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HAMMING SPACES AND MAXIMAL SELF DUAL CODES
OVER GF(q), q = ODD

CHAT YIN HO(™)

Abstract

The group of automorphisms of a Hamming space is determined.
Self dual codes over odd characteristic finite field with respect
to bilinear forms are treated. Under the subgroup of the monomial
group preserving the inner product, we classify the maximal self
dual codes over gr(5) with respect to the inner product of
dimension < 8. The Hamming weight distribution and the order of
the automorphism of the code are given.

0. Introduction

Although coding theory started from an engineering problem
in the Tate 1940, the subject has developed by using more and
more mathematical techniques. Besides the application of the
error correction, one of its application is using the self dual
codes over GF(2) to study the projective plane of order 10.
Generalization of this to self dual codes over odd characteristic
finite fields turns out to be very successful in obtaining a
bound of the order of a group of automorphisms of a finite
geometry, and in proving non-existence of various kinds of
results for planes (cf. see [3]). This leads to classification
of self dual codes of small dimension. In [5], self dual codes
over GF(3) of dimension lTess than 12 have been classified.
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In this note, we first determine the group of automorphisms
of a Hamming space in 1.1. Self dual codes over odd characteristic
finite fields with respect to bilinear forms are treated in
general in section 2. The subgroup H of the monomial group
preserving the inner product is shown to be isomorphic to szsn.
As an illustration, in section 3, we classify the maximal self
dual codes over @gF(5) with respect to the standard inner product
of dimension »n < 8 wunder H. The Hamming weight distribution
and the order of the automorphism group of the code are given.
Even though # preserves the Hamming weight, it does not preserve
the complete weight which is invariant under the subgroup S of
the symmetric group on n Tletters. It is shown that for = < 4,

a H-orbit remains to be a S-orbit in the maximal self dual codes,
and for »n =5 one of the 2 H-orbits becomes the union of 3
S-orbits with different complete weight distributions.

Most of our results are self contained and notations are
standard taken from Dembowski [1], Gorenstein [2], Huppert [4],
or MacWilliams and Sloane [7].

I am very grateful for the Mathematical Institute of the
University of Tibingen and the Alexander von Humboldt Foundation
for their support during my visit to Germany, where most of the

‘work has been developed.

1. Preliminaries

A discrete metnic space is a set X together with a
function 4 from XxX into the nonnegative integers such that
for  w,ysz 6 X [ Wel havesay Sdim )t =00 iifeandionl v af o =y
b) dlxsyd, = dlysxz)s o C)ed(asz) srdilxsy)+diys, ). Avcader 1s, a
subset of a discrete metric space.

Let (x,,d,), (X,,d,) be two discrete metric spaces.

Their direct product is the set X,xX, together with the functions
d = d,xd, defined by

d((xl,xz), (yl,yz)) =d,(x,,y,)+d,(x,,y,).
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An {somorphism between two discrete metric spaces (X 5dy)
and éXZ,dZ) is a one-to-one and onto map o between the sets
such that d,(a(x),a(y)) = d,(z,y) for all =z,y € x . An
automorphism is an isomorphism such that the two sets are equal.
The set of all automorphisms of the discrete metric space (X,d)
is denoted by Aut(X,d). It is a group under composition.

Let o € Aut(Xl,dl) and B € Aut(x,,d,). Define
axB € AUt(Xlxxz’ d1Xd2) by (aXB)(xl,xz) = fa(xqlsBlxz))onfor

xz, € Xl, and x, € X,. This shows that

Aut(Xl,dl) X Aut(Xz,dz) c Aut(XIXXz, d1xdz)'
Let »n be a positive integer and let Sn be the symmetric

n n
group on = letter. Then Aut( I Xx., I di)’ where Xi =X
2= 1=1

and di =d for ¢=1,...,n, contains a subgroup isomorphic to
Aut(X,d)msn, the wreath product of Aut(x,d) by 5,

A discrete metric space (X,d) is called an equal distance
space if d(z,y) = 1 whenever x#y in X. For simplicity we
will just write that X is an equal distance space and Aut(x)
for Aut(X,d) when no confusion may be caused. Thus Aut(X)=5(x),
the symmetric group on X.

