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PRETZEL — FIBERED LINKS

SUE GooDMAN(*) AND GEOVAN TAVARES ()

1. Introduction

In this paper a Tink in g® will allways be a tame Tlink.
In the early 60's Murasugi [Mu] and Stallings [St1] proved two
striking results on fibered links. Murasugi gave a proof of the
following theorem: An alternating link is fibered if and only if
its reduced Alexander polynomial is monic. Stallings proved the
following general result: A link L = 5° s fibered if and only
if FI(L) contains a finitely generated normal subgroup, whose
quotient is Z. On one side Murasugi's work is constructive but
with the restriction of asking for alternating links, on the
other hand Stallings' result is quite general but it is usually
hard to verify (see also [H]).

Goldsmith [Go] constructed a wide class of fibered links,
what she called symmetric links, using cyclic branched coverings.
Her results were extended by Birman [Bi] to include new examples.

Stallings [St2] proved that if a link can be represented
as an homogeneous braid (i.e. on each column the braid has either
all overcrossings or all undercrossings) then it is fibered (see
also Birman - Williams [B-w]).

In this paper we will study another class of links, which
under simple conditions imposed on a spanning surface are fibered
Tinks with that surface as fiber.
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Using this result and Stallings' theorem on homogeneous
braids [St2], we can give explicity different fibrations of a
fibered Tink. (see also [Ga], [Th], [Fr]). One example is the
63 link in Rolfsen's table [Ro]. Our results show that this
link is fibered with fiber as shown in figure 0(a). Stallings’
results apply to the homogeneous braid form of this link (shown
in figura 0(b), obtained by flipping o in 0(a) as shown.

~

G2 o280

Figura 0(a) Figura 0(b)

The Euler characteristic of the fiber for 0(a) is -1
while that O(b) is -3 (it is obtained from 3 disks, D ,,D,,D,,
and 6 strips along the crossings). Hence they are clearly
distinct.

2. Definitions and Theorems

In this section we give some definitions essential for
our work and state the main result.

Definition 2.1. A pretzel Link is a profected Link as in figure 1,
specified by n+1 numbens, PyreeesPyyy- These numbers deteamine
the numben of crossings in each column in the foLlowing way: in

the odd case, thenre ane 2p +1 crossings Ain each column, Ln the
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even case 2p.. We WALL ude the convention +1 and -1 foxr

the crossings j>4: and :}(:neépectiueﬂy.

= S8

1(a) 1(b)
even case odd case

pPy==2,p,=1,py=-1. pP1=-1,py=-1,p5=1.

ke
G

1(c)
odd case
p1:_11p2 :"5:273:1:?4:0.

Figure 1

Definition 2.2. A pretzel sunface is the Sedfernt sunface gon

a pretzel Link given by two disks joined by n + 1 strips
connecting them, each strnip having 2p;, or 2p;+1 Twis L4
(s4ee gigure 1 above). A pretzel-fibered Link is one which is
fibered with gibern a pretzel sunface. 1§ L 4is pretzel-fibened,
the pretzel sunface cornesponding to the given presentation may
not be the §iber of a §ibration of S° - N(L).

Remark. We observe that in the odd case we have a knot if » is
even (see figure 1(b)) and a link with two components if = is
odd (see figure 1(c)). In the even case we always have a link
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(1(a)). We remark also that a cyclic reordering of the pi's
gives the same Tink and same pretzel surface.

Theorem. A pretzel Link (pl,...,pn+1) 45 pretzel-fibened Lf
and only if it has one of the foLlLowing foxams:

(A) 4n the odd case, either each p; has absofute value 1 with
at Least one p; = -1 on each |pi + 1| = 1 with at Least one
p; = 0, ox

(B) 4n the even case, each p; has absolute vatue 1 for 1<icn
and P,.1 44 as follows:

e =

(2) Pt 45 anbitrary and k, the number o4 negative P, fon
1<4<mn 4is % (hence n 4is even), ox

(3) [pn+1| = 2 and the number 0§ negative pi'A L8 ﬂél.

This theorem for p; odd and xn even was known to
R. Parris ([P]).

