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Mechanical and gradient systems; local perturbations and
generic properties

Floris Takens

1. Introduction.

The Kupka-Smale theorem [1, 2, 3] states that for “generic” dynamical
systems, or differential equations, all singularities and closed orbits are
hyperbolic and that the stable and unstable manifolds intersect trans-
versally. In generalizations to special classes of dynamical systems, e.g.
volume preserving—, Hamiltonian— or geodesic —flows, the main
problem is to prove that there are enough “local perturbations”, see
[4,5,6,7,8]. In this paper we consider the problem of local perturbations
for gradient systems and mechanical systems, which we define as follows.

Let (M, g) be a Riemannian manifold. A gradient system on (M, g)
is a vector field X on M which is the g-gradient of some function
f:M >R, ie., df =g(X, —). A mechanical system on (M, g) is a vector
field X on the co-tangent bundle 7 *(M) of M, which can be obtained
in the following way from ‘a potential function V : M — R:

— let o denote the canonical symplectic form on T *(M);
— let K:T*M)— R, the kinectic energy, be the function which assigns

to each co-vector a the value % || ||2, where || ||, denotes the induced

norm in T *(M);
— let m: T*(M) —> M denote the canonical projection;

then X, or X, is the Hamiltonian vector field on (T *(M), w) with Hamil-
tonian H, = K + V,n. We observe that X, or X, is also called the Hamil-
tonian vector field of V.

Our results on mechanical systems. only deal with the cases where
the curvature is identically zero. I think that without this restriction,
the results remain true, but are much harder to prove. Since the main:
examples of actual mechanical systems, like the n-body problem, satisfy
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this condition of zero curvature, I decided not to pursue this matter.
In this case of zero curvature one can always choose local coordinates
with respect to which the Riemannian metric is just the Euclidean inner
product. If x,, ..., x, are such coordinates, the flow of X, in T *(M) has
trajectories which project on solutions of the second order equation

%) = — S (x(0).

The difference between the perturbation arguments in the above
mentioned generalizations and the perturbation results we prove here
is that for the present systems we only show that generically they admit
enough perturbations; for definitions and statement of the results see
section 2. This idea of making a system “pertubable” was used earlier
to make exponential maps generic [9]. Our results on local perturbations
can be used to prove Kupka-Smale type theorems for gradient systems
and mechanical systems, also when they depend on parameters. This is
indicated in section 5.

Our results on mechanical systems imply that they are generically
as complicated as general Hamiltonian systems.

2. Local perturbations, statement of the main results.

Let M be a manifold and X a vector space of smooth (i.e. C*) vector
fields on M. Consider some vector field X € X and a point pe M such
that X(p) # 0. We denote the time t map of X by X,; since our consi-
derations are local we ignore the fact that the flow of X may be incomplete.
Let X, be a local section of X at p and X, a local section at X,(p). Poincaré
maps P, y:Z,— Z, are defined (in a neighbourhood of p in Z,) by: P.x(q)
is the first intersection of the X integral curve through ¢ with X,. For X’
near X, P, . is defined by using X' integral curves instead of X integral
curves (but using the same sections X, and Z,).

From this, we get for each t >0 and ke N a map J, , ,, defined on
a “neighbourhood” of X in X which assigns to X' near X the k-jet of
P, x at p. We say that, for some ¢t >0 and ke N this map has maximal
rank if there is a finite dimensional linear subspace X < X such that
each X e X is zero on a neighbourhood of both p and X Xy _and such
that the map, from X to JY(Zy, p), Z,) which assigns to XeX the k-jet
of P, x.x at p, has maximal rank at zero; note that this maximal rank
does not depend on the choice of £, and X,. We call X k-perturbable
(in X) at the point p if for some t, >0, J, , , has maximal rank for all
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t€(0,t,). We say that X is k-perturbable if X is k-perturbable at each
point p with X(p) 0.

We observe that if X is a vector space of Hamiltonian vector fields
on a symplectic manifold, then no X € X is k-perturbable for £ > 1. This
is a consequence of the fact that X, has to preserve the symplectic structure.
In fact, for X € X with Hamiltonian Hy we consider Poincaré maps
P, x:X, > X, as above. These Poincaré maps preserve H,, ie.,

Hxlzo =(HX|Z,) o Py x.