Let @ and F be two non-empty finite sets and 7 the
set of all functions from @ into F. For f,g 6 Vv define

d(fsg) = |{=6Q|f(x) # g(z)}].

Then (vV,d) is called a Hamming space. The functional notation
or the n-tuple notation for Vv will be used according to its
convenience.

Thus ¥V is the direct product of |Q| copies of the equal
distance space F. Let || = »n. Then Aut(v,d) contains the
group T = xEQ T,» where T = s(F) for =z € 9. Define
S =1{s €& Aut(v,d)| for f € v and x€Q, we have (sf)(z)=F(0,(x))
where o € 5(2)}. Clearly S can be identified as S(%) and
T

is isomorphic to 5,. Also

In

is normalized by &S.
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1.1 Theorem. Using the above notation, we have
Autiy, 50 —iepgid = S(F)%sn.

Proof. Clearly 7S < Aut(v,d). Let a€Aut(v,d). We apply
induction on |Q| to show a €& TS.

Fix P € Q. Let 7V, = {all functions from Q-{P} to F}
and v, = {all functions from P to F}. Let d, and d, be the
Hamming distances of v, and V, respectively. Then V = V1XV2'
Since {af(P) | fE€V} = F, there exists tp € TP such that
tplaf(P)) = f(pP) for all f € V. Let ¢ = tpx1. Then ¢ € T and
(taf)(P) = f(P) :for all fF € V. For f € v. define f, 67V,
a0 s Bk oeabd of (B} 5.E(BL..2Nd Folz) = f(x) for x#P. These
give onto mappings from ¥V to V, and V to V,, and
dy(gash,)i=vdlg, h)=d (g, sh;) for 'f,n €' v, Since (taf), = f,
for all f € v, we have d,((tog),, (toh),) = d(tag, tah) -

- dl((tag)l, (toah),) = d(g,h) - dx(gl’h1) = dz(gz’hz)' Therefore
the function g from Vv, to Vv, defined by B8f, = (tof), for

Ff € Vv is well defined and B € Aut(VZ,dz). By induction we have

B E [ il TxJ S(Q-{P}): = G. Since IxXG = TS we have IXBETS. Since

2 € Q
THAP

(tocf)1 = 1 for all f € V, 1xB = ta. Therefore ta € TS as
desired.

Suppose F is a field. Then we can identify 7V with ",
A Linear code of Vv is a subspace of V. An affine subspace
of V s a set v+U, where U is a subspace of V.

1.2. Corollary. Suppose |F| = 2. Two Linear codes of V
are in the same orbit of Aut(v,d) on the affine subspaces o4
V. 44 and only if they are in the same orbit of S on the
subspaces of V.

Proof. Since |F| = 2, T is the group of all translations
of V. By 1.1, Aut(v,d) = TS, which is a subgroup of the affine
transformation group of V. This implies 1.2.
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For v € V, define the Hamming weight of v to be
w(v) = d(v,0). For ¢ Vv and 0 %<2l < m, L et
w;(C) = |[{v € ¢ w(v) = <}|. The Hamming weight distribution
of € s HW(C) = (w (C), w,(C), wz(C),...,wn(C)).

2. Self dual codes over GF(q), gq=o0dd

In this section let F = GF(q), the finite field of ¢
elements, where ¢ 1is odd, and let {el,---,en} be the standard
basis for v = F"*, and F* = F\{0}.

The monomial group of V is the set of all non-singular
matrices such that each row and each column has exactly one
non-zero element. Let S be the subgroup of the monomial group
whose non-zero entries are 1. Then S is isomorphic to the
symmetric group on xn letters, and the monomial group is the
product of S with the subgroup consisting of all non-singular
diagonal matrices. The monomial group of 7V preserves the
Hamming distance of V.

Let Gat) be a non-degenerate symmetric bilinear form
of V. By [Huppert, p. 238 Satz 10.9] we see that v=H,L...LE LV,
where i, is a hyperbolic plane for < =1,...,m and dimy’'=86<2.
If v' = <v>, then (v,v) # 0. If §= 2, then V' has an
orthogonal basis {v,,v,} such that (v ,,v,) = -k(v,,v,), where
k is not a square in F¥.

