, and w:B—F, v:E—F are such that
wu=w]|S).

Then there is a unique linear map ¢ : E, — F such that w= ¢ u and
v= ¢j. Equivalently, we have a commutative diagram

w

WA B

SRy

 wli}-

ii) The triplet (E,,j, u) is unique in the following sense: suppose (E4,j, ")
is another triplet such that the diagram

Moreover, we have (1.1) || ¢ || <max {||v

B L > E’l
] I
S & > E

is commutative, with j : E— E}, isometric, |u'|| <1, and satisfying the
above property (i), that is to say, for any v,w as above, there is a unique
¢' :Ey—F such that v=¢'j, w=¢'u' and ||¢'|[<max {||v], |w]]}.
Then, necessarily there is an isometric isomorphism T : E; — E' such that
Tj=]j (hence T((E))=j(E)).

Proof. The proof is straightforward.
In (i), we define ¢ by
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VbeB, Yee E, ¢(n(b,e) = wh + ve.

¢ is clearly unique and satisfies (1.1).
The proof of (ii) follows from the unicity property of ¢. Taking
successively

Wi — i o= S d RS i

we obtain 7: E; - E and T’ : E} — E, such that, by the unicity property,
TT' and T'T have to coincide with the identity on E'| and E, respectively.

We will need to abbreviate the terminology: in the preceding situation,
we will say that any embedding j' for which there is a &’ satisfying pro-
position 1.3.(ii) is associated to (E,u, S, B).

We will need the following simple observation.

Proposition 1.4. Consider (E,u, S, B) as above and let E, be any space
associated to (E,u, S, B). Let j be the embedding of E into E,, let N be a
subspace of E and let

‘]:E_’E/N and g, :E; > E,[j(N)

be the canonical quotient maps.
Then J is associated to (E/N,qu, S, B), via the following diagram:

u

B S Q. e
Vel
S oL BN

where J: E/N — E /j(N) is the embedding naturally associated to j.

Proof. This can be proved by directly exhibiting a suitable isometry between
E\/i(N) and (B@® E/N)/{(s,-qus)[seS}.

We indicate an argument using the preceding proposition: consider
a commuting diagram

R AR

| To
u
e bR
then, by the property of E; we know that there is a unique map ¢ : E; > F
such that: ¢j =g,
ou=w

and ¢ < max {||w]. [|vql]}-
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Clearly ¢|i(N)=0, so that there is a map @: E,/j(N) — F satisfying
¢ =dq,. i o

We then check easily that ¢j=v, || || <max {||w]|, || v||}, and it is
easy to see that the unicity of ¢ implies that of ¢. This shows by proposition
1.3(ii) that j is associated to (E/N, qu, S, B).

We also record the following simple fact.

Remark 1.5. In the above situation, if we have for some 6 <1

VseS ||u(s)|| =61 s]s
then necessarily

VxeB lax)|| = o] x|
Indeed, | u(x)| = sirel£{||x+s |+ || u(s) ||}

> inf {3 x-+s] + 85|} = 6| x].
We again introduce more terminology: we will say that an isometric
embedding
j:E—> E,; is n-admissible 0<7n<1)
if there exists (S, B, u) as above such that || u || < n and such that j is associa-

ted to (E,uS, B).

Remark. We indicate here another way to introduce n-admissible em-
beddings. We will say that a surjective operator u: X — Y is a metric
surjection if the associated isomorphism from X /ker « into Yis an isometry.

Now, let j : E— E, be an isometric embedding. Then j is y-admissible
iff the following holds: there exists a Banach space B and a metric surjection
n:B@® E— E, such that

(*) Vbe B, VeeE | mb,e)|| = [le]| —nllb]l
and (0, e) = j(e).