3. Proof of the theorem

The fundamental group of the pretzel surface S is a

free group on =xn elements. Let us take generators Upseeesu,  AS

shown in figure 2. Similarly nl(Sa—S) is a free group on =x
elements. We will take generators Lyseeesm 23S shown.

Ty N, T T3 \I
\M_/ . =
ul u2 u3 un
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Take U to be an open neighborhood of interior S, with boundary
the union of two surfaces S, and S, (as in [C-T]). We define
maps 4, and g, by the following diagram:

(8 ) ——r T (8% -U) —— 1 (8% = (VUK)).

N

™, (8) —— m,(5°-9)

(Similarly for 4,).

Stallings' fibration theorem gives the following:

Theorem. ([St], [N]). A Link is gibered with fiber S 4§ and
onky if d,, d, are Lsomonphisms .

The following lemma ([C-T],[St]) will be the main tool
in proving our theorem.

Lemma. (a) I§ e¢,d 48 a pain of Linearly independent elements
of w,(s*-S) and u 44 a nontrivial efement of m (S) and if
J As an isomonphism, then (c,d;g(u) = 1) is Anginite cyclic.
(b) The group (e,d; "=d") 4is infinite cyclic if and only if
|m|=1 on |n|=1.

We will treat the proof of the odd case and even case
separately.

Proof of the odd case: We suppose that there exists an odd number
of twists in each column given by (2p1+1,...,2pn+1+1). The
map j, 1is given by:
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Py —(p2+1)
TG BV AL ARk
Py Hlip 4 1)
jl(uz) S
p =P +1)
. - n =il -1 n+l
Jl(un) =%y (xn ssie )
= p -(p _+1)
. 3 -1 _ -1 -1 n+1 n -
Jylu, oouy ) = (x, .o.xy ) x,

Using the lemma we have that if 4, 1is an isomorphism, then

p. -(p., +1)
Hyftig) = o T gy

X 53X
(’L, 7’:{_1

i+1°
and

-1 -1 1 -1

(xn B e N Jl(un cee U

are infinite cyclic. It is easy to see then that either every
P, is 1 in absolute value or every py+1 sty fiolr . prididniig |

The map induced on homology by j, is given by the
following integer matrix.

P1 0 O o) Basptd
54B2%1) 44R; 0 0 pn+1+1
0 Tiipy+l) - py
0
Pp-1 Pps1™
0 0 A 2 CL N -(pn+1) pn+pn+1+{

If 4, is to be an isomorphism, this matrix must be invertible.
Hence the determinant is +7, i.e.,

p,p,-

3 .pn+p1p2...pn_l(pn+1+1)+...+p1(p3+1)...(pn+1+1)+(p2+1)...(pn+1+1) —e

If every p. is I, then the value of this determinant is

PRETZEL — FIBERED LINKS 91

TS L0 2 # +1. So in the case that every p; has absolute
value 1, we must have at least one pag=ntl. Similarly, in the
case that every Ipi+1| =.1,..at:leastone p; must have value 0.

To summarize, if 1 is an isomorphism, then either every
p; is 1 in absolute value with at least one -1 or every
p;#1 is 1 in absolute value with at least one P53 wls

We must now check that these two cases do indeed give

isomorphisms. We will find the inverse.

In the first case, some 2 -1. Assume, for ignvenience,
that'it 'i's Ppip® SO0 pn+1+1 = 0. Then jx(“n) = xn‘ and
2, = [4,0u)]*2. Hence
Jufu o) = x;flx;(p"”) =X [jl(un)]i(p"”)
SO
x _4 = {[jl(un_z)]il[jl(un)]i(pn+1)}tl'

Continuing in this manner, we can write each x, as a word in
the U .
)

Similarly in the second case, assume it is p, that is o.
Then Jy(u,) = z,*1 so =z, = [j (x)]*L. And
z, = [F,(u )12 [710u,0]%,  etc.

We must also check the map j,. The argument is quite
similar. The map j, 1is given by

h Byfd . =py
doluy) = x, 2y

Po*tl -pg
Jaolu,) =z, Ty
. Pyt g -1, Pp+1
Jolu,) =z, (x et )

+1 =p

; -1 -1 -1 -1,Pp+1 1
Jz(un ceeuy ) = (xn seime Ly x, .