The maximal totally isotropic subspaces of ¥V have the
same dimension m which is called the index of V. From a result
of Serge [Dembowski, p. 46 Article 45] we have the following.

2.1 Lemma. The numbern 0§ maximal totally Lsotrnopic subspaces of

m 5
21 S ON SRS L S

For =z = (z,.

B,(x,y) = T Y e tT Y, and B, (x,y) = x,y, + ...+ T Y, " T,

..,xn) and y = (yl,...,yn) €E Vv, let
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Let the discriminant of Bi(’)’ 7=1,2 be denated by Ai’
i=1,2. Then A, = 1 and A, = -1 (mod (F%)*®), where F%¥ = F\{0}.

2.2. Lemma. Concerning & we have the following:

iff n is odd.

a) 6 =1
If q =1 (mod 4), zthen 8§ < 1 for (,) =B, (,) on

b)

c) Suppose n = 0 (mod 4). 1§ (,)
I§ (,) =B,(,) and g = 3 (mod 4), then §

Bl(,), then § = 0.
S

d) Suppose =n = 2 (mod 4). 14§ (,) = B,(5), then §=0. If
Gt = Bl(,) and ¢ = 3 (mod ¢4), then § = 2.

Proof. a) is obvious.

Let the discriminate of (,) be denoted by A. If § = 2,
the decomposition of ¥V into directed sum of hyperbolic planes
and 7' indicated above implies that A = (—1)m+1k. (mod (F%)%).

b) Since ¢ = 1 (mod 4), -1 =.1 (mod (F*)%). If & = 2,
then % = (—1)m+1k = A=1=-1 (md (F*)?). However this implies
that % is a square, a contradiction. Therefore & < 1 as
asserted.

1

In proving c¢) and d) we have n = 2m+§, § 1is even.
c) Suppose n = 0 (mod 4). First suppose & = 0. Then
" 7 % is even. Hence A = (-1)™ =1 (mod (F%)°). If (,) = B,(,),

then A=A =-1 (mod (F*)%). This implies that -1 s a square in
(F*), which forces ¢q = 1 (mod 4).
Now suppose & = 2, then m = —+1 1is odd. Hence

a5 (r2i8E BaseRu ol L2700 BTes Tub EABilEicalNEDssEEE 21k
(mod (Fx)z). This implies that &k is square, a contradiction.
Therefore g0 =go when. (;) = B, ().

 Assume (,) = B_(,). Then =-1=8,=a=(-1)"*'k=k (mod (F%)"
Since k is not a square, -I 1is not a square. Therefore g = 3
(mod ¢4) in this case.

2
2
)
m+1

d) Similar argument as in c).
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In the rest of this section we assume that (,) =B, (,).
Suppose a = djag[Z,...,a,...,1], where a # 0 appears at the
Z-th row. If o preserves (,), then from (Ei’si) = (aei, asi):
az(e{,ei) we have a’ = 1. This shows that the subgroup # of
the monomial group preserving (,) is isomorphic to {il}%Sn and
is a subgroup of {Fx}wsfcq_lws. For wev, let wt= {v€V | (w,v)=0

for all w € W}. For any linear code ¢, Tlet Aut(c) be the
subgroup of # Tleaving (¢ invariant. If ¢ < CJ‘, then ¢ s
a self dual code. Thus {maximal self dual codes of ¥} = {maximal
totally isotropic subspaces of 7}, and we denote this set by
Mn. The H-orbits of M gives a classification of the members

of M .
n

2.3. Lemma. Let q = 1 (mod 4), and n = 2m. Let TI={wc W*|dimw=m-1}.
We have the following:

(q$_1+1).

m
sy enfpldsadasl g
22

q-1 i

b) Forn Y €T, Zhere are exactly two maximal Ls0trhopic
subspaces containing Y and they Lie in the same oabit of H.

