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Minimal hypersurfaces of S* with non zero
Gauss-Kronecker curvature

Sebastido Carneiro de Almeida*

Introduction. -

This paper deals with minimal hypersurfaces of the 4-sphere with
non zero Gauss-Kronecker curvature.

In section 1 we use the associated Gauss map of an immersion
f :M?—S* (ie, the translation of the unit normal in $* to the origin
of R?) to show that if f is minimal and the Gauss-Kronecker curvature
is #0 then M admits a metric with scalar curvature » = 6. We recall
(see [4]) that any compact orientable 3-manifold M admits a unique
decomposition M =M, # ... # M, into a connected sum of prime 3-ma-
nifolds. A prime 3-manifold which is not diffeomorphic to S* x S? is either
a K(=, 1)-manifold or it is covered by a homotopy 3-sphere. In [3], Gromov-
-Lawson proved that the existence of positive scalar curvature implies
that M has no K(=, 1) factor in its prime decomposition. We use this to
show the following result.

Theorem 1.2. Let f:M —S* be an immersion of a compact orientable
3-manifold having Gauss-Kronecker curvature K #0, then

M=X, # o # X, 88 a8 4. 3 % §

where each X ; is covered by a 3-manifold which is homotopy equivalent to S>.

We note that in theorem 1.2 the same conclusion holds if the mean
curvature H of the immersion satisfy the inequality HK ~! + 3> 0. This
is a weaker and open condition which is much easier to be verified.

A compact surface £ embedded in a manifold X is called incompres-
sible if its Euler characteristic' (X) <0 and the homomorphism between
fundamental groups 7, £ —r; X is injective. In [9], Schoen-Yau proved
that any 3-manifold which admits an incompressible surface cannot
carry a complete metric of positive scalar curvature. Given that f : M3 — §*
is a complete immersion with principal curvatures bounded away from
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zero, then its associated Gauss map is also a complete immersion. We
therefore get the following result.

Theorem 1.5. Let f : M?>—S* be a complete minimal immersion of an
oriented 3-manifold. If the principal curvatures are bounded away from
zero, then M cannot carry an incompressible surface.

In section 2 we consider compact minimal hypersurfaces of $* with
Gauss-Kronecker curvature # 0 and constant scalar curvature. We use
the moving frame method to show the following uniqueness result.

Theorem 1.12. Let f : M —S* be an immersion of a compact oriented
3-manifold having constant scalar- curvature %. Assume that the Gauss-
-Kronecker curvature of the immersion is # 0 everywhere. Then % =3,
i.e., M is the Clifford torus in S*.

The author would like to thank Professor Blaine Lawson for his
remarks and suggestions.

§1. The associated Gauss map and positive scalar curvature metrics.

Let  : M —S" be an immersion of an oriented (n-1)-dimensional
manifold M into the n-sphere S" < R"*!. The associated Gauss map
Y' : M —S" is defined pointwise as the image of the unit normal in S"
translated to the origin of R"*!. The square of the length of the second
fundamental form of M is given by

S = H? — n+nln=1)

where H and x are respectively the mean and scalar curvature of the
immersed manifold M.

Remark. Let v be a unit normal vector at pe M and let 4, ..., 4,-,
be the principal curvatures of Y at p, ie., the eigenvalues of the form II
(V, W) =<V, W, v) on T,M. With this notation we have

H=Zl,

A =n(n—1)+22 A’IAJ
i<j

K == 2.1, ...,)Ln_l

where H, %, K are respectively the mean, scalar and Gauss-Kronecker
curvature of Y at p. :
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Theorem 1.1. Let y : M3 — S* be an immersion with Gauss-Kronecker
curvature K # 0. The associated Gauss map is an immersion and v is mi-
nimal <> " =6 where % is the scalar curvature of .

Proof. We choose a local orthonormal frame field e, in S* such that when
restricted to M, ey, e,, e; are tangent to M and e, = §". We denote 0, its
dual coframe and by 6,5 its connection forms. We will assume that the
second fundamental form is diagonalized, ie.,

Oa=40;,, i=123
It follows that
Ay’ = dey = 04y, + Os362 + 0435
= —A10,e, —2,0,e; — 1305 ¢e;

and therefore " is an immersion. We may also choose a local orthonormal
frame ¢, in S* such that ;= e¢;,i = 1, 2, 3, are tangent to Y'(M) and ¢, = .
Since

Ay =0i¢e, + 05¢, + 05 ¢
it follows that for i=1,2,3

G=0,=—10.
Similarly,
B 0.
Comparing the two equations, we may write
O = 146,

where A; = A7 '. Therefore,
R S o R

s 901 i
=6+2
[11,12 LT ms]

2
e a0
-+ T2, [A3 + 22 + 44]

=6 + 2H/K.

Remark. Since S"=(H’)> — "+ 6 we may replace the condition " =6
in Lemma 3.1 by " = (H")?. This implies that /" : M — S* is never minimal,
ie., H" #0, in contrast with the 2-dimensional case, where if y : M> - §*
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is a minimal immersion with Gauss curvature # 0, then the associated
Gauss map, §* : M2 > S* is alawys a minimal immersion (c.f. [5]).

