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C* STABILITY OF CURVES WITH NON-DEGENERATE
SOLUTION TO PLATEAU’'S PROBLEM

L.P. JORGE(")
Let 1%, & > 7, be the set of X Jordan curves in "
with its natural topology and let n:T'-»mwm*, w™ = {1,2,...,®}

be the function that assigns to each Y € ' the number of
solutions to Plateau's problem for vy, that is, the number of
minimal disks bounding Y. It is still an unanswered question
whether n can reach the value ». Several people were able to
find open and dense subsets of Pk for which n is finite.

A result in this direction can be found in [3] where it is proved

©

that there exists an open and dense subset of T = [] r%, where
k=k
n is finite. Generally, the approach used for this problem

assumes %k Tlarge. Consider, for example, the subset Fk c rk 0,
curves whose solutions to Plateau's problem are immersions. In
this case A. Tromba [13] was able to show that there exists a
subset F% of Fk open and dense in Fk for k > 7 where n
is finite.

The aim of this paper is to present an elementary approach
that also works for % > 2 and arbitrary n. In fact, we prove
in §4 that there exists an open subset T) of T, where n is

finite and continuous (see theorem (4.1) and corollaries (4.5-6)).

(*) Research partially supported by CNPg do Brazil.
Except for §5 this is part of my thesis [4] done during the year 1976.
I thank my adviser Prof. M.P. do Carmo for suggesting me this problem
and for his permanent attention.

Recebido em 15/09/84.
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A similar approach is used in §5 to prove that r; the inter- 2 % 1 2
PR LR . E e (1.2) I#Ie = § (26d%)Fa,]
section of 1, with I,) 1is open and dense in I} for &k > 2. j=—o J
This approach also oduc regularit T.ts. 1 i .
e i EP ' ;"‘ u eih gu ar; i’ rei: tsfm g . & where Zajewe, 8 € IR, is the Fourier serie of f. Actually,
natural way. . : .
y. We prove in §3 (see theorem ( )) that for y Ck(M,JRn) is a Banach space and EN(M,®") is a Hilbert space.

k > 2, the solutions to Plateau's problem for lie in the ; : .
- p B We will use some interesting facts about these spaces which we

k+1/2 n i : {

H

. (DLEE==Mhere” & he “Ahg Uit disk of “uhe present here for the sake of completeness (cf. [10], [11]).
plane with center at the origin.

Sobolev space

The techniques here arose from a characterization of %
solutions to Plateau's problem as zeroes of the function ¥ L3 g Theorem.klﬁ k > 2, then c™(M,R") is contained in
defined in (1.7). This function ¢ is the main tool in [4]. cton, ), u,B") s contained in B, E"), and both
inclusdions arne completely continuous Linear maps. By construc-
tion, C‘k(M,an) L5 contained continuously in Hk(M,LRn) (but
51, Reehinkasr ies At 48 not completely continuous).

In this work we use u and v for the coordinates of the

plane and we denote a complex number by =z = u+iv, or, in 1.4. Sobolev Immersion Theorem. 1§ m (s the dimension of M
poTad 'Ofo PEPNa 0480°8s 1599055, 195 a0 i 07§21 2527 Nhpyd partial and k >m/2 + j + u, J dnteger and 0 < u <1, then 2, B
derivative with respect to u, for example, is 9d/3u. We also » is contained in 7"V, ®") and the inclusion is completely
use the following operators: ‘T continuous .
9 = 1 (_3_ _1_3_), 1
2 'ou v 1.5. Trace Theorem. I4 M .is the boundary of M and k > 3
(1.1) 5918 8 +]___3_) tﬁen the nestriction map x — x|3M 0§ C°°(M,1Rn)k into
2 Ju v’ c(oM, R") extends to a continuous Linear map of H (M, IR") onto
2z9 = r lds 1'.-3_. Hk—Z/Z(BM,an).
ar L]
In general, we denote by df the derivative of the map f, but ‘ 1.6. Theorem. 1§ k > m/2 and |j| < k, then the multiplication
if the domain of f is an interval then we use f'. We use also map §rom CO(M,RR) @ C(M,IR) into C®(M,IR") -extends to a

. i0 i0 s : [ .
fo instead of [f(e °)]' where e = = cos o + i sin 6, 0 €R. ‘ continuous bilinear map from HY (M, IR) @Hk(M,ﬂ?) to B (M, R).

Let ¥ be a ¢ manifold of dimension m. We will con- "
Let U be an open connected and bounded subset of Ir

and Tet #%mM,u), % > m/2, be the subset of maps z € E*(M, ®")
such that zx() < U.

sider the two following families of function spaces: the space
¢k, ") of c* maps f:m > ®® with finite X norm, where

k is a non negative real number, and the Sobolev space Hk(M,JR”),
k € ®, defined in [10] as Ly (Mx®"). In our case, the manifold
M will be very simple, namely the disk D = {z/|z] < 1} or its % 1.7. Theorem. 1§ &k > m/2, +then the composition map (f x) + fox
boundary S. In the later case, the Hk normaf" F e Hk(S,an) o4 C‘“J'(U,BP) @Hk(M,U)’ L < k, into HSL(M,JRP) is 04 class

is ¢ .
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As a consequence of the last theorem we aobtain:

1.8. Thearem. Let k > 1/2 be a neal number, and j, % be
integens such that 0 < & < min{j,k}. Then the map

6:07 (s, R") @Hk(S,lR) > 1, m)

defined by
o(f,z)(2) = f(ze' (%), 263,
i8 04 class TR
¥ GERNA) BOFIVENILIODN RN R SIS BRERP, ), § T z, o+
2 8 —1 £
+ Z o(d f'r,x)xl ..... Loyt s v et zg
r=1

where & means the away of .