Proof. a) This is, because

m . o
IF[ pet i (qi—l)(a$-1+1)q(m 1)2(”1 2)/]GL(”I"‘1,Q) l
=2
m m p
=4l 1 ("),
™% g=2
b) For x=x let m(x) = |[{Ww T|Ww < x}|. For W € T let

n(w) = |{x|x=x* and ¥ < x}|. By Witt's theorem m(X), n(X) are

constants. We now count A = {(X,W)]X:Xl; W < X and w €T} in
two ways. Since ¢g=1 (mod 4) and =»n = 2m, 2.2 implies & = 0.

m =1
By 2.1, there are I (q

=1

+1) possibilities for X. Since

s

m(X) = q_lJ
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T ';1 (qi_1+1)J[%;f%). By a) we have |[A| = n(w)-|T]. d) In other cases ¢ = 0.
i=
Hence n(W) = |A|/|T] = 2 as asserted. Rroofic Letsqfdi= ejsmizop] =ldgsa, Jon/pen, 1o apdyue s
Let Y € I'. Without Toss of generality we may assume Thgn Afis-i..f, 7} 18 4 basie for <> = v. Each diagonal
that one of the two maximal isotropic subspace X is generated entry of the matrix ((f,,f;)) is 2, while the other entries
by the row vectors of the following mx2m matrix. grg L= Therefors, deffifaityld =
Suppose p|n. Then e € U and the radical of U is
1 ¥ “m just <e>. Also V = 7V L <e,v> where V,Ll<e> = U and <e,v>
| is a hyperbolic plane. Let w, be a maximal totally isotropic
Iﬁ—z A subspace of V,. Then <W,,e> 1is an x-subspace of v. This
yields a).

Suppose pfn in the rest of this proof. Then

and Y s generated by the row vect t u= el ats i e d B
9 Y. Ehe PO NRCERES BXCRPL M5(Lyl sl s v, ) det((fi,fj)) # 0 (mod q). Hence the restriction of (,) on U

Lletiilizs Jeae w S(21905. i i 5 = ;
g 1 VW9, Mhee o B (2190} 0,a,s an) SiMde - SREPL is non-degenerate, and V = <e>lU.
-1 + ? aeheyndg F R TN L ? a% EEPO =t yle) taluy e g Let w be an x-subspace. Then W < U and assume that =
S {¥20 % is odd. Hence dim w = 1(n-1) by 2.2. Since W cw® N v, v is
Hence X, £ X and Xf = X,. Let o = diag[-1,7,...,2]. Then o€ &. a maximal totally isotropic subspace of U and the discriminant
Since u® = p and ¥% = y, x® = X . Therefore they lie in the i e
same orbit of H as desired. of the restriction of (,) to v 1is congruent to (-1) 2
A maximal totally isotropic subspace ¥ s an x-subs ok )
N Y P P v SN Therefore (-1)"7 = det((f,,f;)) = n (mod (F%)°). Since
if (e,w) =0 for w € w, where e = (1,1,...,1). We note that LY )
the property of being an x-subspace is invariant under the group V=<e>LU, U has the same index as 7V, which is =(n-1).
H. Applying 2.2 to the restriction of (,) to U, we see that U
has a maximal totally isotropic subspace of dimension %(n-z).
2.4. Theorem. Let the number of x-subspaces of V be #. Let Therefore the number of x-subspaces of ¥V equals the number of
q.= pa, and gne=sadim. v, maximal totally isotropic subspaces of U, which is the number
i n, then # > 0. n=t 2 .
b Ebpen) E%i stated in b). From (-1)"2 == (mod (F*) ), we see that if
b) Suppose and n  iA odd. Then "% = 1 Rl .
) 24 pin < 4y 121 (q ¢ g =1 (mod 4), then = is a square, and if g = & (mod 4), then
=1
I§ g =1V (nep. =310 (mod¥4),7 thens n Ii{nespuol-1) Zentsidsca (i

L . ) ; ) bY.
squanre Lin  GF(q). (-1) n is a square. This yields b)

c) Suppose n = 2 (mod 4) and g = 3 (mod 4). Thus & = 2
by 2.2. Since dim U n-1, dim v s odd in this case. Again

i by applying 2.2 to U we see that U has maximal totally
Then # .= "M (a+1l,
1=

c) Suppose pfn and n = 2 (mod 4), and q = 3 (mod 4).

n
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isotropic subspace of dimension %(dim Us=nd) i=s %(n—2) = index

(o) AV contains a x-subspace of V. So # equals

the number of maximal totally isotropic subspaces of U, which
n-2

2 5
is I (q*+1) by 2.1.
i=1

Hence U

d) By the proof of b) we may assume that =» 1is even.