Also on each level of Hy| X, or Hy|Z,, there is an induced symplectic
structure; P, y preserves these symplectic structures. We say that a map
from X, to X, is parameter symplectic if it both preserves the levels of
Hy and the symplectic structure on these levels. In order to modify the
definition of k-perturbable for the Hamiltonian context, we require that
X < X, as above, consists of vector fields X for which the Hamiltonian
Hj can be chosen to be zero in a neighbourhood of both p and X,(p)
(so that the levels of Hy and Hy + Hy are the same in X, and X);
in the Hamiltonian case we also replace J*(Z,, p), Z,) by J% (Zo, P), Z,),
the space of k-jet of parameter symplectic maps from X, to Z, at p. In
this way one defines k-perturbable (in the Hamiltonian sense).
Our main results on local perturbations are:

Theorem A. Let (M,g) be a Riemannian manifold. For each ke N there
is an N e N such that the set of functions f : M — R, for which grad, f is
k-perturbable, within the class of g-gradient vector fields, is residual in the
C¥-topology. In fact, for each compact K = M, the set Fy of functions
f :M — R which (a) have no critical point in K and (b) have k-perturbable
g-gradient in each point of K, is open in the C"-topology; Fy is open and
dense in the (open) subset of functions having no critical point in K.

Theorem B. Let (M,g) be a Riemannian manifold with zero curvature.
For each ke N there is an N € N such that the set of functions V: M — R,
for which the corresponding Hamiltonian vector field X is k-perturbable
in the Hamiltonian sense (within the class of mechanical systems), is residual
in the C™-topology. In fact, for each compact set K < T *(M), disjoint from
the zero section, the set Hy of functions V: M — R, such that X, is
k-perturbable in all points of K, is open and dense.

An exainple of a gradient system which is not k-perturbable, k > i
can easily be given: M = R", n> 3, g is the Euclidean metric and f = x,,

so that X =grad f = —i— We can take Ty = {x, =0} and I, = {x, =1}.
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If X =grad f and f has support between X, and X,, then g (Pt xiepletos

as a vector field along the map P, y: X, — Z,can be presented by a gradient
vector field on X,. This implies that X is not k-perturbable.

I think the following is an example of a non-k-perturbable mechanical
system (for k sufficiently big): M = R", with n sufficiently big, g is the
Euclidean metric and ¥'=0. In any case, this example is not k-general
in the way defined in the next section.

3. On perturbality.

In this section we analyse the condition of perturbability, introduced
in the last section. In the next section we prove the theorems A and B.
Since we have to analyse the effect of perturbations on the Poincaré
maps we need to know how a time ¢t map depends on perturbations.
For general results we refer to [10; Chapter V].

Let X, be a vector field on a manifold M (or on R") depending smoothly
on &. We want to study the dependence of ¢, ,, the time t map of X, on ¢,
especially near points where X, is non-zero. Without loss of generality
we may assume that, with respect to local coordinates, X, has the form

a—a—, so that @¢ (xy,...,X,) = (%, + 1, X2, ..., X,). It is immediate that
X1

% (Pa,t(x) |e=0 = Jv(f(pl—s) * (% ((ps(x)) le= 0> dS,

where we use @, or @,_, as shorthand for @, ,, or @, ,_,. One should

notice that aiq)e,,[e:() is a vector field along ¢,, ie., i(,os_,|£=0> (x)
e

(68
is a vector in T, (,,(M). The above formula follows by differentiating and
integrating ¢, ,(x) = X,(@., ()

Next we take sections X, and X,: we choose pe M so that X (p) + 0,
take X, a section for X, through p and Z, a section for X, through ¢,(p).
Without loss of generality we way even assume that ¢,(X,) = Z,. Let
P,:X,— X, be the Poincaré map of X,. Then ‘

0 4 X"
5, PeX) le=0 = ’[fq»,_s) * ( P (cos(x))|€=o> ds,

where, for Ye T (M), y € Z,, Y" denotes the projection of Y into
T (M)/{X(y); for y in I, we identify this quotient with 7 (Z,). Strictly

Mechanical and gradient systems; local perturbations and generic properties 151

speaking this last formula holds only if ¢,(Z,) = X,, or if X . 1s independent
of ¢ in the points of X, and Z,.