Let y be a Jordan curve of class cX, & > 2, embedded
into ®™. We fix an orientation for Y. The Sobolev's theorem
(1.4) says that =z € i s, B"), & > 7, is a continuous map.

We say that « € #'(s,R") with 2(S) = Y has degree one if
is homotopic in vy to a Ck
Set, \ Fordt kB g,

positive diffeomorphism f:5 - vy.
k _ k n j
B (y) = {x € H (5,IR")/x has degree one and z(S) = v!.

1.9. Lemma. Let k and j be integens such that ot =
and assume that Y 44 a Jordan curve of class 9. Then 250y
is ac?® crosed submanifotd of H¥(s,®").

Proof. Let m:U > U be a ¢’ map where U is an open subset

of m" canhtaining v!'such: that “mor = m and @ U)e =S0E SIF 7oy
is ¢® then we may choose m:y - U to be a tubular neighborhood

ofianyy QIf Ay L stloniy Cj then one can use the local form of
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immersions together with partitions of unity to construct m.
The set

g%s,u) = {z € 8%(s, ®") / x(8) < v}
is an open subset of #X(s,®"). We define
r:f(s,u) > B%(s,u)

by F(x) = mox. It follows from Theorem (1.7) that F is of
class Cj_ To conclude the proof we use the following fact:
if v is an open subset of a Banach space and F:vV > 7 1is a

ck map such that FoF = F, then the image of F 1is a Ck
submanifold. The tangent space Tka(Y) of Hk(Y) at the

point =« s

k _ k n ;
(1.70) TH(Y) = {y € B (5,R") [/ y(z) € Tora)Ys 2 € S}

where Tx(z)Y is the tangent space of Yy at x(z). .Let
G:u7(y) > TxHJ(Y) be the restriction of dF(xz) to #/(y).

Then the chart at 2z 1is the restriction of ¢ to a neighborhood

of Lo
Let {zl,...,zm} be fixed points of s and {p ,....p }
be fixed points of <y, both in a cyclic order. Set

B eyom) = (= € 85(Y) / alz ), 1<r<m
and

(1.11) r ¥ (y,m) = {y 6T HY(Y) / y(z,) =0, 1<nsm}

for some x € Hk(y,m). Then Tka(Y,m) is a closed subspace
of Tka(Y) of codimens%on m. The map G above applies a
neighborhood of 2 in H (y,m) one-to-one and onto a neigh-
borhaod of the origin of Tka(Y,m). This proves the following:

1.12. Carallary. Hk(Y,m) is a closed submanifold of Hk(y)
J—k
o4 class C 2

k+1/2

For each X € H (D,R"), k > 2, we can define the

energy E(Xx) of X by
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1 Q% 9x (2
BIX) iz i JD IIE] + }3.5] )dudv.

If x dis harmonic, the first Green identity gives

2E(X) = J <%§, z>d8, =z = X|s.
s

6

If Zajeia is the Fourier serie of =z = Xx|3, then

)

X(r'e1e) S z rlJloaje1'je, 6 € IR, 0
=5 %

1A
3
IA
~

and

3X, i8, _ v 0dl-1 ide
E=(pgt ) = MFAES ae
from where

d 2.
20 =7 ] ldll,l
J':—oo

We introduce the operator Br:Ht(s,IRn) > gt s, ®"), t € R,
defined by

0 5 ijo
(1.13) 3,2 = Llilae

|
o
where Zaje1ge is the Fourier serie of =z € BY(S,R").
Observe that 3, is symmetric with respect to the inner

product of HO(S,IR”),

0 n
<apac,y>Ho = <3Py,x>H0, for all z,y € # (S,IR")

and it is a continuous linear map. If X:D ~» ®" is a harmonic
map with finite energy then

il

E(X) Elx)

4 =
=3 <Brx,x>Ho, & =ak | S

Let ¢ be the map of Theorem 1.8 with k = & = I. We define
(1.14) el (s, ®") @u'(s,R) ~ B, j integer > 2 |

by e(f,y) = E(¢(f,y)). This function e plays an important role
in this work.
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1.15. Lemma. The function € 48 0§ class Cj.

This lemma is a consequence of the following general fact.
Let v, v,, ¥, and z be Banach spaces such that Y~ is a
subspace of Y, and the 1nc1usion of ¥Y; into Y, 1is continuous.
Let B:Y,xY, > Z be a continuous bilinear symmetric map and
let 4rY » Y, be a continuous Tinear map symmetric with respect
to B on the subspace_ Y, of y,. Now suppose we have a map
Y - Y of c]asg ¢/ such that, as a map from Y into Y
it is of class ¢?*1. Then F:y >R, F(x) = B(AF(x),f(z))
is of class Cj+1. Consider the set

0’

(1.16) k= ir ecks,®") /F is embedding}

E
. k-1 k .1 0
and define a ¢ map Y:E xH (S,IR) -~ H (S,IR) by

(1.17) V(fsy) = <a,¢(fsy)s ¢(f',y)>

where (f,y) € % x #'(s,m) and ¢ was defined in (1.8). At

this point it is convenient to introduce the following notation:
z = ¢(f.y) ;= O(f5y)

J
(1.18)

e '
hj y;0(F72),

- ’
hj2 = yj¢(f2,y)

where ¥y € (S, R), £ € s, ") and £ ¢ . Then, we have
the following relations

de(f,y)(f,,y,) = J Yy v(foy)de + <x,,3,@>
s 1 i
(1:19) A%elfightef, sy s BP LN s JS Y, d(fsy) (f,,y,)de +

<aph2,xl> + <arx,h21> ik E(x,).

g’ il
Let G be the set of biholomorphic maps of D. The elements
w 6 G have the representation

(1.20) il = g EEE, z € D,

= (p,a) € SxD.
I1-0z
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It is known that the energy function is invariant by conformal If y 1is of class C® then s arg(y, ) is a
change of coordinates, that is, E(X) = E(Xow), w € G. If X s
is harmonic and X|S = 6(f,y) we obtain diferentiable curve in #'(S5,R) with velocity
codd
e(f,arg(y,)) = E(f(wew )) 695 arg(yw )I = (1+y9)t
s ls=0

= E(zxow)
(1:21) . where ¢ is a linear combination of 1, sin 8, and cos 9.