Hence dim v = n-1 is odd, and the index of U s %(n-2).
If n =0 (mod ¢4) 2.2.c) 1implies that the index of V s
sn. Therefore 4 = 0 in this case. If » = 2 (mod 4) but
q = 1 (mod 4), then the index of V¥ is %n by 2.2 b) and again
$# = 0 as asserted.
We say that a linear code ¢ 1is decomposable if
k
{e seeese } = |J] B, 1is a partition with % > 2 and
1 n g J e
k

c= @ (Cn <Bj>)' Otherwise ¢ is called indecomposable.

J=1

3. Maximal self dual codes over GF(5)

In this section, under the group H we classify the

maximal self dual codes over F = GF(5) with respect to
(5 "= BRI FOrTiaim Ty =t a S <Ng.,
Let x € M. The orbit containing x is ¥ and
|x7| = [E:Aut(x)]. For any subset I of Aut(x) and v € X,
set ¢ (v) = {2 € le2 = »}: and Logys™ {2 € 1l<v>? = <w>).

For a,b,c 6 F®, we have a2+b%+c? # 0. as a consequence

we have the following.

3.1. Lemma. 1§ X € M, then w,(X) = 0.

means that the code is indecomposable. ALso the code £is

genenrated by the row vector o4 the matrix when this matrix is given in the desciiption of the code.

*

3.2. Theorem. The following holds, where

HW(R)

||

[Aut(r) |

R(Representative from
e under #)

each orbit of ¥
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PODORE TR "% 0= F)eWen  lu =0 U “For wo>2y by RIT cand
n
2 1~1
2.2 we see that |M | = T (5°7°+1) when = is even, and
- =1
v+ Pz
IMn| =g I %5 +1) when =xn s odd.
.57
Suppose »n = 2. Then IMZI =2 and |g| = 2%.2 = 8. Let
0 =i
rL= <(152)229Then Aut(Xz) = < > has order 4. Hence
1 0
Lo
M2 = Xz'
Suppose »n = 3. Then |M3| =6 and |#| = |z,vs,|=2".3.
Let X, =X, @<0> = {(z,0)|x€ X,}. Them [Aut(x )| = &  and
M = XH.
3 3
Suppose n = 4. Then |, | =12 and || = 2*.47 = 27,3,
Let X, = X, ® X,. Thus Aut(x,) = Aut(x,)vs, has order 2° and
_ JH
Mk = Xk.
Suppose =n = 5. Then |M_ | = 2%.3.13 and |g| = 2°.3.5.
Let %, = X, ®X,® <0>. Thus [Aut(x )| = | (Aut(x ,)ns Jxz,| = 2°.
So ]XZ[ A el A I Do = Syt | w, = (1,1,1,1,1) and
ug & (O oy, 25 3,4 o> Trhen b & M.lLet ok © Aut(Us) = K be such
that ui = u,. The corresponding permutation on the coordinates

induced by k& must be the identity and the corresponding scalars
not T can only appear possibly in the first coordinate. Thus

]CK(uz)] < 2. Since there are 4 nonzero vectors in <u,>,
[?<u2>:ck(u2)] < 4. Since there are 6 1-dimensional subspaces

in U and w(u ) # wlu,), [K:K ] < 5. Therefore |x|<5.4.2
5 15 <U ,> = T

H il A 5
and so ]U5I:_]LK_IL22—35-_:2.3' Hence MSZXIZUUIZ and
V2] = 25.3.
Suppose ==, Then Ju | =i2%a. 18 jand B|i= 0 .8!
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Let X, =X, @ X, @ X,. Thus Aut(x,) = Aut(x,)nS, has order