Indeed, if j is n-admissible and associated to (E, u, S, B) with || u|| <#,
then ‘

|6, @)| = i[5+ 51| + | e—uts)|
> inf ol = |B1) + [l ]| = nll )

=llell =nllo].
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Conversely, if we assume (*), then we have || e || <7 || b|| for all (b, e)
in the kernel of n. Let S be the projection of Ker m onto B. It follows that
for all s in S, there is a unique point e in E such that (s, e) is in Ker 7. Let
us denote it by e = —u(s). It is then easy to check that E, is associated to
(E,u, S, B).

The preceding definition (*) of n-admissibility has the advantage to
make more evident the following observation:

PO B R RS e
jn:E,— E,, are n-admissible embeddings, then the compo-
sition j,j,—1 ...jo : E = E,,, is also n-admissible.
This can be checked easily by induction once the case n = 1 has been

verified. :
The main result of this section can now be stated:

Theorem 1.6. Let n be such that 0 <n<1.

Let Ey, E,, ... be a sequence of finite dimensional (in short f.d.) Banach
spacesand letjo :Eqg—>E,, ...,j, : E,— E, . ... be a sequence of n-admissible
isometric embeddings. Let us denote by X the inductive limit of the system
(E,, jn)- Then X has the R.N.P. and the Schur property.

The proof will use the fact that the embeddings

Jk+m © Jk+m—-1 --- °jk zEk ol Ek+m+1

satisfy uniformly over k and m a certain inequality for which we introduce
the. following abbreviated terminology.

Let >0 and let E be any space. :

We will say that a subspace N of E is 3-well placed in E if the follo-
wing property holds.

For any probability space (Q, &, P) and for any z in [}(P; E)
such that

(1.2) Eze N we have
E|lz|| = || Ez|| + OE| g(2)||g/, where q:E— E/N is the
quotient map.

We will use a variant of (1.2) in the case when Ez is not assumed to be
in N, but we only assume that Ez is close to N.
Precisely, for all zin L}(Q, P; E) the following is a consequence of (1.2).

W) Elz] 2| Ez]| + SE|| gD ]| — 2+ 9) || a(E2) |-

This is easy to check: consider an arbitrary ¢ > 0, we can find y in N
such that
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(1.4) | Ez — || < || q(E2) || + &.

Now we apply (1.2) to the modified variable Z=z— Ez +y.
This yields to

(15) Efl 7]l 2 ||yl + & Ellg(z) — a(ED |-
On the other hand, we have by the triangle inequality
(1.6) Eflz) = E[[Z]| - || Ez— ||
and
(1.7) Iyl = |l Ez]| — | Ez =¥
(18) El 4(2) — a(E2) || = E|[¢(2) || — || o(E2) ]

Combining (1.6), (1.5), (1.7), (1.4) and (1.8) we obtain
Elzl| > || Ez|| + SE[lg@ || — @2 +9) ||q(E2)|| — 2

which establishes the announced claim (1.3). Actually, we need to record
one more variation of (1.3) involving the conditional expectation with
respect to a o-subalgebra B of €. Indeed, if z is in L}(Q, 0, P; E), we have as.

E?|| z|| = || E%z[| + SE® || q(2) | — (2+9) || a(E%2) ||

Indeed, this is trivial when B is finite and the general case follows
easily from the finite case.
Finally, we may integrate the preceding inequality and obtain

(1.9) E||z|| = E| E%z|| + SE| q(2) || — 2+ ) E|| a(E®2) || -

The main technical lemma that we use in this paper is the following.

Lemma 1.7. Let n <1 be given, let 6 = ki :
ke
If'\N is 6-well-placed in E and if j : E— E, is an n-admissible embedding,

then j(N) is again §-well-placed in E,.
Proof. We can clearly assume (w.lL.o.g) that

El = B@E/((S,—us)lses} Wlth u 'S—> E

such that ||ul|<n
as before, with j(e) = n((0, e)) for all e in E, where n: B @ E — E, denotes
the quotient map.