Next we need formulas for the dependence of the k-jet of P, on &.
Observe that if Y is a vector field on a manifold M, whose (k — 1)-jet
is zero in some g€ M, then there is a unique homogeneous Rolynomlal
vector field Y of degree k on T (M) such that Y and (Exp,) * ¥, have the
same k-jet in q if Exp,: T,(M) > M is any local dlﬁ“eomorphlsm with
d(Exp,)(0) =id.

If moreover the above vector field Y has its (k — 1)-jet zero in
all points of a curve y: (—¢, +&) > M with y0)=gq and 7(0) # 0, then
there is a unique homogeneous polynomial vector field Y" of degree k
on T,(M)/<§(0)), such that for any linear sections s: T, (M)/<y(0)> - T/ (M),

D7 q) agrees with Y modulo §(0).

Finally, if in the above situation y is an integral curve of X, then

the flow , of X o induces maps (¢,).: T,(M)/< X o(p)) = T, (M)/< X o(@p)).

Now we come back to the k-jet of ¢ P ¢|e=0 at p. This is a k-jet of a

vector field along the Poincaré map Po. Assummg that the (k — 1)-jet of

0 . 5 £
73 X,|s=0 is zero along the X, integral curve through p, the (k — 1)-jet of

0 S
T P,|.=oin pisalso zero and hence the k-jet can be given by a homogeneous
polynomial vector field of degree k on T, (2 = Tou (M )/{X o(@p))>.
0
To be more precise, the k-jet of — s P,|.—oinpis the k-jet of the composition

of Py: Xy — Z, with a vector field on X, whose (k — 1)-jet in P, (p) is zero.
This last vector field on X,, which we denote by d, P, has a k-jet in P(p),
which can be identified with a homogeneous polynomial vector field of

degree k on T, ,(M)/{ X y(¢.(p))>, denoted by 68P. Since the (k — 1)-jet of

0Xe . : . : v
—6;_ i1s zero in all points of the X, integral curve from p to ¢,(p), we can

replace in the above definitions Y by 67}(_ and y(¢) by ¢,(p) and obtain

0, X osp fOr 0 <5<t With this notation we have
! ;
asP i J\ ((Pt—s)*(asxc;:s(p))ds-
We shall use this formula to obtain sufficient conditions for k-perturbability

in case we know the system is (k — 1)-perturbable. We treat gradient systems
and mechanical systems separately.
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a. Gradient systems. Let (M, g) be a Riemannian manifold,
X =grad, f a gradient vector field on M, and pe M a point such that
X(p) #+ 0. We assume that X is (k — 1)-perturbable in p, within the class
of gradient vector fields. We want to derive sufficient conditions for X
to be k-perturbable in p.

We identify T, ,(M)/<X(p,(p))) with X 1(¢.(p)), the orthogonal
complement of X (¢,(p)) (¢, denotes, as before, the flow of X). With this
identification ¢, induces a map (¢,)s: X *(p) = X *(¢,(p)). The Riemannian
metric g induces in each X *(¢,(p)) an inner product which we denote
by <, 6

As perturbations of X we take X= grad, f where the k-jet of f
is zero in points of the integral curve of X through p (so that the (k — 1)-jet
of X is zero along this integral curve). For f as above there is for each ¢
(near zero) a homogeneous polynomial f, of degree (k + 1) on X *(¢4(p))
such that the (k + 1)-jets of f; and of f o (EXp,,| X 2(@(p)) are equal.
Also there is a homogeneous polynomial vector ﬁeld X5 on X “(ep))
representing the “normal” part of the k-jet of X in o,(p).

With this notation it is clear that X" op = &rad f,, where the gradient
is taken with respect to <, g, (p-

For k-perturbability, we require that

j @ (X ) ds

can be made equal to any homogeneous polynomial vector field of degree k
by a proper choice of f We compose this integral with (¢ -,). and obtain

j (@- MR ) ds.

Note that (¢ - (X ou(p) 1S the gradient of f. o (@) with respect to the

inner product (¢_ (<, Do) 0N X *(p)
We denote this last one-parameter family of inner products on X *(p)

by {.0%

Definition. (compare [9]). We say that a one-parameter family <, )}, of
inner products is k-general if for each s> 0, there are 0 <t; <t, <...<t,<S$
and homogeneous polynomials f,, ..., fo on X ~(p) of degree k + 1 such that
Xi,...,X,, with X; the gradient of f; with respect to {, >} ., is a basis
of ‘the vector space of homogeneous polynomial vector fields of degree k
on X*(p).
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Observe that if (,)} , is k-general, then X is k-perturbable in p
(assuming that X was already (k — 1)-perturbable).