= x

Taking derivatives in (1.21) we get
= e(f,y)

. 0 = d2e(f y) ((f ,y. ), (0,(1+y J)t))
wnere arg(y,) 1is the argument Ofd, FAP=Es0E w(z)e1y(w(3)). d e (f,y f1 Y, *¥e

Unfortunately wy——>y,, w € G, y € H'(s,IR) 1is not smooth. = [ (1+y )t.dv(f,y) (f ,y J)de, by (1.19).
3 l, 1 3
However, the g-action has some consequences on i as we can see 5 g

in the following result: This last equality extends, by limits, for each y € H'(S,R).

1.22. Proposition. The subspace of H°(S,IR) spanned by
{1+ y,, (1#y ) cos s, (1+ye)sin 0}, 4s onthogonal to the image §2. The Second Variation of Energy

k
0 dvy(f,y), on each (f,y) € E HY(S,IR). 3
8 el g ¢ fy ) Let p be the disk D with the natural Riemann surface

structure. A generalized minimaf surface is a harmonic map

Proof. We consider, in the group G, the differential structure i X:p » B" such that
induced from SxD by representation (1.20). Let W be a
diff tiabl ¢ with (o) = s thab s ‘ ax,ox> = L [|22)2 20y 28, 3] - o
ifferentiable curve on wi Wolz) = z, at is, s 7, i 50 au’ v s
. 0, *3 _ that is, x is harmonic and conformal.
Wolz). = Pg —, z BI'D]
1+a 2 Let Y —« ®B" be a Jordan curve. A solution to Plateau's
probLem for vy is a generalized minimal surface Xx:0 -~ R" such
where (p_,a,) is a differentiable curve in SxD with that
(p,a,) = (1,0). Then (I) x extends to a continuous map from the closure D
’ of p into ®" and
w = -i(p! + alz - a/2)iz
ds “s{,_, Py R0 %o (I1) x restricted to the boundary s of D 1is a homeo-
= (¢c+b cos § - a sin o) (-sin &, cos 9/ \ morphism between s and .
where p, = ic and Q; = % (a+ib). Then the tangent space There are several results about the class of different-
iability of a solution to Plateau's problem for y (see [6] for

7 G 1is generated by {iz, cos ¢ iz, sin g iz}. . ;
W, b reference). We report here a result of Nitsche [8] for v c m’

which can also be proved for y = R" with some slight modifications.
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2.1. Theorem. ([8] th. 1). Let Y = " be a Jordan curve of
class ck*u, k integer > 1 and 0 < u < 1. Then there is a
constant T, depending only on the geometry of Y such that

bt vsfgis e, |t (878 ug
c

for all solutions X to Plateau's problem for vy satisfying
a three point condition.

Let f:5 »~ IR" be a g* embedding with image Y and let

H'(Y) be the manifold of Lemma 1.9. Then the map ¢(f,y) defined

in Theorem 1.8 for Yy € HI(S,IRL‘ is a global parametrization of
13
H(Y).

3
2.2. Lemma. Let Y « R" be a ¢? Jondan curve. Lex X EH?(D,IR")
be a harmonic map and =x be Lrs restriction to S. 1§ xz=¢(f,y)
whene y € HY(S,IR) and f 4s a C° diffeomonphism between S
and Y Zhen the following assertions are equivalent:

(a) x:D » IR" is a generalized minimal sunface,
(b) <,E,x 6> = 0, in the complement 0§ a subset of S
with Lebesgue measure zehro,

(c) ff(f,y) =20 3 5. i jgf | dedined [4n (kT ) o

Proof. Set w(z) = <93X(z),9Xx(z)>, for z € D. Then w is
holomorphic and, in polar coordinates, it satisfies

2 Bt 3Z 1? i rigie g 1BX o K
4z°w = |r -gr—,l e Is—e'] 21<r 3p? ﬁ>'
90X 03X

By Theorem 2.1 the restriction of <r 272 (507 to S is precisely
<3Px,x6>. Then (b) holds only if <4z%w is constant. Taking
z = 0 we conclude that (a) dnd (b) are equivalent.

Now, by taking the y derivative of e, we get
0 1
-B?E(f‘,y)t = JS <d,x,do(f,y) (0,¢)>d0, t € H (S,IR).

Let v be the unit vector field oriented in the positive sense

——
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and let v(x) = vox be the composition of v with x. Then
do(f,y) (0, ¢t) = tov(x)
where ¢ € HI(S,JR) and alz) = [f"(zeiy(Z)}], 2z € 5. Thus

(233} -g—z(f,y)t = J <3 @,V (z)>tads, ¢ € B (S,IR).
S

Since Hl(S,IR) is a dense subspace of HO(S,BH and a(z) # 0
for all =z € S, it follows that (c) is equivalent to

(2'J4) <3Px,v(x)> = 0, almost everywhere.