Let z, in I}(Q, P; E;) be such that

(1.10) Ez, € j(N)
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For any ¢ >0, we can clearly find 2’ in I}(B) and z” in I!
that, for all w in Q, we have ) z" in L(E) such

z1(w) = n(z(w), 2'(w))
and
(1.11) [Z0) || + [| 2’0 || < (1 + ) || W) ||

We have |EZl ] TC( [EZI EZ’,) therefore e deduce from 1
i i i i ’ .10) th
exists y in N such that (1.10) that there

n(EZ, E2") = j(y) = n((0, 7).
In other words, for sofne s in S we have
[Eze="%s
Ez" =y — u(s)
Note that z” + u(s)e E and also that
E(z” + u(s)) = ye N.

Thgrefore we may apply our hypothesis (1.2) to z=2z"+ u(s).
This yields

(1.12) Ellz + us|| > ||y + 6E| gz’ + us) .
On the other hand, we have clearly: ||s||<E| z|| and also:
El| (| = || 2" + us]|| - [|us]|
(1.13) 2 E|z +us|| —n]s|

> E| 2" +us| —nE| 2.
Similarly, we have
Ellgz" +us)|| > E qz") || = nls]| -
2 E|gz)|| —nE|Z|
Combining (1.13) with (1.12) and (1.14), we obtain
Ellz7]| 2 [I7]l + OE|| g || — n + Sm) E| 2]
This implies by (1.11):

1
axg Elallz 7+ 0Ela@)]| + [1-n—on]E| 7|

(1.14)

an;i since 1—-n—nd=46 and ||y||=|jo)| =] Ez |, we have finally

Ta7 Ellzall = [ B2y || + €[] 2 || + [ gz |11
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To conclude, it remains to observe that if we denote by g, : E; — E/j(N)
the quotient map, we have obviously

2 + 19| = [ g1z |,
so that we reach the announced result
E|lzi || = || Ezy || + 6E| q1(z0) ||-

Proof of theorem 1.6. Let Eq=E.

Without loss of generality, we may assume that Eoc E, < ... E;jeX
with | ) E, dense in X, and by Lemma 1.7 we may assume that E is 5-well-
-placed in E, 4, for all k,n>0. By an obvious approximation argument,
if follows that E, is d-well-placed in X for all k>0.

We will use the following well known characterization of the RNP

in terms of martingales (cf. [3] chap. V).
A Banach space X has the RNP if every martingale M,),,, with
values in X such that

sup E||M,|| < o

converges almost surely in X.
To prove this, we consider an X-valued martingale (M ) adapted

to an increasing sequence of g-algebras ((7,),,, and such that
sup E||M,| =c< .
We denote by g : X — X/, the quotient map. We claim that

(1.15) lim Lim E| gm(M,)| x/, =0

m—>o0 n—>o

Since the spaces E,, are f.d. it is easy to deduce from (1.15) that (M,,)

converges almost surely in X.
Indeed, we have by DOOB'S maximal inequality (cf. [3] p. 128):

sup | M, || < o almost surely and also
lim | sup ||gm(M,)| =0 almost surely,

therefore, the random sequence {M,(w) | n > 0} is almost surely a relatively

compact subset of X, on which the strong topology agrees with the topology

o(X, D) where D is a countable subset of X*, dense in X* for,e(X*, X))
To prove (1.15), we observe first that

| gmM,) || is non-increasing in m
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and that E || 4,(M,) || is non-decreasing in n, so that both limits in (1.15)
are monotone.

Moreover, we have clearly (by definition of the BOCHNER inte-
grability), for each p

(1.16) lim E| g.M,)]| = 0.

Now, since M, is a martingale we have, for all p < n, M »=EM,|a,)
and therefore we deduce from (1.9) that for each m i

(117)  E[[Mu|| = E||M, || + S E||gn(M,) || — 2+ 0) E|| gu(M,)]|.

Taking the limit first in n and then in m in (1.17) and using (1.16)
we obtain

lim E | My || = E[| M, ||+ 6lim lim E || g(M,)]||.