Proposition (3.1). For differentiable one-parameter families of inner pro-
ducts, like {," p,1> it IS a generic property to be k-general. In fact, those which
are not k-general have infinite co-dimension in a sense to be defined below.

Proof. To simplify notation we consider a one-parameter family of inner
products on R™, with matrix g, = (¢;;(t))'j=1- An ¢-jet of such a family
is just the collection of ¢-jets of g;(t) at t=0. Let g, ' = (g"(t)) denote
the inverse matrix of (g;i(t)); the ¢-jet of the inverse is determined by
the ¢-jets of {g;;(t)}. Now grad,,f =X % g“(t)—a—i—, so grad,, f is
4 ; J

bilinear in f and g"(¢).

Let F,, ..., Fy be a basis of the homogeneous polynomials of degree
(k+1) on R™

We say that the {-jet of g(t) is k-general if

Za_FL asgij(o). _a— N '3
i 5x,-’ 6t5 ax_,' h=1 s=0

spans all homogeneous polynomial vector fields of degree £ on R™. Now
we have the following statements:

I: there is some {-jet which is k-general if ¢ is sufficiently big;
II: the set of ¢-jets which are not k-general is an algebraic set (because
the condition is equivalent with a number of determinants being zero);
III: the co-dimension of the set of ¢-jets which are not k-general goes
to infinite for fixed & as ¢ goes to infinite;
IV: if for some ¢, the ¢-jet of g(t) is k-general, then g(t) is k-general.

Observe that the statements II and IV are evident. Statement I we prove
below, while statement III follows from the same arguments. Finally
proposition (3.1) follows from the above statements, while it follows from
III and IV how to interprete infinite co-dimension.

Proof of statement I.  F, ..., Fy denotes again a basis of the homogeneous
polynomials of degree (k + 1) on R™. We consider the vector space of all
vector fields on R™, generated by vector fields of the form

Z&Aﬁi

7 Ox; 0x;

where A;; is a symmetric m x m matrix. This vector space is invariant
under the action induced by the linear transformations in R™
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Since this vector space contains:

x‘i _a— (F =;‘ x’i+1, AU= U> and
0x4

dol g, ¢
Y. 1 it e
L o pé il Ao . kTl (i 2
x‘(axl+ax2)<F B e dlop o ¢ )
g N

it must contain all homogeneous polynomial vector fields degree k.
From the above argument it follows that there is a set of vector

fields of the form
6F, il (5L o)
{Z T A ax,}

C=lrs=1

with 4Y symmetrlc it spannlng all homogeneous vector fields of

degree k. Now we take g, = (g;;(t) A¥Y. Then clearly

the S-jet of g, is k-general.

b. Mechanical systems. Let (M,g) be a Riemannian manifold; this
time we assume that g has no curvature. For a potential function V: M — R,
the corresponding mechanical system on 7" *(M) has the following explicit
form in local coordinates: let x,, ..., x, be local coordinates on an open
U = M with respect to which g is the Euclidean inner product and let
X1s.eyXn, P1s---»Dy ON T*(U) be the associated canonical coordinates
in the sense that we identify x; on U with x;x on T *(U) and that the co-vector
Epdx; iz, ..z has coordinates Xy, ....%.; Py.«os Dy The canonical
2-form has, in these coordinates, the form w = ) dx; A dp;. The kinetic

energy, restricted to 7' *(U), is K(x, p) = % Y p?. The Hamiltonian corres-

ponding to Vis H, = K+ V o mn, which defines the Hamiltonian vector
field X, by the relation w(X,, —)=d Hy. In local coordinates we have
0 o

that X, = Zip,-ﬁx—i 2 e

We take a point geT *(M) which is not on the zero section and
assume that X, is (k — 1)-pertubable in ¢ (here we mean with
“perturbable”: “perturbable within the class of mechanical systems in
the Hamiltonian sense”). We want to find sufficient conditions for X,
to be k-perturbable in g.
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As before we denote the time ¢ map of X, by ¢,: T*M) - T*M)
(which may be only partially defined). The symplectic structure on T*M)
defines a linear symplectic structure on each tangent space: the derivative
do, preserves these structures. ¢, also preserves the Hamlltoman function
Hy . For each ¢' e T*(M) there is a Lagrangian subespace L, =T, (T*M)),
namely the tangent space of the fibre n~!(n(¢’)). We deﬁne L,. as
(d@,) " *(Ly,)- This variable Lagrangian subspace in T(T*M)) plays a
role analogous to the variable inner product ¢, >p.¢ in the previous dis-
cussion on gradient systems.