21§ pabvh ol 85| i&adig. 5,

Let Us be the subspace generated by the u, = (150:051,25 2),

u, = (0,1,0,2,1,3) and u = (0,0,1,2,3,1). Then U_ € M

and is indecomposable. So U, ﬁ Xf. Note that u, = {(a,b,c,a+
+2b+2c, 2a+b-2¢, 2a-2b+c) |a,b,c € F}. Let K = Aut(UG). Then k¥
induces a permutation group K on the 6 coordinate places

Since {22} N {1} = 96 in F,

TN 6k leaves

X
<U>
invariant {2,3}, {1,4}, {5,6}. Let (Y ,...,¥) be a vector

in v. If ke CK(“l)’ then k permutes Y,, ¥, with possible

multiplication by a factor 7, and permutes Y, ¥,s and
permutes y_., ¥,. Suppose 3 . 2. Then Ei =3. If Y? =Y,
then Yf = Y,. This implies uf = u, which forces Y§ = Y,.

Also uf = u, under the present assumption on k. Hence Y§=Yt,
for t¢=3,5,6. Therefore &k is the identity linear transformation

k k

in this case. If v = y,, then ¥, = ¥, . Thus u§=(2,11,0,0,*,*)6UE

which implies uf =(2,-1,0,0,3,1) by the description of the vectors

in Ug. Hence k interchanges Ys and Y¢, and Y, = -Y,.

Since ué = (2,0,%,0,1,-2) € U, uf = (2,0,-1,0,1,-2). Hence

Y§ = -y.. Therefore if 2K = 3, then either k is the identity

5
k k k k k
1

Tinear transformation or Yy =y, , Y =Y, Y,=-Y,, Y, ,=-Y,, Y =Y,

and Yﬁ:ys. Next suppose 2° = 3. If Yf:yk, then vX=y, and so

.+1,0,%%) € U,. This implies u% = (2,0,-1,0,1,3) which

=y, and Yf:ys. Hence uf = (2,%1,0,0,-2,1) which

,» then yf:y“. Thus u§=(0,0,t1,2,*:*)

: : : k k k_
which implies uf = u, Hence Y,=y,, Y,=Y¥ and ¥;=Y;. SO

U, = (2,0
shaws Yf

forces Yf:—Yz. If Yf =Y
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W = (0,51,0,2,1,-2) which implies ¥¥=y,. This whows that

CK(ul) = <7,8> 1is an elementary abelian 2-group of order 4,

where m interchanges Y, and Y, , Y, and ¥,, also ¥T = -y,
and Y: =-Yy; and ¢ fixes Y , Y , idinterchanges Y, and

Y,, ¥s and Y;. Define o 1in the following way: it interchanges
Y and Y,, Y,  and Y., also Y? = -¥,, ¥y = -r,. Since u?=u2,
uy =u,  and u = -u,, we have o € k. Let B = ad. Then

B> = -r and B has order 6. Let g € X such that g induces
identity on U,. Then g € Cylu,). From gl b 008 udma,,

we see that g = 1. Therefore X s isomorphic to a subgroup
of GL(U,) = GL(3,5). Hence |k| divides 5°.31.3.27. Since

|k|||2| =2%.6!, |k| divides 5.3.27. Let T = {I-dimensional

subspaces of U, }. Then |T| =31 and K acts on TI. Let

e, = U tuytu, = (1,1,1,0,1,1), e, = o = (1,-1,1,1,-1,0),

e, = ef = (-1,-1,1,-1,0,1), and e, = T = (0,-1,-1,1,1,1). Since
K

B £ Xeg > |<e,>%| 2 6. Let, f = u -u,~u .= (1,-1,-1,8,8,3).