We now recall (see [4]) that each compact 3-manifold M can be
expressed in a unique way as a connected sum of a finite number of prime
3-manifolds, i.e.,

M = Kpidhoss. Xy 8 (83 088 b (B x 85V 1Ky #voioh K,

where each 7,(X;) is finite and K; is a K(m, 1)-manifold. In particular
one has the following nice consequence of Theorem 1.1.

Theorem 1.2. Let M be a compact orientable 3-manifold. If for some
immersion f : M — S* the Gauss-Kronecker curvature, K, is always #0
and —3 <HK ™!, then M carries no K(m, 1) factor in its prime decomposition.

Proof. By theorem 1.1 we know M carries a metric with scalar curvature
k"=6+2HK ! >0. Now assume M has a K(r, 1) factor in its prime
decomposition. By a result of Gromov-Lawson [3], any metric with
scalar curvature >0 on M is flat. This proves the theorem.

In the following theorem we need the notion of an incompressible
surface.

Definition 1.3. A compact surface X embedded in a manifold X is called
incompressible if y(X) < 0 jand if the homomorphism m,X — ;X is injective.

Theorem 1.4. (Schoen-Yau) Any 3-manifold which admits an incompres-
sible surface cannot carry a complete metric of positive scalar curvature.

Proof. See [9].

Theorem 1.5. Let f : M —S* be a complete minimal immersion of an
oriented 3-manifold. If the principal curvatures are bounded away from zero,
then M cannot carry an incompressible surface.

Proof. The scalar curvature of the metric induced by the associated Gauss
map f*:M—S* is identically 6. The principal curvatures of f beeing
bounded away from zero implies that " is complete. The theorem follows.

Theorem 1.6. Let f : M —S5* be an immersion as in Theorem 1.5, then
M has no covering by a manifold M> where M is diffeomorphic to the interior
of a compact 3-manifold X such that mn(0X)#0.
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Proof. If we assume the conclusion of the theorem false, then we may
apply a result of Gromov-Lawson (cf. [3]) to conclude that M carries
no complete metric of uniformly positive scalar curvature. But the metric
induced by the associated Gauss map is a complete metric of positive
scalar curvature. This is a contradiction.

In general for minimal immersion M3 —S™ m>4, we still have
similar results about the scalar curvature. For this we need the following
well-known fact.

Lemma 1.7. Let M be an n-manifold minimally immersed in the sphere
S™, m>n+ 1. Let N, be the unit normal sphere bundle of the immersion.

Ifat (x, v) € N, the principal curvature A(x, v), ..., A{x, v), i.e., the eigenvalues
of the second fundamental form A® = —(Vv)", are non-zero, then the polar
mapping

€ g Nl ) Sm

given by {(x, v) = v is an immersion near (x, v). At such a point the principal
curvatures of the immersion ¢ are

{TPRTCAPR R 1 8 O W T |

Proof. That ¢ is an immersion is easily seen. To prove the other part we
first extend v, to a unit normal vector field v so that

(W)Y = 0.
Here ( )¥=1—( )", where ( )T denotes orthogonal projection onto
T'.M. Now we choose a local orthonormal frame e, ..., e, on M satisfying

— (V. ) = Afx,v)e; at x.

Then we complete the e; s to a basis e;, e, for N;. Obviously the position
vector X of M is orthogonal to e,, A=1,...,m—1 and also to v. Hence,
X is the unit normal to the immersion ¢. To obtain the principal curvatures
of the immersion ¢ we observe that

foe;X = el[X] == dX(e,) == e,-

where, at x, € xe;=(V,,v)T = —1;(x,v)e;. It follows then that

il
Veu, X = —‘Mx—,v)f*ei-

We also have

Vf"ea X = ea[X] — 0.
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Example 1.8. Let X2 be the Veronese surface embedded in S*. It is well

known that the principal curvatures are all constant l/ﬁ, —1//3 for
all directions v e N,. Therefore { : N, — S* is an immersion with principal
curvature

il

Remark. It is a well known fact that the veronese is the focal variety
of an isoparametric family of hypersurfaces M7 in $* (cf. [6]). Among

this family there is one that has constant principal curvatures — /3,0, \/3.
The above example, due to the work of Cartan, may be pictured as the
polar mapping of the Veronese surface Z— S*.

Lemma 1.9. Let M3 — S™ be a minimal immersion and suppose the con-
ditions of the lemma 1.7 are satisfied. Then we have an immersion
{ : Nl g Sm

with constant scalar curvature w = m(m— 1).

Proof. The principal curvatures of the immersion ¢ are in this case

1 1 1 0
Ai(x, v)’ Aa(x, v)’ A3(x, v)’ g

and the scalar curvature is given by

0

1 il 1
i [mz A usJ B2 ¢

S|
. llizl:; [/11+/12+13]+m(m—1)
= m(m—1).

Theorem 1.10. Let M be a compact orientable 3-manifold and letf : M — S° |

be an immersion as in Lemma 1.9. If M has trivial normal bundle, then M
cannot have a K(r, 1) factor in its prime decomposition.