The perturbations which we consider are obtained by adding to V
a function ¥ whose k-jet is zero in each point of the projection of the X Xy
integral curve through g. This means that the (k — 1)-jetof X, .5 — X, = X3 =
is zero in all points of the integral curve through q.

The k-jet of X7 at some point ¢, = ®4q) can be uniquely represented
as a homogeneous polynomial vector field X, on T, (T *(M)) of degree k;
the (k + 1)-jet of Vo n in g, can in the same way be represented by a
homogeneous polynomial V, of degree (k + 1) on T, (T*(M)). If we denote
the symplectlc structure in T, (T *(M)) by w,, then w(X,, —) =dV,. Due to the
construction, ¥, has the property that for any two points w,w' e T, T*(M))
with (w —w')e L, ®<X(q,)), V(w) = V(w’). Note that this 1mp11es that X,
is tangent to the levels of dH (as a linear functon on T,,(T*(M))) and that
the projection of X, on 7, oI *(M))/<{X(q,) is well deﬁned This last vector
field is “parameter Hamlltoman in the sense that it generates a parameter
symplectic dlffeomorphlsm As in the case of gradient systems, X, is
perturbable in g if {L, ,} is k-general in the following sense:

Definition. We say that t — L, , = T(T *(M)) is k-general if, for each s > 0
there are 0 <t, <t, <... <t, <s and homogeneous polynomials f; of degree
(k + 1) on T(T *(M)/(L,, .; ® {Xy(q)) such that {f; - p,.}$-, defines a basis
of the polynomials of degree (k + 1) on T(T *(M))/<{X (q)>- Here, P, denotes
the projection T(T *(M)) - T(T *(M))/L, ,, ® {X(q))-

Now we want to prove the analogue of proposition (3.1).
Proposition (3.2). For differentiable one parameter families of Lagrangian
subspaces t+— L, , it is a generic property to be k-general. In fact, those

which are not k-general form a set of infinite co-dimension.

Proof. We take a linear coordinate system ¢&,,...,¢&,, n,,.. ,nn on

T(T*(M)) such that the symplectic form is )’ d¢; A dn;, X(q) = =~ and

05
such that L, , = {&;=0}.
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Then, Lagrangian subspaces near L, , can be given as {{; = ) A4;;n;}

i
with A4;;=A;. So one-parameter families ¢+ L, , can be given by a
t-dependent symmetric matrix A{) with 4’ =0. Polynomials of the form
f o p, can be written as polynomials of (52 ZA‘Z’} Ny oos En— D, AI;).

\ J
Let F**! be the vector space of polynomlals on T(T *(M)) spanned by
all polynomials of the degree (k+ 1) of (&, —Zayjn;), ..., (¢, — Zan;)
for various symmetric a;;. F**! is clearly invariant under the group of

) ! . 0 y s
symplectic transformations mapping f to itself, F¥*! contains the
1

: b 0
polynomial &4*!. All hyperplanes near {¢, =0} containing %, can be
1
transformed into one another by symplectic transformations which do

not move 5%’ so F**1 contains all monomials of the form
; ;

(@, + ...+ at +biny + ... + b )1

with a, >> a;, b;. Hence F**! consists of all homogeneous polynomials
ofiidegreei(k 1) offl(55 0 ) & i )}

Let Fy,..., Fy be a basis of the homogeneous polynomials in &,, ..., &,;
F{" is defined as F;(&, — ZAY;n;, ..., & — ZA8) n)). It is clearly a generic
property for one-parameter families t — L, , as above that for the corres-

ponding FY,
GMFEI) N S
{ atm l=0}i=l m=1

spans F**! for S sufficiently big. The argument of infinite co-dimension
is the same as in the case of gradient systems.

Remark. It turns out that the actual one-parameter families L,, of
Lagrangian subspaces occuring for mechanical systems is so that A4
satisfies A{) = —t- 6;;+ 0(t’). Also for such one-parameter families, the
above arguments remain valid.

