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Active sums of profinite groups

P. Ribenboim

Dedicated to Professor Philip Hall,
on his eightieth birthday.

Introduction.

In this paper, we extend the construction of active sums of active
quivers of groups to the similar construction in categories of pro-%-groups.
Originally, the construction was considered by Tomas [6] in the particular
case of active normal families of groups. We extended it in [4] for active
quivers fo groups. Diaz-Barriga & Lopez indicated in [1] how to make
the construction for active partially ordered families of profinite groups.

We apply this construction to Galois groups of number fields,
showing that the natural homomorphism from the profinite group active
sum of the decomposition groups, to the Galois group, is always surjective.

1. Active Sums of Pro-#-Groups.

Let € be a class of finite groups such that:

1) if Ge¥ and H<G then He %

2) if Ge¥ and H<G then G/He ¥

3) if l- b H->G—>K—1 is an exact sequence of groups and H,Ke %
then Ge %.

For example, ¥ may be any one of the following classes: all finite
groups; all finite solvable groups; all finite nilpotent groups, all finite
abelian groups; all finite cyclic groups; for each prime p, all finite p-groups.

A pro-¢-group is, by definition, any group G which is the inverse
(= projective) limit of an inverse system of groups in the class 4. Equi-
valently, a pro-é-group is a profinite group G, such that for every open
normal subgroup U the group G/U is in the class %.

We consider the category of pro-#-groups, whose objects are the
pro-¢-groups and whose morphisms are the continuous group-homo-
morphisms.
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We shall extend the constructions in the paper Active Sums of Groups
[4] to the category of pro-#-groups.

Let G be a category of groups, for example, the category of all groups,
the category of all pro-#-groups (where % is a class of groups, as indicated).
Following [4], we recall the concept of an active quiver of groups of G.

Let .4 be a directed graph. It consists of a non-empty set I of vertices
and for every i, j € I a set A(i, j) (Which may. be empty) of arrows. If a € A(i, j)
then i = o(«) is the origin of « and j = 1(«) is the terminal of . We denote by
A the set of all arrows: 4 = []. A(i, j). Sometimes we write .# = (I, 4, 0, t).

i, jel

Any non-empty set [ ma;/ be viewed as a directed graph, with 4 = (.
Any partially ordered set (I, <) gives rise to a directed graph, with set
of vertices I and

set with only one element o;;, when i < j
&, otherwise

A(i, j) = {
and o(a;;) =i, t(e;;) = j, when i <.

A morphism from the directed graph .# to the directed graph .#’
isamapo:I]]4 — I'| [A’' such thato(I) = 4,6 c0=0" 06,0 0 t="1 o 0.
A morphism from .# to .# which is bijective is called an automorphism
of 4. The set Aut(.#) of automorphisms of .# is a group under composition.

Let .# be a directed graph. A quiver of groups in the category G, over
4, is a family ¥ = (G,), _,of groups (indexed by the set I of vertices) and
for every i, je I, a family (c,), R where ¢, e Homg(G;, G;). We assume
also (without loss of generality) that if «, § are distinct arrows then ¢, # ¢;.
Thus in the case when G is the category of pro-#-groups, then each c,
is a continuous group-homomorphism.

The spread of the quiver ¢ is the set | | G;, which we denote by] [¢.

iel
On| [% we consider the following partial operation: if f, g | 14 and there
exists i € I such that f, g € G, then fy is defined and it is equal to the product
of the elements £, g in the group G;; otherwise, fg is not defined. On| [¢
we consider also the sum of the topologies on the group G(i€ I), so the
above operation is continuous, whenever it is defined.

Let ¢ be a quiver of groups over ., let 4’ be a quiver of groups over
' (where the groups belong to the category G). A morphism from ¥ to
%' is a map o:[ |4 > [[¥ such that there is a morphism o¢:.% > 4’
and the following conditions are satisfied:

1.) for every i€ I, the restriction o; of o to G; belongs to HomgT(G,-,_G;(i)).'
2.) for every i,je I and every o€ A(i,j), we have g;. ¢, =, o ;.

We say that ¢ lies over o.
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An automorphism of the quiver ¢ over .# is a morphism ¢ such that:

1) for everyiel,0; is an isomorphism (in the category G)from G; to G).
2) o is an automorphism of .#.

