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EXAMPLE OF A COMPLETE MINIMAL IMMERSION IN IR?
OF GENUS ONE AND THREE EMBEDDED ENDS

CELSO J. COSTA

1. Introduction

In this work we will construct an example of a complete
minimal immersion of the torus punctured at three points in
with embedded ends. The total curvature of such an immersion is

3

-12m. The result is a consequence of the application to minimal
surfaces of the theory of elliptic functions of the complex
plane € through the Weierstrass representation.

Let MY be a compact surface of genus vy, let Qs+
be points of Mo, and let z:M = My—{Ql"'°’QN} > RB" be a
complete minimal immersion. If Dj & MY is a topological disk
centered at Q. J = 1,....N, q ¢ Dis % # 3, then F =z(D N M)
is an end of the immersion 2z, and we will say that x 1is a

N

complete minimal immension in R™, of genus vy and with y ends.
We will prove the following theorem:

Theorem. There exists a complete minimal immersion in IRS, 0§ genus
one, with three ends and the following propenties:

a) The total curvature L5 -127
b) The ends are embedded.

Among the complete minimal immersions n.ms, of genus one
and three ends, the above immersion has greast st total curvature.

To prove the theorem we will consider the complex plane €
with coordinate =z = u+iv, the lattice I = L(1,1 ={m+ni€C; m,n€z},
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the points w, =1/2, w, = (1+%)/2 wazi/z and the quotient
torus T = C/L with complex structure induced by the canonical
projection w: C > C/L. Through m we will identify the
meramorphic functions and the meromorphic differentials of T
with the elliptic functions and elliptic differentials of 1L,

respectively. Then we will define

g = ﬁ% and w = Pdz,

where P is the Weierstrass P-function of the Tattice L and
a 6 B-{0} will be chosen conveniently. Finally we will show
that the couple (g,w) 1is the Weierstrass representation of a
complete minimal immersion,

x: M = 7-{9,,9,.Q,} ~B®, @ =mw), @,=w0) and @, = (v ),

1

which has the required properties.
In order to prove this (see [7], Lemma 8.1 and [4], §3),

it is sufficient that (g,w) satisfy the following conditions:

(c]) w 44 a holomonphic function in M. Q E M 4is a
pole of onden m of g 4if and only £f Q@ A8 a zero of orden 2m
04 w.

(c2) 14 & 4is a closed path in M then

RQJ gw = 0 and J w = J g*w.
§ § §

(c3) Every diveagent path & in M has infinite Lengzh.

This paper contains parts of my Doctoral Dissertation at
IMPA [2], under the orientation of M. do Carmo. I was recently
informed that the surface described in the theorem was proved
to be embedded by D. Hoffman.

2. Elliptic Functions

We will use the following notation: Let L = L(x,A") =
= {mx+n)' € €, m,n € 2z} be a lattice where A,A' € C and

v
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Im A/A' > 0, 1let P be the P-functiaon of Weierstrass of L,
and Tet a,B: [0,I] - C be the paths

Y A
(2.1) alt) = 5+ th,  Blt) =3+ EN.

We define the complex numbers:
(2.2) n = -J Pdz, n' = -J Pdz.
o B

n and n' are invariants of L associated to the non-trivial
homology classes of the torus T = C/L.
We also define the complex numbers

(7253 w,o= A/2, B, & ——5—; w, = A'/2
and
((2l.4) e P(wj), J=1,2,3, g, = e,e,e,, g, = 1 €€

We need the following lemma:

Lemma. Let L = L(1,Z) be a Lattice. Then, with the notation
(2.1), (2.2), (2.3) and (2.4), we have:

a) 10 R nl =‘Tfi,
b) €; € IR, §=1,2,3, e, =0, e, = =e, > 0y g, =0 and
gl = 4ef,

c) Pl(w;) =0, P'(w;) € R 4 =1,2,3.

1
P-¢

-7
P-e,

1
= = [P(z-w )-e,],

7
= — |P(z-w_J)-e_].
1 221 2 [ 3 3]

2e
T

Proof. Choose paths a, B and invariants n, n' as in (2.1)
and (2.2). In the lattice L = L(i,-1), obtained from L by a
rotation of an angle m/2, we have the paths o, B and the
invariants n and n'.

From the expression that appears in [6], page 24, we see
that the Weierstrass function P is the same for both lattices.
Then,
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n = -J~ Pdz = -j Pdz = n'.
o B

On the other hand, the development in series that appears in
[3]. page 445, shows that

n = -in.

From the equations above and from the relation of Legendre ([6]»
page 38) we obtain

n' = in-2ri = -in.