4. The proofs of theorems A and B.

Lemma (4.1). Let (M, g) be a Riemannian manifold, f : M - R a smooth
function, and p € M so that df (p) # 0. Let <, )}, , be the one-parameter family
of inner products on (grad f )*(p) as defined in the previous section. Let dz f(p)
be the second derivative of f normal to (grad f)(p), i.e., d? f (p) is the second
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order derivative of f o (Exp,|(grad f)*(p)), where Exp,: T(M)— M is the
exponential map determined by the metric g. We interpret this second deri-
vative as a bilinear form on (grad f)'(p). With this notation, we have

D Sl ahiE oD

Proof. We choose local coordinates x,,...,x, so that:
p=(0,0,...,0);
(grad f)(p) = (|df ||, 0,...,0);
9:;(0) = 5,,,
0x9:0) =
This means that x,, ..., X,, as far as the 2-jet, are exponential or normal

coordinates. Hence the matrix of (d2f)(p) is just ( of (p))n ;
. j=2

0x;0x
Next we have to calculate 6%( , p,0- In the following calculation
we work in local coordinates and “add” points as in R":

@x) = x + t+ X(x) + 0(?),
where X = grad f,
de,(x) = id + t- dX(x) + 0(t?).

Take aie(grad F1@) (e, i22) and calculate (d(p,(p))ai:
Xi X

LS R e TN
) e bt R

B
; 195, 4 o
S i

Jj

(due to the conditions imposed on g, expressed in the present coordinates).

Instead of (de,(p)) % we are rather interested in (dP,) 6i It is not hard
X; X;

to see that we can multiply X with a function g, identically equal to one

along the integral curve through p, such that the time t map of g- X

transforms X(p)* to X(¢,(p)* and hence induces the derivative of the

Poincaré map (dP,). In this way we easily see that

eyl B iy r(z (ﬂ 0+ Xf(”’)a—i; T o)

5x,- ax,» i 5x,~
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Finally we calculate

0x,0x;

% 2
(dP) (dP) =0;; + 2t + 0(t?).
This proves the lemma. :

Proof of theorem A. (M, g) is, as before, a Riemannian manifold. It follows
easily from the above lemma that the map assigning, to each (k + 1)-jet
of a function f : M — R at p, the corresponding k-jet of {, >}, , has maximal
rank (restricting to those (k + 1)-jets of which the representative has no
critical point in p). This implies that for ¢ > 0 and k € N, there is for big S,
depending on k € N and dim (M), see proposition (3,1), an open and dense
subset of the CS-functions on M, consisting of those functions f such
that for each pe M, grad X is k-general in p or within distance ¢ from p,
f has a critical point. This implies the theorem.

Lemma (4. 2). 'Let (M,g) be a Riemannian manifold with zero curvature.
Let x,, ..., X, be local coordinates on M w:th respect to which g is the
Euclldean inner product; x, ..., Xy, P1, ..., P, are corresponding canonical
_ coordinates on the co-tangent bundle. Let V: M — R be a potential function,
q=(x,p)eT*M) a point with p#0 and let L, , be the corresponding

one-parameter family of Lagrangian subspaces in T,(T *(M)) as defined in

section 3; A\) is the corresponding one-parameter family of symmetric
matrices. Then

3 2
MM O

4
y e S Lk

Proof. We have to show that the x-components of

<d<ot(x p)< o, > ZA"’ )

i 0%V
3 5x,~6x j
to calculate d(p,(x, p) we use the formula

(x) + 0(t*), are zero mod (t*). In order

with 4{(x) =|—t

k k 1

0
'é?q)t(x’p) |t=0 atk 1 X((p,(x P)) ]t 0>

where X is the Hamiltonian vectorfield determined by V. The righthand
side can be calculated without knowing ¢,(x, p):
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k 1

g " X(@.(x, p)) |s=0 can be obtained as the derivate of PP X(@dx, p) |i=0

in the direction of X(x, p). In the following calculations we shall denote
parts of formulas which drop out later, by *

0 ] :
sl ) =02 p,-a—Xi - o, X 5_1" which we also write as (first the x-

and then the p- component):
X =(p,— dV), so
atX((pt(x’ p)) |t=0 = (_dV(x)’ *)
0uX(@(%, D)) [i=0 = (—d*V(x) (p, =), *).