T

2
Let f, = f1 = (-5,1,1,1,3,5). Then (f,)%3 = (-1,3,1,-3,-1, 8)f{<f, >,<f,>}.

It is eagy’ito” see that |<f1>K| > 6. From w(u,) =4, wle) =5,
w(f,) = 6, we get <u1>K 2 <el>K # <f1>K z <u1>K. Thus

[k:x_, ,] = |<u>*| < 81-(6+6) = 19. Combining the facts that 3
1

divides |K| to the first power, |kx||5.3.27, and Eos. 15 a

1
2-group, we see that 15|[}:K<u1>]. Therefore [K:K(ul>] = 16.
Since K<u , acts on the 4 non-zero vectors of <u >»

i
[K., 5:Cyx(u,)] < 4. Hence |K| = 15-|k_, _|<15.2". Thus
1 1
IUH =& LR 6 q H H
o . F X[ 2 = 8.2° = |M\Xg|. Therefore M_=x% y y
$6.2" 6 6 6
N . 6 8 o _
and [Z]=°2%23.5,) DeTine™to $0y "F "= <Zel “ip¥ =RRi WMy N2y,
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TSI L0 = -2 Y? =y,. Then g€k and = -I. Since
<p> acts transitively an the 4 non-zero vectors of <u, >,

K<u1> = <e>-cK(u1). This shows that X = k/<-I>. Since K acts

transitively on {I,...,6} and |X| = 120 and 6=(16)(23)(45),

we have X = §,. This completes the analysis for = = 6.

3 3

Suppose ~n = 7. Then |[m | = 2°.3°.7.13 and |g|=27.7!

Let X, =X @ <0>, C,=U; @ <0>, C,=Us @ X,. Then |Aut(x )|=2%.3,
7

4 5
|Aut(c,)| = 2

H

generated by <¢,=(1,0,0,1,0,2,2), t,=(0,1,0,1,2,0,2) and

4B, AUt (8 3 =206 andBe' | XT (=B 5. 5,7,

S 26.5.7,|C§| = 2%.32,7. Let U_ be the linear code

le 7

t,=(0,0,1,1,2,2,0). Then U, € M. Let G = Aut(U,) and G the

permutation group induced by G on the 7 coordinate places
{I,...,7}. Let g & G, . Since g permutes the 3 zero

3
o {2,3,5} s g invariant. If géc
then {I,3,6} and {Z,2,

Iy 3
[V

wi

coordinates of v <t2> n G<t3f

} are g invariant by the same

N1

argument. Hence g fixes I = {1,2,7} N {1,3,6},

?-1{1,2,7} n {2,3,5}, and 3 = {2,3,5} n {1,3,6}. This
implies that g also fixes 7,6,5 which forces g to be the
identity permutation. Easy calculation shows that g = *I .
Note that U, 1is indecomposable. A typical vector in U, has

the form (a,b,c,a+b+c,2(btc), 2(a+c),2(a+b)). In finding <p>

with w(v) = 7, we may assume the first coordinate of v to

be 1. A direct calculation shows that there are 4 possibilities:
D e Mol 1,084,454 )5 Vg 1550, 158sd 1, 1,40, g = (1,2,1,4,1,4,1)
and ‘v, = (1, 3,3,2,2,3,3). Therefore w,(U,) =16 and @

acts on {<yp>| ¢=1,2,3,4}. If g €& ¢ and <v>9 =<p> for

i 2.2 then <t7'.>9 = <t> for 4=1,2,3. This implies g=tI,
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and so IG]'[SHI-Z =.2¢ .3, Hencew.|v

|
|M7\{X§ u c?u c1|. Therefore M, = ¥y cf Ut Chas gy atand

B, o0
- L4
|[Aut(u_ )| = 2°.3.
Suppose n = 8. Then |m,| = 2".3%7.15, and |#]| = 2°.8!

Let X € M. In finding XH we may assume that X 1is generated
by (15:050505:G ), (0,1,0,0,a2), (0,0,1,0,a3), (0,0,0,1,61“) where