By Theorem 2.1 the coordinates of the holomorphic curve 2z3x
lie in some Hardy space #Z" with u = 2. If I%%I =0 in a

subset of S with positive Lebesgue measure we get that 9x/936
is constant, which is impossible (see [14] p. 137). The equi-
valence between (b) and (c) now follows from <3rx’x6> =

= |ag |<3rac,\)(x) >,

Let X be a solution to Plateau's problem to y and
z = X|S. A variation of X by harmonic maps with variational
fields Y,,...,Y, s a differentiable map F:I1¥ > H’af(p,m”)
where I 1is the interval (-6,8), 6 >0, such that

(12.:5a)) F(t) apply S over vy for all ¢ gre

1]

PP S

oF
’ = d 0
(2.5b) F(0) = X an ’ét—j( ) y

3 3
The trace map from H2(D,IR") into &'(s,R") gives the
following equivalence: F 1is a variation of x by harmonic maps
with variational fields Y. if and only if the trace of F is
boF, , where F,:I7 ~» ckes ®m") x B'(s,m) satisfies

(2, 5a)) T SR I

1
(2.5b) ins = d¢(F0(0))(0,yj), Y; € H (58,IR).

The second variation of energy is, by definition,
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82

(2.6) E;,X(YI’Y2) :W

B(F(t,2%,)) |y 2y =g

where F is a variation of X by harmonic maps with variational
fields Yy, and Y,.

Let Y be a Ck Jordan curve. We define a linear map
Q in E'(5,1B") by

(2.7) Qy) = <y,vlz)>v(x), y € H (S,IR")

where V(z) = vox is the unit tangent field of y composed
with «=x.
of HO(S,IR”) by €. Let %k be the curvature vector of y and

. 1
kK(x) = kox. We define the operator AY,x:TxH (Y.) + T, by

= Q(Bry) + <3rx,k(x)>y,

By Theorem 1.6 Q is continuous. Let T be the image

1
A y € TmH (YJ -

Y ,xY

3

2.8. Proposition. Let X € H?(D,IR”) be a harmonic map spanning Y.

I§ X is a crnitical point of the enengy gunction for variation

by harmonic maps then

E" (YlJYZ) = g )

Y,x Y,xyl’y2>y°

1l

js <8ry1+<arx,k(x)>y1,y2>de

where x = X|S and yj = yj|s, = TR

1
Proof. Let (f,x,) € Ck(s,ﬂ¥5 X H (§,IR) such that ¢(f,xo):x.
Then

Ey,X(Yl:Yz) = d*e(fom, ) ((0,y,),(0,4,))

<31,,y1:y2> 0 + <3rac, ¢(f"’xo)yly2> (1885
H H
By (2.4), <arx,v(x)> = 0, from where

2
Dz, §(f" 2 )> = <3Px,k(x)>|¢(f',xo)| :

Substituting this expression we get
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E?}x(YI’Yz) = </&Y"7cyl,‘z/2>H0

as we wanted.
Let =z = x|S, where X is a generalized minimal surface

bounding a ¢’ curve Y. Then the Theorem 2.1 says that
lies in the Lebesgue space L

X

6
w- It follows from the proof of
Lemma 2.2 that~ |3,x| = |zg[, that is, 9,z also lies in L.
Hence the operator A satisfies the Garding inequality

3

2 2
(2.9) Dy, z¥o¥> o 2 lyll™ - cliyll” >
B? #

where y € T H'(Y) and ¢ is a constant.

2.10. Proposition. Let Yy be a Jordan curve o4 class Ck, k > 2.
Let =z = X|s and X be a solution to PLateau's problem for Y.

Then

i
(a) A x:TxH (y) i Tx

. L8 self adjoint,

(b) The spectrum o4 AY o A4 an dincreasing sequence of
2
neal numbens without accumulation points, that is, X1< A2<..
Tim A, = =, and the A, -space has gindte dimension,

(ic) nrh

i g is a Fredholm operaton of index zero
3

(d) The eigenvalues of A - Lie in g% s, ).
The proof of this proposition is an easy variation of
standard methods in the theory of elliptic operators and it is

included in Appendix A for the sake of completeness.

2.11. Example. Let <Y = S. We know that X(z) = z, =z €D,
is a solution to Plateau's problem to S. Set =« = X|S. Define

LX)
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__Le1e n = 0
vam
o= . .
" —L-COS nee1e, = (PR
7z
B v wienilsin nee1e, 71,9 I 2 A
n 'z
Then
0 n =10
AS,Xan -
(n-1)8,, 1211
= - 201y
AS,XBn & Z)Bn’ Ehn

that is, the spectrum of AS ¥ is {0,1,2,...}, where the o-space
has dimension three and the n-space, n > 2, has dimension two.

Proof. We have

hg o1 = <3, mg>zy=h, RE T H(S),

We are interested in 7% = Re(zn)me O L I3 Mo Im(zn)xe. Set

hoo= (z”+z”)xe,

z €5, n >0,
n

Let ¢ =3x = (&, 5 and z, = izg - izT. Then
G % Ci(z"+5™) (2-5), (s"+3") (2+3) ) .

It follows from 2z = I that the harmonic extension Xn (o) 7% WA I o o

n
D s
(i(z-23),z+2), n =20
Xy =
- - —n- -1, -n+l
%(i(z”+1+£n e o VI e R L P
Now r 0 = z3 + z5 implies

~&
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LG n =0

8 k

n
Y —— =

v n+l  n-1 —1

nX, = (Im(z"""+2"77), Re(z""*-2""1)),  n > 1
Using that Ty = % (i(z-z),z+z), we get

n+l n-1

NS T T U T T Y e P S

Therefore

Sd h ) =
r n
knhn, n > d
from where AS,Xh° = 0 and Aijhn = (”_Z)hn’ n > 1. Analogously
. * _ _ * * _ n . *
we obtain AS,th =hin J)hn for hn =oIm(s Jxg. Since {hn,hn}
is a complete orthonormal system of T