Thus we have
ns=m and n' = -mi,

and part (a) of the lTemma is proved.

To prove (b) observe that the expressions in series for
g, and g, that appear in [3], page 446, show that g, =~—§a.
But, since the P-functions agree in the lattices L and I,
g, = g,. Thus, g, = 0. Since the lattice is axial (see [6],
page 162), we have £ €. Rs . J = 14,2,3,..and 0 < eq >ney Sflad<
On the other hand, from [6], page 47, we have e + e, + e, 0.

1
Since g, = 0, we conclude that e, = -e;, e, = 0, and part

H w

(b) of lemma is proved.

Part (c) of the lemma follows from [6], page 27, item (b),

and the equation
L
2

~

that appears in [6], page 47.

To prove part (d) we observe that the quotient of the
and P(z—wj)—ej, J=1,8 T ishiconsitantl

elliptic function =
In order to find these constants, it is sufficient to evaluate

them on the point w,.

3. Proof of the Theorem
C/L be the

Let L = L(1,i) be a lattice and let T

>

44{44
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torus with complex structure induced by the canonical projection
m € > C/L. Let &,,2,,@, € T be given by

@, = mw ), @, = m(0) and @, = (v ).
We will show that the couple (g,w),

a
g Fprs w = Pdz

where a 1is to be chosen conveniently, is a Weierstrass repre-
sentation of a complete minimal immersion =z: M:T-{QI,QZ,Qa}fmg
with the properties expressed in the theorem, that is, we will

show that the couple (g,u) satisfies the conditions (cy), (c,)
and (c3).

Proof of (cq)

Clearly w is holomorphic in M. From the lemma,
e, = P(w,) = P'"(w,) = 0. Therefore, since P is an elliptic
function of order 2, @ = m(w,) € M is the only zero of w. On
the other hand, P’ is an elliptic function of order 3, hence,
from the 1emma, w,» W, w, are simple zeros of P'. Thus, the
points ﬂ(wj), Jj=1,2,3 are simple poles of g¢g. Since
@, = m(w;) and @, = m(w,) do not belong to M, condition (cy)

is satisfied.

Proof of (c,)

3
From the equation (p)% =41 (P-ej) (see [6], page 46)
and the lemma, we see that J=1
_ aP " apPp! g Bt . Pt
(3.1) guF 5 43, 5 v AR & e, (P—el ?:s)dz.
4 I (pP-e.)
g=1 7

Now let o, B be nontrivial closed generators of the homology
of T. Then, since e, € IR and (P—ej) are elliptic functions,
we have

Re| gw = E%— Re[log(P-e )-log(P-e,)] =0, Y& {a.8}.
Y 1 i
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On the ather hand, by using the lemma and (3.1) we obtain Pragf,of (c3)
(3.2) gzw xd & [P(z-wl)—P(z—wa)-ZeI]dz. We need to show, for a divergent path & in M, that

16e3
1

J (1+Jg]2)]w] = e
And, again by the lemma, L

From the lemma, it follows that at the points Q, = n(wl) and

—q? —_2
J W = -, J w o= T, J gw = _2; and J g2w = az_ @s = m(w,) we have P(w,) = e; >0 and p(y;) = e, < 0. Thus
o B o 8e B 8ey w is holomorphic and not zero in neighbourhoods of ], and
: . _ _ ;
Thus, if we choose a = 2e vZW, condition (c,) is satisfied for v dea  BnEE S, S B eI, e iisy polesiil 9, and  g,.

At the point Q, = m(0), w has a pole of order 2. This is
enough to prove condition (c3).

o and B.

To complete the proof of (cz) we need to show that
We have shown that the couple (g,w) is a Weierstrass

: Pl . . q 3
Res gw 6 m and Res ¥ = -Res g2, i=1,2,3. representation of a complete minimal immersion in R&°, of genus
9. Q. Q. one, with three ends and finite total curvature. Since g is

J d ‘]
From (3.1), it follows that of third order,

c = JKdM = -I12m.

Res gw = 0.
Q, M
By the lemma, we find that at the point Q1 P Since the Euler's characteristic x(¥) of M is -3,
a p' a
Res gw = e, Res Fro, » T P! Plz-w,), ‘ e = -12m = am[x(M)-3].
Q, -y 16e3

It follows from [5], Theorem 4, that the ends of the immersion
are embedded. This concludes the proof of the theorem.

Finally, by using the local expression for P(z-w,), that
appears in [6], page 356, and item (c) of the lemma, we find

3
that Res gw € k. Furthermore, since J Res gw = 0,
Q, J=1 Qj
S;s gw € IR. Thus, ‘ RIBLEo by
- |
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