1
h g
a, € F', for 1 <% <4. Let Y =<(1,0,0,a,), (0,1,0,a,),

(O’O’Z’Qu)>' Then Y € M7. Without loss of generality, we may

assume that v = x_, C,, C,or U,. By 2.3, there are at most 4

3

orbits of # in M. If Y =X, then X6 X', where

X =X, 0%, @®X, ®X,. Since Aut(x,) = 2°.2%3, ]Xf[ =2 Bl s

Let 7,=0U, ®x,. Since w,(Ug) = 0, |[Aut(T )|=(2".5.5).4. Hence

H

|7,| = 2(2°.3.7(1+3)). Clearly ¢, can be embedded in T Now

2

Ueg Contains =z, = (1,1,1,0,1,1) and a5 = (05 Lid 510555 5:9) o y AS

n

«(z,,0,0), (2,,0,0) Us  And., <(0,0,050505051,2) > F-F oy L SUARX,

can be embedded in T,. Hence M, has at most 3 orbits of H.
Let U, = <fQ.0.0,0,1,35358) (051,0,04d,0, 3 8)5 i Gl s fsite2s0537,
(0,0,0,1,1,2,2,0)>. Then Ug € Mg and U, can be embedded in Ug.
Also U, 1is indecomposable. Hence Mg = X% 0] Tg 0] Ui, and
|v?| = 2%.5.5.7 and [Aut(u )| = 27.3.

A direct computation using computer's help in the case
n = 7,8 yields the Hamming weight distribution of the repre-
sentative of each orbit of Mn under H. This completes the

proof of,3.2.

3.3. Remark. Even though # preserves the Hamming weight, it
does not preserve the complete weight of & vector comp(v) =

(€,58,58,,8 .8 ) for v = (vi,...,v,), where gi:!{jlvj 2 2}
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for 0 << <4 [See p. 142, 6]. The symmetric subgroup S of
H does preserve the complete weight. Note that S = Sn

Iitti's. 'easy sto) siee that for 2V ni< i, My is still an

orbit of 5. Also x = x5,

Let R =5, . Then Cp(u,) =1, and so IRISD%RQQ>JD&ufJS

s 5IS |
5.4. Therefore [v]] > 2 = 6.
Eetiiwl = Qs a,>, where o= (,=1,2,051) &nd
o, = (0,4,2,5,4). Then W € UZ. Any image of o, under 5 will

have exactly 2 coordinates equal to 4. Since
S
Us = {(z,x+y,x+2y, x+3y,x+4y) | z,y € F}, O‘f f u,. Hence Wg Ugts

Let 4 =5,. If o € 4, then (ul,a?) = 0, which implies that

W
2° = 2 (the second coordinate place). Suppose o € dganye
2,
Then from 2° = 2 we get o € € (a,) which implies that o = I.
Hence ]A<a | = 1. Since 24.=.3, .5 Y |4]. As A4 acts on the 6

2
1-dimensional subspaces of ¥ and wla,) # w(al),
A
4] = |4:4 |
S
|

<o = |<a >%| < ¢, as 5\ |4]. Therefore

2
50 _
]W 27— 2.+ 841bp

Let 2 <Bl,62>, where 81 = (1,-1,-1,1,1) and

L (0,4,3,3,4). Then Zz € Ug. As in the case of a,, we see

that B‘i ﬁUS. Hence 2 #Ui Since W,={(x,—w+ly,x+2y, x+3y,x+4y) |z, yEF},
si ¢ Wiheas: o has 2 distinct pairs of equal coordinates. Hence

Z ﬁ Wf. Let B = §,. Since (6?,81) =0, B fixes {2,3}.

Z
Suppose b € B Then 12 = 7. Assume that 322 = 3. so
32 = 2. Then Bf = (0,3,4,%x,%) = A8, implies that 3 =A¢ or
A= 4.3 = 2. Hence Bf = (0,3,1,1,3) which is impossible as no
coordinate of 8, equals to 1. Hence 3 - % and 3? = 3.

Thus b € 03(82)’ and this implies that & = I. Therefore
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|B = 1. Now 2 = {(z,-z-y,-z-2y,x+3y,x+dy) | x,y € F}

<82>I

contaiing 15107 7938100 & 2, (1,2,0,2,4) = 2, and (1,3,2,4,0):35.
5

By inspection <82>B f <B,> U <z >. Hence |B|=[B:B

%, »F 2.
=2

<62>

m|2

Therefore [2°] > 2% = 2”.5.5. Since |05 y #® y 25| 26+2.5.5¢5% 5.5 =

H
v, = v5u Wy 2% (0%

(0]

2°.3 = |v7], we hav = g, 155 |=2. 5.5,

|2%|=2" . 28, |8 | = 20 ls,] = ¢ and |s 2. Note also that

M E
the complete weight distribution of U, and W are different.
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