X
of AS,X i sqrencaet Ly 85 18 2. 4 K

> We see that the spectrum

3. Branch points and Jacobi fields of energy

Let y be of class ¢? and x:p » " be a solution to
Plateau's problem for y. By Nitsche's theorem 2.1 we have that
the holomorphic curve 3x(z), z € p, is bounded. Thus 3x = Bws
where B is a Blaschke product and w:p + €” is a holomorphic
curve without zeros. The branch points of x are, by definition,
the zeros of 3x (or B) and, if 4z, € D is a branch point of

X, its order is the lowest integer m, such that

o, 05t<m0,
1im —Lelz2] - 2 ¢ D.
z+z, |z-z |

o, T > mo,

0f course, if the branch point L lies in D, its order is the
multiplicity of 2z, as a zero of 9x. In this definition the
order of a branch point can be infinite if B is an arbitrary

Blaschke function. For example,
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& n
]'zn =23 ’
B(z) = . 1 , z o
n=1 1 zan
where z, = 1-9—2”, and z, = 1. Nevertheless, this is im-

possible 1f B 1is a Blaschke product of solution to Plateau's
problem.

We will give here some relations between the kernel of
AY x and the branches of X. To do that we need a regularity
result which can be seem as a complement to Nitsche's theorem.

3.1. Theorem. Let Y = IR" be 0§ class Ck, k >2, and X be
a so0lution to Plateau's problLem for Y. 1§ x = X|S then
xg, sin Bag and cos by Lie in the kernel of AY L1 ST

X

k+1}2

particutar, = € HY(s,B") on, equivalently, X € H (0, B").

Proof. Let =« = ¢(f,y), (f,y) € Ek x H'(s,R). From (1.19) and
Lemma 2.2 we obtain
V(f,y) = 0,

and

W (foyco,y,) = <

’ >
= oy OCF 40>,

A
Y,x

where & = y1¢(f',y). By Proposition 1.22 we have

Bl J a(1t+yg) gg(f,y)(o,yl), ¥y e HNS, )
S

a8
= <Ay,xh1’ax9>Ho’ v h1 € T H (v)
where a € {1, sin 6, cos 8}. We conclude from Proposition 2.10

that az, € Ker A In particular, er_l(s,IR”).
0 Yz 6

There is a description of the kernel of AY P found by

R. Bohme ([1] SATZ 6) for smooth solutions to Plateau's problem.

After Theorem 3.1 we can extend this description to solutions
2
for curves of class ¢ .

C? STABILITY OF CURVES 71

3.2. Lemma ([1]). Let Y cR” be a curve of class C>% Let X be

a solution to PLateau's problem to y and set x = X|S. 14

y € Tle(Y) and Y:D » IR" 4is its harmonic extension fo D
Lhen the following assentions are equivalent:

i

(a) y € Ker Ay,x’
(b) <3, y,xg> + <3 x,yg> = 0,
(c) <8%,%x> =0,

The key point to extend BGhme's proof to this case is the
existence of the trace of 4zz<8y,ax> which lies in some Hardy
Space Hz. The item (b) is exactly the imaginary part of the
trace of this holomorphic curve.

3.3. Proposition. Let Y < R" be a Jordan curve of class C°
and X be a sofution to PLateau's problem for Y. Then X has

only a finite numben of branch points Zlyeee, 3 in D and
2p+1,. 2Bpg AN S. Moreovern L§ m L5 the onrden of 2 5 then
dim(Ker A 308 #1g % LiF gl
( Yax) = j:] mJ .

Proof. Let, {zyysh-v2843 = D and {tl,...,tq}czs be branch
points of X, with orders m. ,...,m and nm sis s 5 5T

. . L P p+1 ptq
respectively. Define y:S5 =€ by

8. %
p 2 e 1 I q -r
y(z) = 1T ( . ] cah3dl 6t gl
J=1 1—zjz Jg=1
where 0 < sj < mj, D #= obadndgeass qand ¢ 0 ;3 rj < mp+j’

g =1,2,...,q9. We will show that the real and the imaginary

parts of yxg both Tie in Ker AY ot We have

Ty = iz9X - iz9oX

for almost all =z € S and
m . moi
(z—zj) J T (z—tj) p J’Q(z)

p
ox = I
=17 g

q
I
J =

1
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where ¢:p » C" is a holomorphic curve. Then

y(s)a (2) = izy(z)0x(z) - izy(2)3X(z)

(wl}

for almost all 2z € S. The harmonic extension of iydX to
is trivial. We obtain from 2z = I that

=B MaTE. s TN R, RN S pSmbe s AT
(1-z.2) Y(z-2.) ¢ 7. 1 (¢.2) 9(z-¢.) PT7 97 . Q.
J J o J
J=1
Then the harmonic extension of zyaX to D is the right side
of the Tast equality. Let y be the harmonic extension of yxg.
Then 3Y = 3(izysx) and

<3Y,0X> = 3(izy) <dX, oX> + izy<oxX, b,

Now, <dXx, ox> :<32X,3X> = 0, and from Lemma 3.2 we get that the
real and the imaginary parts of yxg belong to Ker A . Now,
the proof of the proposition follows from simple resuits on
complex functions.

At this point we are in position to define the index and
a degenerated solution to Plateau's problem.

We say that X is a non-degenerate so0lution to PLateau's
probLem fon Y if the kernel of AY,X|S has dimension 3. The
Aindex of X is the dimension of the subspace of TX|SH1(Y)
generated by the eigenvectors whose eigenvalues are negative.

The harmonic maps Y:D + R" such that Y|S & Ker A

Y, X|8
are called the Jacobi fLelds of the energy.

3.4. Remark. If X 1is a non-degenerate solution to Plateau's
problem then X 1is an immersion (see Prop. 3.3). In this case,
there is a nice relation between Jacobi fields for the energy

and for the area. We prove in [5] that, if Y:D - R" is a Jacobi
field for energy and A(z), =z € D, is the orthogonal projection
of Y(z) 1in the subspace of IR" orthogonal to Ty(z)X(D), then

A 1is a Jacobi field for the area. Moreover each Jacobi field

for the area can be obtained in this way. If we consider only

~
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solutions in IR% then there is a complete description of
relations between second variations of the area and the energy
due to K. Schiiffler [9].