The composition of morphisms of quivers of groups gives a morphism,
The set Aut(%) of automorphisms of ¥ is a group under composition.

Let ¢ be quiver of groups (in the category G)over the directed graph
4. An action in ¢ is a homomorphism 7:][% — Aut(¥) such that the
following conditions are satisfied:
71) if ie I and he G, then ", restricted to G;, is the inner automorphism
of G, defined by h:ge G; » hgh™" € G;; in particular 7*(i) = i when he G,.
12) if i,jel, ae A(i,j) and he G, then %™ = ¢*,

If there is no ambiguity, we write h *k = t"(k) for every h,ke]__[g.

The action is said to be trivial when h *k =k for all h,k €] |. This
implies that each group G; is abelian.

The action t is normal when " is the identity automorphism of ,
for every he [4.

An active quiver of groups consists of a quiver of groups ¥ (of the

‘ category G) over a directed graph .#, together with an action ¢ in 4. If

the action is normal, we call it an active normal quiver of groups.

Let # =1 be a partially ordered set. Let % be an active quiver of
groups over .#, such that for every i,je I, with i <}, it is given a homo-
morphism ¢;; € Homg (G;, G;) in such.a way that if i <j <k then
Ca=Cj o ¢;j. Then ¥ is called an active partially ordered family of groups.
If moreover the action is normal, then ¥ is called an active normal partially
ordered family of groups.

In the special case when # =1 is a discrete graph (i.e. 4 = &), then
we call ¢ an active family of groups and moreover, if the action is normal,
an active normal family of groups.

In [4], we have shown:

Proposition 1. Let % be an active quiver of groups over the directed
graph #. Then:

1.) there exists a group G and a homomorphism (p:U%’ — G such that
@ | hxk) = @(h) (k) pih)™* for every h, kelle
Qoc,= @ for every ae A

2) if G’ is a group, ¢':l1% — G’ is a homomorphism satisfying the above
properties of G and @, then there exists a unique homomorphism p : G — G’
such that @' =p - @.
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From the universal property, G and ¢ are unique, up to a unique
isomorphism.

The group G, together with the homomorphism ¢, is called the
active sum of the active quiver of groups 4. We use the notation G=HY
when there is no ambiguity.

We prove the corresponding result for the case where G is not the
category of all groups, but instead the category of all pro-¢-groups, for
some class ¥ of groups, as indicated. The special case of active families
of pro-¢-groups was established by Diaz-Barriga and Lopez in [1] mo-
difying suitably our proof in [4].

Proposition 2. Let % be an active quiver of pro-¢-group, over the directed
graph #. Then:

1.) there exists a pro-¢-group G and a continuous homomorphism ¢ ]_]g -G
such that

o(h xk) = @(h) p(k) p(h)~* for every hke]]¥
@ o C,= @ for every ae A.

2) if G' is a pro-%-group, ¢' Ug — G’ is a continuous homomorphism sa-
tisfying the above properties of G and ¢', then there exists a unique con-
tinuous homomorphism p:G — G’ such that @' = p - .

Proof Let G be the active sum of ¢4 in the category of all groups and
let 3:]]% - G be the canonical homomorphism (G, @ exist by propo-
sition 1).

Consider the inverse system of groups ¢ G/N where N is any normal
subgroup of G, of finite index, , such that G/N €¥%. Let G=1lim G/N SO
G is a pro- ‘g-group Let ¥ G — G be the canonical homomorphism
and @ =y o @. It is routine to show that G, ¢ satisfy the conditions of
the statement.

G, together with ¢, is unique, up to a unique isomorphism. G is
called the active sum of %, in the category of pro-¢-groups. If there is

no ambiguity, we write G=[H¥ or even G=HY.
€

An alternative way of constructing the active sum in the category
of pro-%-groups (which was used by Diaz-Barriga and Lépez, for active
families) is the following: G = F/R where F is the free pro-¢-product
of the given pro-#-groups (see Neukirch [3], Ribes [5]) and R is the
closed normal subgroup generated by the obvious relations (see proof
of the proposition 1 of [4]).
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It is straight forward to derive for the active sum of pro-#¢-groups
properties similar to those indicated in [4]. Thus B ¥ is the pro-¢-group
generated by o(] [¥).