Now we can let p— oo, and we obtain

¢ lim lim E || q,(M,)|| <0

which proves the above claim (1.15) and hence that X has the RNP.
Now we prove that X posseses the Schur property which means (by

deﬁqition) that weak and strong convergence are equivalent for sequen-
ces i X

We will prove it as follows: we assume the existence of a sequence
(&.in X V'VhICh tends weakly to zero and is such that || x, || > 1 for all n
and we will reach a contradiction. ’

By the density of U E,, in X, we can assume without loss of generality
that x, € U E,, for all n, or equivalenty that there is an increasing sequence
m; <my <... such that x,eE, for each n.

We claim that: (1.18) lim || gu(x,) | >% for st
Indeed, if not, we would have for some m, and for n large enough
1 . ,
| gm(x2) || <?, hence, for some y, in E,,|| x,+y,| < %; since {y,} is
bounded in E,,, we can pass to a subsequence {n} and obtain y,, strongly

convergent to some element y. Since | y,||> | x, | — | x,+ya||> 2
3 b

: 2 . 1

we have: ||y || > ;5 and, since || x,+y,|| < g and x,, + y, —y weakly,
1 ty il

we must have ||y || < —» Which is the desired contradiction, establishing

our claim (1.18).
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By an obvious inductive selection, we can now find a sequence
mii<=my< ..
and a subsequence {x,} extracted from {x,} such that:
s e By
and

' 1
H G (X 501) “ = RORY

Now, let 71,75, ... be the RADEMACHER functions on [0,1], and
let («,) be positive scalars such that Za, < oco. We let

= JH _i ar{t) x; || dt.

Applying (1.17) with m =m,, we obtain:
Sn+1 2 Sn + 5!an+1 ‘ “ qm;‘ (x;l+l)H )

0
hence Spi1 =S, 4+ — |a,,+1|

Hence, we obtain S, ,; > % >n*+1 g, for all n, and this contradicts

(by proposition 0.2) the fact that x, tends weakly to 0.

Remark. The preceding argument shows actually that X possesses the
strong Schur property in the sense of [8].

2. Applications to ¥ -spaces
Our main application is the following result.

Theorem 2.1. Let 1> 1 and let E be any separable Banach space. Then
there is a separable £ °-space which we will denote by %[ E] which contains
E isometrically and is such that the quotient space #4[E]/E has the RNP
and the Schur property.

Proof. Let (F,),»o be an increasing sequence of f.d. subspaces of E s.t.

|J F, is dense in E. Fix <1 such that %<n < 1. We will cons-

nz0

truct by induction a sequence of 7-admissible embeddings

j() :E—"El, .]Il :En—’E"+l,...
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together with a sequence of f.d. subspaces G, = E, such that G, = {0} and

(2.1) ot codo) e VL0, ) &G, for all 'n |
and
2.2) A(Gp, Caimg,) < A for all n > 0.

Here is how we start: let us fix ¢> 0 such that 1 +e=Ap>1. We
use the fact that, for any ¢ > 0, any f.d. space is (1 + &)-isomorphic to a subs-
pace of (7% for some suitable m.

Therefore, we can find a subspace S of ¢ and an operator u : S — E
such that u(S)= F, || u||<nand || u~! |, || < 4. Applying the construction
described in lemma 1.1, we find j, : E— E,; and an extension ii : {" - E,
such that &t | s =jou, || #|| < 1, and if we let G, = ii({™) we have G, > j,(F,)
and (cf. remark 1.5) d(G,, 7)< A.

We can then complete the argument by induction on n. Assume that
Ey, ..., E,, jo»---ju—1 and Gy,..., G, have been constructed with the
required properties. Then, we consider the subspace of E, spanned by
(n—10---0jo) (Fn) U G, and we denote this subspace by H

By the same argument, as above, we can find a subspace S of ¢" (for
somé suitable m) and an operator u : S > E, such that || u || <#, u(S) =
and ||u™' || < 4. By repeating the same construction as before, we obtain
an n-admissible embedding j, : E,— E, ; , (associated to (E,, u, S, {™)) and
i:{%— E,+, such that if we let G,,, = u(¢%), we have: d(G,,, {™) <1
(by remark 1.5), and, since us=j,u we have: j,(H) = G, ., which shows
that both (2.1) and (2.2) are satisfied by G, ;.