3.5. Remark. Let =z = 1 be a branch point of x with order k.
Then
sin 6 4
(7-cos 8" ¢
are Jacobi fields for the energy, that is, each boundary branch
point of order k produces % linearly independent Jacobi fields.

In contrast, an interior branch point of the same order produces
2k+1 Jacobi fields.

4. Stability of non-degenerate solutions

Let zX be the set of maps 76 c*es,®") which are

embeddings and consider =z € #'(5,R") such that its harmonic
extension X:D » I’R™ is a solution to Plateau's problem for
f(s), f & Ek. Let U 3 x be an open set of HI(S,IR”). We see
from (1.21) that the conformal action of Sxp into #!(s,®")
produces an orbit O(x) (intersecting U) whose elements are
trace of reparametrizations of X. We say that =z 44 the unique
so0lution o PLateau's problem for f(S) zthat £ies in U if no
other orbit of solutions for f(S) intersects v.

4.1. Theorem. Let f € Ek, k > 2, and z, be the trace of a
non-degenerate solution X = to Plateau's problem for fo(S).

. k . n
_Then there are open sets W, 3 f, 4in E, Uy3 x, 4n HY S,IR")

0

ghes map &:W, - U, 4uch that:

and a

(a) o(f), £ € W,, 4s the trace of a non-degenerate
solution to f(S) and its index 4is equal to the index of X,,

(b) &), f € W,, 4s the unique solution to PLateau's
problem gorn f(S) which Lies 4Ain U, -
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Proof. Let e and ¢ be the maps defined in (1.14) and (1.17).
We saw in the proof of Theorem 3.1 that z = ¢(f,y) is the

trace of a generalized minimal surface bounding f(s) if and
only if y(fsy) = 0. In this case we have

dze(f,y)((o,yl),(O,yz)) Hesa =

hergy, R o

where hj = yj¢(f',y), i =1,2. Hence

L) -
(4.2) Y, 8y(f,y)(yl) = <Af(S),xh1’h2>’

that is, ay/sy 1is a Fredholm operator (cf. Proposition 2.10).
Therefore 3y/3y 1is Fredholm in a neighborhood of (f,,y,) where
x, = ¢(forye)- BY Proposition 1.22 and 2.10

dim(Ker %%(f,y)) > 3

for (f,y) in X xml(s,®"). We also have, for (f,y) near to

(t,»y,)» that
. o § Y 2
dim(Ker ay(f’y)) < dim( ker ay(fo,yo)) =i 3,

because of Fredholm properties. Then the kernel of 3y/3y has
constant dimension 3 in a neighborhood of (f ,y,). Applying
the post theorem we get three neighborhoods w, 3 £, in Ek,
PPy st olatoslmy Yo,
subspace of #'(s,R) and a Ck-l MAP CFF XV > Hy HIGANCOM=
plement of the subspace of #'(s,R") containings v , such

that the solutions of

in a three dimension

(4.3) V(p) = 0, p € Vo

are P = (fov,F(fsv))s (fsv) € W, xV . The maps searched in the
theorem is &(f) = ¢(f.v »F(fsv )), where fE€ W and v, is
a fixed point of V-

For each f € Ek the map y——o¢(f>y) 1is a diffeomorphism
between #'(S,R) and H'(f(S)). Since H'(f(S)) 1is a submani-
fold of &E'(s,1®") and ¢ is of class (¢* it is possible to
prove the existence of an open ball U, 3 @, in H'(S,IR") such
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that for fi near . f, and ¢(f,y) € U, we obtai:n sthat 1 yis is
near y . Then the trace of the solutions to Plateau's problem
fo (56 6 % [ heair fo, has the expression found in (4.3).

The assertion about the index follows from the continuity

of with respect to the parameters (f,y), where

Af(S),x
ap=n Ol fiy) 4

Let T®,“kx > 2, be the set of ¢k Jordan curves in R&".
We identify TK with the quotient of g by the relation: fag
if f(s) = g(s) and we bring the topology of Ek to rk.

4.4. Corollary. Let T, i€ Fk, k> 2, and X, be a non-degenenate
solution to PLateau's problem for vy,. Set =z, = Xx|s. Then there
are open sets W, 3 Y, An rk  and v, 3 x in g'(s,R") and a

0
continuous map o:y, > U, such that:

(a) o(Y)s Y € Wy» A& Zthe unique trace of the sofution to
Plateau's problLem forn y Lhat Lies in U,

(b) the sofution for Y € W, in (a) 44 non-degenerate
and has the same index as X, -

4.5. Corollary. T4 Y, € Pk, k > 2, has only non-degenerate
sofutions to PLateau's problLem, then vy = has a ginite numben
n, 0§ solutions and there {8 a neighborhood Wy B1Y§ in Fk such
that

(a) Each curve Y € W, has exactly n, soLutions and atl
04 them are non-degenenrate,

(b) Sokutions of Y € W, close to a solution to y, have
the same index.

Proof. We can impose a global condition of three points to each
solution to vy By Nitsche's theorem 2.1 the set of solutions

to Plateau's problem to vy, is compact in Cl’u(S,IR").Theorem 4.1
says that each solution is isolated, and then there is only a
finite number. Applying Corollary 4.6 we find an open set U of
#l(s,®") containing all solutions for Yo and an open set ¥ 3 Y,
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such that each curve vy € Wy satdisfiesif(fa) and (b9 in- gt T

is a classical result that if e € Fk converge to i in the
c?-topology (for exemple) then the solutions to Plateau's problem
for Y, converge to solutions for vy, in a cz’“—topology (this
also follows from Nitsche's theorem). Then if we lessen W, we
find that each solution to Plateau's problem for «y € W, has
trace in y.