Moreover, if the action satisfies the distributive condition

kx(hx €)= (k*h)*(k*{),
or equivalently
kxh)x =kxhxk™'*0),

then the construction of the active sum is associative (see [4], (e) and (g)).

We now indicate the extension of Puig's theorem to pro-¢-groups.
For the convenience of the reader, we recall this result, as it was established
in [4].

Let G be a group (in the given category G) let 4 be a family of
subgroups of G, each in the category G, and such that the inclusion is
a morphism in G. We say that ¢ is stable if the following condition is
satisfied:

if ge U{HlHe{ﬁ} and Ke% then K =gKg~'e &.

Let ¢ be a stable set of subgroups of G (each in the category G and
such that the inclusion is a morphism on G), let I = %, partially ordered
by inclusion. Consider the quiver of groups, indexed by I, such that to
every He I corresponds the group H itself, and such that if H,Ke I,
H c K, there corresponds the inclusions map. We consider the following
action 1 in 4. If He¥%, he H, let t":][¢ — | |¥ be so defined: if Ke ¥,
ke K then t'(k)=hkh~'e hKh™!, ?"(K)=hKh 'el. Then t is a distri-
butive action and ¥ is an active partially ordered family of subgroups
of G. For example, if G is a finite group, then the family £ of its subgroups
of prime-power order is an active family.

We assume now that G is either the category of all groups, or all
pro-¢-groups, so that the active sum 4 = % (in the category G) exists.
Let ¢ :I1¥ — A be the canonical homomorphism. Let 1:] [4 — G be the
homomorphism induced by the inclusion. By the definition of active sum,
there exists a unique morphism (in the category G) p: 4 — G such that
p o @ =1. It is easily shown that p is an epimorphism (in the category G)
if and only if G is generated by | {H|He %} (in the category G).

Puig’s theorem is the following (see [4], proposition 2):

Proposition 3. If G is a finite group and 2 is the active family of its
subgroups of prime-power order, then p:H 2 — G is an isomorphism.

Now, we assume that G is a prop-¢-group, let 2 be the active family
of its closed subgroups of prime-power order (that is, each finite epimorphic
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image has prime-power order). This is a stable family of subgroups, which
defines in the manner indicated above an active family of groups (in the
category of pro-#-groups).

We show:

Proposition 4.  If G is a pro-$-group and P the active family of its
closed subgroups of prime-power order, then the canonical homormorphism
p:H £ — G is an isomorphism.

€

Proof. For every open normal subgroup N of G, let Z(G/N) denote
the family of subgroups of prime-power order of G/N. By proposition 3,
the canonical homomorphism py: B #(G/N) - G/N is an isomorphism.
Since p=1lim py then p is also an isomorphism.

2. Applications to Galois number fields.

Let K, be any algebraic number field, K| K, a Galois extension
(not necessarily of finite degree), G its Galois group, so G is a profinite
group. Let V be the family of all (non-zero) prime ideals of the (ring of
integers of the) field K. If €V then g(?)= {g(x)| xe P} e V.

For every # eV let D, be its decomposition group, that is
D, & {g(®#)= 2. Hence D. .. — gD g ", Therclote (e family 2 of all
decomposition groups is a stable set of closed subgroups of G, and we
may consider the active sum FH 2 (in the category of profinite groups).

The following result is essentially known:

Proposition 5. () D, = {1}.

PeV

Proof. Let g belong to this intersection. For any Galois extension of
finite degree L|K,, L = K, the restriction g, of g to L belongs to the
intersection I of the decomposition groups of all prime ideals 2, of L.
Let H be the fixed field of I; it contains the decomposition field of every
prime ideal of L. Thus, every prime ideal of H has exactly one extension
to a prime ideal of L.

For any prime ideal &/ of H we have the relation

[L:H]=ey fuq

where e, denotes the ramification index and f,, the inertial degree of
o/ in the extension L|H.
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By Dedekind’s theorem, there are only finitely many prime ideals .o/
of H ramified in L | H. On the other hand, by Cebotarev’s theorem there
exists an infinite number of prime ideals .« of H such that f«=1. Hence
there exists a prime ideal . such that e, = f, = 1 so [L: H] = 1, thus
g€ N Dy, ={1}. Since this holds for every L as indicated then g itself
is equal to 1.