This completes the induction argument.

Now, let X be the inductive limit of the system (E,, j,). For simplicity,
we now consider (E,) as an increasing sequence of subspaces of X. With
this convention, let Y be the closure of (] G, in X. Clarly Yis a £2-space
and, by (2.1), Y contains W complete the proof, it remains to
analyse the quotient space Y/. Clearly Y/ is naturally embedded isome-
trically into X/;. Finally, the space X/, can be viewed as an inductive
limit of the spaces E,/; and by proposition 1.4, the embedding of E, /.
into E, /g is n-admissible for all n > 1. This shows that X/, satisfies the
assumption of theorem 1.6, hence it has the RNP and the Schur property,
and so does its subspace Y/;. Therefore, we can take & ,[E] =Y.

Corqllary 2.2. For each A > 1, there is a separable £} space which fails
the RNP but still does not contain any isomorphic copy of c,.

Proof. Take e.g. E=L' and apply the preceding theorem. By proposition
0.1, &Z,[E] does not contain c,.
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Remark 2.3. i) The preceding corollary answers a question raised in
[1], p. 46.

ii) Let E be a space failing the RNP but still not containing c, or
L! (cfe.g [9]). Then the space H[E] will be a Z}-space with similar
properties.

From proposition 0.1, we derive immediately the following:

Corollary 2.4. Let P be any of the properties considered in proposition 0.1.
Then, for any A > 1, any separable Banach space E with property P embeds
isometrically in a separable %} space with property P.

For the definition and the first properties of the projective tensor
product of Banach spaces, we refer to [4], [3] or [7].

Corollary 2.4. For each 1> 1, there is a_%¢-space X which is weakly
sequentially complete (in short w.s.c.) and has the RNP (hence it does not
contain c,) but the projective tensor product X ® X contains c, isomor-
phically.

Proof. We take E = {, and let X = [ E]. By corollary 2.3, X has the RNP
and is w.s.c. Let (e,) be the canonical basis of ¢, considered as a subspace
of X. To show X ® X contains c¢,, we will use a classical theorem of
Grothendieck (cf. [4]).

Let v be an element of ¢, ® £,. We may consider v as a finite rank
operator on {,. Let J:{,— L, (4) be an isometric embedding.

Then the tensor (J ® J)(v) in L*(u) ® L*(u) (which corresponds
to the composed operator J v J*) satisfies

| ® O ||L2wserew < K|l 2|’

where K is an absolute constant (the so-called Grothendieck’s constant).
It follows that for any sequence of scalars («,), we have, for any N,

N
(2.3) ||Zaiei®ei||x®x$/”<c Sup |o].
il
On the other hand,
N N 4
24 | Za,-e,-@ ellxex = || Zo‘i e;® e |xex = Sup o]

Therefore, the sequence {e, ® e, | ne N} spans a subspace isomorphic
to ¢y in X ® X.

Remark 2.5. The preceding corollary yields a negative answer to the
question of [3] p. 258: is the RNP stable by.the projective tensor product?
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Remark 2.6. By another application of theorem 1.6, we find that the
example constructed in [ 7], of a Banach space X suchthat X @ X =X ® X
and X and X* are both of cotype 2, can be constructed with the RNP and
the Schur property. '

Remark. The proof of theorem 2.1 can be easily adapted to yield (using
remark 1.5 and letting n approach 1) a construction of the Gurarii space
(cf. [5]). The possibility of such a construction already has been known
for some time to J. LINDENSTRAUSS.

Remark 2.7. Let X be the space considered above in the proof of corollary
2.4. Then, for any norm « on X @ X such that || ||, <a<]|| ||., the
completed tensor product X ®, X contains c,. This follows immediately
from (2.3) and (2.4). Therefore, not only the projective tensor product,
but any reasonable tensor product, fails to preserve the RNP.
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