4.6. Corollary. The set rr e 1y 0f curves such that all solutions
are non-degenerate L5 an open set of r® and the numben 04
s0lutions 44 a continuous function on I‘;.

5. Density

Let I < Ik, k > 2, be the subset of those Jordan curves
whose solutions to Plateau's problem are immersions. Tromba called
this set the fine embeddings (see [13] p. 95). Let Tt 47 T

be the subset of curves whose solutions are non-degenerate. Set

r, =N Iys and 1! = ] ri, both with the ¢* topology.
k>2 k>2

k

In an analogous way we can define sets Hys HK and #
substituting the ck class of Jordan curves by the set of images
of embeddings 5 € #X(s,®"). In [13] the following result was

proved.

1. Theorem. (A. Tromba). Hi 445 open and dense in H, for akk
K 2z 7.

5.2. Remark. Corollary 4.7 says that each curve of F; bounds
a finite number of solutions to Plateau's problem. We also have,
from this corollary, that T, 1,5 opzq n Bpldelt fidlkowséfirom
in 03k, naforiek j2okb. sethat

In this sense, Theorem 4.1

the continuous inclusion of

i
1 1 1 ©
r, is open in Fk forsgl V. tryses ]

improves Theorem 5.1.
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The next result is a Corollary to Theorem 5.1. Here, we

will give a simple proof by using the techniques of the proceding
section.

5.3. Theorem. TI' is open and dense in L,
Open and dense in Ty gorn any k > 2.

In fact, FL e

Let M be the subset of (f,y) € EX x#'(S,®) such that
¢(fsy) is the trace of a generalized minimal surface without
branch point. The idea of the proof of the theorem consists in
showing that M is a submanifold of class gl and that the

projection m:M - Ek, T(fsy) = fs is Fredholm of index 3. The
conclusion of the proof follows from Sard's theorem, for k > 5.

Let :E'xgl(s,®) > H°(S,1R) be the map defined in (1.14).
The set M s a subset of w_VO). Therefore, the image of
$faw). (foy) € M, is contained in the image of du(f,y), it
is closed and has finite codimension (see Proposition 2.10 and
4.2). Then the image of d¥(f,y) 1is also closed and its
orthogonal complement is contained in the kernel of %g(f,y).
For the next computation it is convenient to go back to the
notation (1.18). Now taking the derivative of ¥ we get

dw(f:y)(fl:yl) = <ar¢(f:y)(fl:y1): ¢(f'.’y)> +
<0, O(f"yly, + O(F'Ly)>
(5.4) = <Af(s),xh1 # arxl,¢(ff,y)> +
Qx5 O(F Ly) >
from where
Js yzdlp(f,y)(fl,yl)de = <Af(S),xh1’h2>Ho + <Brm1,h2>H° + <Brx,h21>H°

If Y, is orthogonal to the image of dy(f,y), then A

f(S),xhzzo

and the last equation becomes

<8Ph2"x1>H° + <y231,,x, ¢(f{:y) >[-[° =0, ¥ f
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We obtain % 9= (1+ye)¢(f;,y). Now integrating by parts gives
us

<9..h

r*; T 1+ye 2 x] 3o

HO

The set lof: aro= b(f,>y) with S c?(s,B") is dense in

B (5,IR") because x,(z) = f,(ze 1y(2) by a6 98 and et (%

is a homeomorphism of S with vanishing derivatives in a set

of Lebesgue measure zero. It contains, for example, each #°2
map whose support doesn't intersect the zeros of derivatives of

e1y(2). Hence the last equality is equivalent to

Y 2
pf'zﬁe' zg] - s%f‘z‘:y—e A} = 0
If x 1is the trace of the generalized minimal surface then
y € H?(5,IR) by Theorem 3.1. If, in addition, this surface has no
branch points at the boundary, then 1 + Yq has no zeros. Thus
multiplication by 1 + Yq is an isomorphism of H'(S,IR) and,
in particular, there is w €& H'(S,IR) such that ¥, = (I+y ).
Therefore the last equality becomes the Tromba's fundamental
transversality equation:

&l
(5:5) Br(wxe) gg(warx) =10

whose solution for w is the space generated by 7, sin 6, and
cos o (see [13] pages 94-96). Then the codimension of dy(f.y),
(f,y) € M, s three and by Proposition 1.22 the codimension of
the image of d¥ is at least three. We conclude that there
exists a neighborhood U of M where d¥(f,y), (f.y) € U has

a closed image with codimension three.

Let (f,y) € M. We define V, as the subspace of #!(S, IR)
generated by {1+ye, (1+y Jsin @, (1+y )Jcos 8} and 1et v, be
the complement of the kerne] of —m(f,y) Ledbl B, ‘G C (G ﬂ?)
be a finite dimensional subspace such that dy(f,y) 1is an
isomorphism of F,x V; over its image. Now we observe that 7
1s finite dimensional and therefore it has a complement Fal 1 N
C(S r"Y). By the post theorem we obtain that » 1is locally a
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graphic of a (<!

ck—l

map g:¥W < F\xV, » FoxV,. Therefore M is a
submanifold. We also get the following characterization
of non-degenerate solutions:

(5.6) &(f.y) 1is the trace of a non-degenerate solution to
Plateau's problem for f(5) if and only if the dimension of Fi
is zero.

Obviously the projection mw:yM - Ek is a Ck_z Fredholm map

of index 3. We also get that = is regular at (fsy) € M if
and only if ¢(f,y) 1is the trace of a non-degenerate solution
to Plateau's problem for f(s), that is, dim F, = 0. To
complete the proof we take & > 5 and apply Sarde's theorem.
The assertion about the density and openness of rk for
2 <k <4 now follows from Corollary 4.7 and the fact that the
inclusion of Ek into Ekl is dense if k > k'.