The Galois group G acts by permutation on 2, as follows:
m:G - Perm (92), with n,(Dy) = Dy, = gD,g~'. The kernel of
n is ker(n) = () Ng(Dy), where Ng(D,) denotes the normalizer of D,

PeV
in G.

Ifeach Ny(Dy) = D,, then by proposition 5, ker(r) = {1}. If Ny(D,) = G
for every 2€ V then ker(n) = G, that is n, is the identity permutation
for every ge G. This happens, for example, when G is abelian.

Let K, | @ be an extension of finite degree and let K | K, be a finite
Galois extension. If ge G by Cebotarev’s theorem (see [2], p. 169) there
exist infiﬁitely many prime ideals 2 of K such that g = (2, K | Ko) (the

Artin synmibol), and in particular ge D,,. Thus G = L) Ds.
PeV

More generally, if K,|Q has finite degree and K | K, is a Galois

extension with group G, then () D, is a dense subset of G. Therefore,
PeV

its fixed subfield is the ground field K,.
For the special case when K,=Q, we may prove this assertion,
without appealing to Cebotarev’s theorem:

The fixed field H of () D, is the intersection of the decomposition
PeV

fields Z, for all prime ideals 2 of K. If & is any prime ideal of H, if 2
is a prime ideal of K dividing ./, the restriction 2 of 2 to Z, is unramified
over Q and extends /. So ./ is also unramified over Q. Thus every prime
ideal of H is unramified over Q. By Minkowski’s theorem, every subfield
of H of finite degree over Q must be equal to Q, hence H = Q.

Let H 2 denote the active sum of the active family 9 (in the category
of profinite groups). With the notation already introduced, we have:

Proposition 6. The canonical homomorphism p:H 2 - G is surjective.

Proof. The image of p is the subgroup of G generated by p((p(\’]_[@)),

that is, the subgroup generated by () D,, so by the above remark it
PeV

is a dense subgroup of G. On the other hand, p is a continuous homorphism,
B 2 is a profinite group, hence it is compact and therefore its image
is a compact subgroup of G, so it is closed. Therefore the image of p is
equal to G.
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It should be of interest to study the kernel of the homomorphism p,
for example when K,= Q. i

The above proposition is analogue to theorem 2 of Tomas [7].
For every prime ideal 2 of K let W, be the smallest normal subgroup
of G containing the decomposition group D,. If 2, &' are prime ideals
of K dividing the same prime ideal 2, of K, then D, D, are conjugate
subgroups of G and W, = W, ; we denote this group by W, . Let #
be the family of all such normal subgroups W, of G. With action given
by conjugation, #” is an active normal family of groups. Tomas considered
their active sum W, in the category of all groups and he showed the exis-
tence of a canonical homomorphism ¥ : W — G, such that the image is
the subgroup of G generated by the union of all subgroups W, (actually,
since G is the union of the subgroups D,, hence also of the subgroups
W,,, then Y(W)=G). In this paper, using the general construction of
active sums of active families of profinite groups (which in case of Tomas,
must be an active normal family), we do not have to consider the normal
subgroups W,,, and may work with the decomposition groups.

Bibliography

[1] Diaz-Barriga, A.J. & Lopez, L.Y.; Sumas activas de grupos pro-%, Anales del Instituto
de Matematicas, Univ. México, 19, 1979, 21-40.

[2] Lang, S.; Algebraic Number Theory, Addison-Wesley, 1970, Reading, Massachussets.

[3] Neukirch, J.; Freie Produkte pro-endlicher Gruppen und ihre Kohomologie, Archiv der
Math., 22, 1971, 337-357.

[4] Ribenboim, P.; Active sums of groups, Journal f.d. reine u.angew. Math., 325, 1981,
153-182.

[5] Ribes, L.; Introduction to Profinite Groups and Galois Cohomology, Queen’s Papers
in Pure and Applied Math., 24, 1970, Queen’s University, Kingston, Ontario, Canada.

[6] Tomas, F.; Un andlogo de suma directa para sistemas de subgrupos normales, Anales
del Instituto de Matemaéticas, Univ. Mexico, 13, 1973, 161-186.

[7] Tomaés, F.; Sobre los normalizados de los grupos de descomposicion, Anales del Instituto
de Matematicas Univ. Mexico, 13, 1973, 187-208.

P. Ribenboim
Queen’s University
Kingston

Ontario

Canada