So @,(x, p)—<x+t p——dV(x) —d2V(x)(p -) *>+0(t4) and
12 : 3
Id — 7dZV(x) +*. ¢ sborig— ;dZV(x)

dex,p) =\ oo + 0(t*).

Finally we have to apply this derivative to the vectors 561}_ + Z AY) ai
and show that they have x-components equal to zero mod (t“) ThlS
means that we have to apply do,(x,p) to

© d-La
A = teidlldi——d&V
™ 3 + 0(t*).

Id Id

We conclude that indeed the upper n x n block of the product, the
x-components, is zero mod (t*).

Proof of theorem B. Let (M,g) be again a Riemannian manifold with
zero curvature and let ¢ = (x, p) e T *(M) be as above with p # 0. It follows
easily from the above lemma that the map, which assigns to each (k — 1)-jet
of V: M — R in x = n(q) the k-jet of (L, ,), has maximal rank (if we take
into account the restrictions on the 2-jet of such families).

Combining this with proposition (3.2) we see that, in order to avoid
g = (x, p) to be k-general, the S-jet of ¥ at x has to avoid a certain set 4
of co-dimension dg . The set is the diffeomorphic image of an algebraic
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set and hence union of smooth manifolds. In fact, we have to avoid all
Ak, x, p for fixed S and k, and variable x and p # 0. This means that (for
fixed x) the co-dimension of the set which is to be avoided is lowered by n.
Since however dg , — o0 for § — o, it is clear that for S sufficiently big,
it is a CS-generic property for potential functions ¥ : M — R that the
(S + 1)-jet of each (L, ,) with ¢=(x,p), p#0, is k-general. This proves
the first part of the theorem. -

The second statement (involving the compact subset K < T *(M)
avoiding the zero-section) follows from the fact that the S-jet in x, for
which (L, ,), ¢=(x,p), p#0, is not k-general, is closed.

5. Applications.

I. As we noted in the introduction, in any situation where one can
produce local perturbations of sufficiently general type, one can prove
that the Kupla-Smale theorem holds. For gradient vector fields (with
fixed metric) it is generic that all singularities are hyperbolic (this is
equivalent with the function having only nondegenerate singularities).
There are no closed orbits, and by our theorem A one can make stable
and unstable manifolds transverse. Hence:

Corollary (5.1). On any Riemannian manifold (M, g), generic gradient
vector fields are Kupka-Smale.

IL. In [11] there is a study of generic one-parameter families of gradient
vector fields. That however was generic in the sense that both the function
and the metric were perturbed. From theorem A it follows that only
perturbing the function one can already make the necessary approxima-
tions. (Since one works here with one-parameter families, say on M,
and interprete them as vector fields on M x R with 0-component in the R
direction, we have to restrict, like in the Hamiltonian case, the type of
Poincaré map which comes into consideration. The only restriction on
the Poincaré map is that it preserves the R-coordinate.) In this way we
obtain:

Corollary (5.2). On any compact Riemannian manifold (M, g) generic
one-parameter families of gradient vector fields are structurally stable.

III. In the case of mechanical systems we cannot conclude that Kupka-
-Smale systems are generic. In principle there are two problems. namely

Mechanical and gradient systems; local perturbations and generic properties 161

(a) the perturbations are not local: the support of any perturbation is
a union of fobres of T*(M) and (b) the Poincaré maps are parameter
symplectic. For general Hamiltonian systems Poincaré maps are also
parameter symplectic; the consequences of this for closed orbits in the
generic case were discussed in [6]. The conclusions of [6] also hold for
generic mechanical systems since, if a mechanical system on M has a
closed orbit y:S! — T *(M), there is some re S' and neighbourhood U
of - y(r) in M such that

Y@ ) W)@ 9 (U)->U

is an embedding. Then the perturbations, constructed in this paper, can

be considered as local as far as we are concerned with perturbing y and
its Poincaré map. So:

Corollary (5.3). The results in [6] on Poincaré maps of closed orbits in
generic Hamiltonian systems apply also to generic mechanical systems.

IV. Also in mechanical systems we can make stable and unstable manifolds
transverse. So, for mechanical systems, we get the same results as in [4]
for Hamiltonian systems. The non-local character of the perturbations
is compensated by the fact that, also for an orbit belonging to the
intersection of a stable and an unstable manifold in T *(M), the projection
on M is “somewhere an embedding” like in the case of a periodic orbit.
This corollary is a partial solution of a problem which was stated in [12].
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