It is interesting to summarize here what we have done in
the proof of Theorem 5.3.
5.7. Proposition. Let M be the set of CFiy) ln ERXHl(S‘,ﬂU
sduch that ¢(f,y) 4is the trace of a generalized minimal surface
free of branch points up to the boundary. Then, M 4is a sub-
manifold of class Ck-z and the projection map m:M + Ek,
m(f,y) = f, gorn (f,y) € M, is Fredholm of index 3 and class
c"Th. A point (f,y) € M 45 a regular point for m L4 and
only L4 6(f,y) 4s the trace of a non-degenerate solution to
Plateau's problem for F(S*).

Remark. It is possible to impose a three point condition on x
and get m with index zero.

Because ¢ applies &59 xzd(s,m®) into #l(s,®") and
is of class ¢k for Jg > 1, it is easy to conclude that:

5.8 Corollary. u 4is a C° submanifold of =°*9 x 59(s,m)
and the same conclusion of Proposition 5.7 holds.
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Appendix A: Proof of Proposition 2.10.

Let Ht’ t € IR, be a chain of Hilbert spaces and

N:H >H g be an operator (of order k) such that:
(A.1) If ¢ >¢' then H, is dense subset of Hys and the
inclusion of Hy into Ht' is a compact map.

(A.2) H_,»
the inner product of #,.

£or el >0 1S the dual: of Ht with respect to

(A.3) The image (A+A)Ht+k of Ht+k by AMXx, X € IR, is a

closed subspace of Ht’ for="£°> 0,

(A.4) A is a symmetric operator satisfying the Garding
inequality

<hhyh> > eg || R YL
H° k/2 0
where ¢, and ¢, are constants.

Under these conditions, the operator A satisfies the
properties of Proposition 2.10. The proof of this fact is
standard and can be found in textbooks about elliptic operators
like [7]. In fact, a more general result can be proved. The
argument can be summarized as follows:

First step: We start setting £ = A + A where X 1is a real
number so large that the following inequality holds

(A.5) <2, AR RESIT 20T BIGTASS

k/2
for some constant C,. The Lax-Milgran lemma implies that for
each y € Hy,, there is & € Hk/2
Then Z:Hk/2 T H s is an isomorphism. In particular the
image LH; is.dense in- H,...The property (A.3)ssajesythat
L, > H, is an isomorphism. Therefore I:H,cH,> #, is self

adjoint. We also have that zJ:ij - 8, is an isomorphism over

such that xn =y (in H_k).
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the imaged foraalllns il asm Afsthesrimage szjk is not dense in

H, then there exists %, & Hip/o Such that <z9h,he>, = 0, for

il e ij. Taking a {equence hn € ij converging to %y in
ij/z we find that <h0,23h0>0 = 0. If 4§ 1is even it is easy to

conclude that %, = 0. For odd § we get the same conclusion
applying (A.5).

Second step: It follows from (A.5) that the inverse A of I
is a continuous linear map from H, into Hk/2' Let Z4:Hy + Hy
be the composition of 2—1 with the inclusion of Hk/z into Hy.
Then 1, is a continuous compact positive defined self adjoint
operator. Applying the spectral theory to I, we get the
properties (b) and (c) of Proposition 2.10, regardless of the
fact: 5¢%2 = 62 if and only if AR = (1/6 - Mh,

Third step. By the first step we have that the solutions of
An = Xh (or equivalently, ZAZ = X'A) 1lie in the intersection
ﬂyjk for all 4 > 1.

Now we will prove Proposition 2.10. Let §£ be defined
as in (2.7) and let Ht be the image by & of the Sobolev space

#% (5, ®" ) , Then H, has the properties (A.1) and (A.2) and

AY . satisfies (A.4). Therefore it is enough to prove (A.3) for
A .
Ysx

Let = 6 #°(s,®R™), ¢ > (t+1)/2

(D, IR") be

Do |

, and X € H

. 5 = i70
the harmonic extension of =z to D. If « = Za.'d then

Q,

s :Zrhl%ﬁ1J{ 6 ER, 0 <wr

A
~

Let. X 5w 0 & A shide be the restriction of X to the disk
Dr:{z €C/|z| £r < 1}.

Then

(A.6) |ac|15 < /Z——_r]x]t + |XP| r < 1

t+1 <
H (Dr)
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To prove this, observe that the trace map is an isomorphism

between H(t+1)/2(apr R") and the subspace of harmonic maps
of #°*7(p_m"). Then
|z|2 = £(145%) ¥l |?
j !7
= 201432 Ee1-p2 19| ) o 12 ¢ £ezeg? i Bpeli g,
. J g J
J d
< (1-r)|x|%2 + |trace X i
- T r'(t+1)/2

2
Ht+1(

2
(l—r)lx|t + IXr‘
Dr)

as we wished.

Let ' & AY e + A as in the first step. We will prove

that the image of H, 4y by I s a closed subspace of H,,
t > 0. If this is not the case, there are h, €H, ; such that
[hn[ = 1 and Lh, converge to zero in &, . Let x be the

ttl
harmonic extensions of hn to D. By (A.5) we have that x

n
converges to zero in #'(D,IR"). Then, for » < 1, the
restriction XnIDr is a sequence in Hk(Dr,IRn), k >0,
convergint to zero (this follows, from example from a direct
computation of the Poission integral and the fact that the trace
of ¥ converges to zero in #°(s,’®")). Then X |D,, r <1,

A t+2 i
converges to zero in H
(A.6). Therefore ZI:H

image.

(DP,EW) and we get contradiction on

N - . : :
£41 H, s an isomorphism over its
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