Proof. Let N, be the unit normal sphere bundle of the immersion f. The
polar mapping induces a metric of positive scalar curvature on N;. By
minimizing mass in [M] e H4(N,) we get a smooth stable hypersurface
M3 < N, =M x S'. By projection of N, onto M we obtain a degree-1
mapping of M> onto M. It follows by a theorem of Shoen-Yau (c.f. [8])
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that 93 has a metric of scalar curvature x >0. Now assume M has a
K(m, 1)-factor in its prime decomposition, ie., M3 = M3 # K3, where K3
is a K(m, 1) 3-manifold. The composition

M——— M =M # K> K?

degree-1
gives a degree-1 map of M onto K>. To complete the proof of the theorem
we need the following lemma.

Lemma 1.11. A4 compact orientable 3-manifold MM which admits a degree-1
map onto a compact K(r,1) 3-manifold cannot carry a metric of positive
scalar curvature.
Proof. M must have K(r, 1) factors in its prime decomposition. If not,

M=X %X BB SH% ... #(8' xS
and T'=n,(M) is the free product

Fixotow Fix Z AL
where Fj=m(X)) is finite for j=1,...,n. It follows that
H3()/mod. torsion = 0.

Now let F : 93— K be a degree-1 map of M> onto a K(r, 1) 3-manifold.
The map F is determined by the homomorphism

F‘
M —>n, K=n

and the composition

MM e K, 2 1) D K

is homotopic to the map F. Let g be a generator of H*(n)=Z, then F" g # 0
and therefore Z < H3(I'). This proves the lemma.

§2. A uniqueness theorem.
In this section we want to prove the following uniqueness theorem:

Theorem 1.12. Let f:M>—S* be a minimal immersion of a compact
oriented 3-manifold having constant scalar curvature %. Assume that the
Gauss-Kronecker curvature of the immersion is #0 everywhere. Then
x=3, i.e, M is the Clifford torus in S*
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Proof. Let 44, 45, 23 be the principal curvatures of the immersion. Since
f is minimal the A;’s satisfy the equation

*) i;”—%Sii—K=0

for i=1,2,3. Without loss of generality we may as well assume K > 0.
For a given x on M Jwe consider the polynomial P(/) = /13‘ '(1 [2)S4 — K(x).
From (*) it follows that the equation P(1)=0 has three real roots. This
implies

0 < K(x) < (S3/54)'12.

The quality is reached only at points where two of the principal curvatures
are equal. Since M is compact we may choose a point pe M so that

0 < K(p) < K(x)~+x€e M.

If two of the principal curvatures are equal at p, then K is constant on M
and M is an isoparametric hypersurface. Using Cartan’s fundamental
equation for isoparametric hypersurfaces (c.f.[6]), we obtain that the
two distinct principal curvatures satisfy

g o ait)

This implies 4, =./2,A, =213 = —./2/2. Therefore, M is the Clifford
torus. We may then assume that the principal curvatures are all distinct
at p. Therefore, we may choose a local orthonormal frame, say e, on S,
such that restricted to M, e, e,, e; give the principal directions. We need
the laplacian of K. For this we denote by w, the dual coframe and write
the structure equation of S* as

dwy = — ZwAB A g, Wyp+ wpy =0
B
dog= — Y Wac A Ocpg + 0y A Op.

C
In general we have w,;=Zh;;0;, h;j=h;;. In our case the second
fundamental form
h = Zh;; w; w;

is diagonalized, ie., h;;= 4;0;;. We now recall that the components h;;
of the covariant derivative, Dh, of h are given by

zk:hijk wy = dhij — Z him Dpj — Z hmj Dy -
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One easily sees that h;;, is symmetric in all indices. By a long but standard
computation (see [7]) one proves that

Afy=3[B=5)fs+2 ) hii

Lol ke
where f; == Y h;jh; h,=ZA}. But since the A/s satisfy the equation
i, 15k
S
A o e K
1 2 i

it follows that f; =3K. From this we have
AK =33-S)K +2 ) hi 4

i, j, k
Obs. 1. Differentiating the equality £i? = constant, one obtains

for i =g i kL k.

Obs. 2. Let 7= (ijjk) be a permutation of (1,2,3). Then we have

—VK = V(3 22 + 1;42)
= A2AF A VA £ A28+ AV
= Mdy—A) Vs + A= W) Vi
== (lj_}'i)(ii_/lk)v’li'

Since p is a minimum for K we have that

VK(p) =0
AK(p) > .

Using Obs. 2 we obtain VAi(p)=0. Also we have
hiu(p) = dhii(e,) — 2 Z him Opmilex)
= dAye)
= O’
then, at p
AK =33-S)K +
+ 2[hi23 Av+ hisz Ay + 3132y + h3sy Ay + h345 A3 + W32, 251
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Since the h;j are symmetric in all indices, it follows that

AK(p) = 33— S)K + 4h?55 (A + Ay + A3)
or
AK(p) = 33— S)K(p) > 0.

This will imply S =3, i.e., M is the Clifford torus in S*. This shows that
the assumption that the principal curvatures are all distinct at p is impos-
sible. :
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