The lemma tells us that either every |pi +1| dis 1 or every
lpi] is 1. Again using the fact that the determinant of the map



92 SUE GOODMAN AND GEOVAN TAVARES

induced on homology is *7, we haye that if J, s an isomorphism
then either p; is 7 in absolute value and at least one is -1,
or every pgt+1 is 1 in absolute value and at least one is o0.

These cases can again be shown to give isomorphisms, the
argument being essentially the same as before.

Hence those pretzel links with an odd number of twists
in each column that are fibered are precisely those that either
have 3 or -1 twists in each column, with at least one =719 oy
have -3 or 1 twists in each column with at least one 1. Notice
that these pretzel links are independent of the order of the
columns since one can exchange an adjacent -7 and 3 (or 1 and -3)
as shown below.

)

M -

PR Py afd Gl By A

Figure 3

Proof of the even case: We will suppose that there exists an
even number of twists in each strip given by (Zpl,...,2pn+1).
The map is given by

p -p
Jiu) =a, 'z, °
3 P, “P3
I (uy) = =, ©,

p -p
. n =1 =1 n+l
Jl(un) = & (xn s z, ~)

p Pi

) =1 -1q _ " -1 -1 Pn+1
Jl[un | Jalu,, ) = (z, ) i
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Rl gby

= . o = J . .
Let Vs Jilug) ... Jl(uj) i ol 7 fors 18<l 29205 < n+1,
Using the lemma, if j1 is an isomorphism, then (xi,xj; vij =
pi -p

z. “o. ¢ = 1) s infinite cyclic and therefore |pg] or oy
is 1 for every ¢ # j. If |p,| # I then ]p2]=|p3|=...=]pn+1|=1.
So all but at most one p. has absolute value 1. Assume

|lpa| = |p2| = vev = |p, | = 1.

n s

On homology, J, induces the following matrix.

Tp, 0 0 . 0 P 7

n+l

=P P, 0 & « « 0 Pt1

0 -Ps 0 « = « 0 Pz

0 0 (/S Pyg Poe1
_o B il won TR, pn+pn+1J

As before, if 4, is to be an isomorphism, this determinant must
have value *1, i.e.
n+1 n

I PyP,«eeDseesP, 15D, «e oD +D [ B0 By s Pl sis e D ) =T
Tl 152 7 n+l 1 n “n+l i=1 1 7 n
Let %k be the number of -1's in Prs---sD, Then the value
of this determinant is (-1)k+pn+1(n-2k) and hence pn+1(n—2k)=0
or -2. We have several cases.

Eirst,"'1f Pn.1(n=2k) = 0, either (a)+ Ppeg = 0 or (b)

n = 2k. In case (a), we have Jy(u,,;) = = =" and we can use

17~ i ; ;
Jy(u,) = =z, lmz I to get x, , etc. So we have an isomorphism.

In case (b) where n = 2k, Pne7 C2N take on any value.

First consider the case where TS SEL R TR o i and
PE. S e = poid -1. We can write
-p
=5 AR, . o . . n+l
@, = Jl(un)[ﬁl(ul)gl(us)...Jl(un_3)al(un_1)]

. 2 1
and use z, to obtain Xy_gs Lpyogseeesx in terms of the us S
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Note that a pretzel link where all but one Py T
absolute value is independent of the order of the pi's. By a
cyclic re-ordering, one may assume [ (R Ipnl = 1. Then
one can exchange an adjacent +1 and -7 as shown in figure 4

i/
A P

p;=1 Pie1=1 pi=1 Pisq=t
Figure 4
Hence we may choose any order we like.
In the second case, where pn+z(n-2k) = -2, then

_ =2 . ; ,
Po+1 = 7=5% Must be an integer. So again there are two cases:
n

(Bdradf is odd, n-2k =%1 so k= 2iL and

2
b) if »n is even, =n-2k =:2 so k= 222 e will show that
2
in either case j, s an isomorphism.
For (a)sxif ‘%)= Eél, Py, = -2. Consider the following
order: p, =p, = ... = P, =1lspp =p, = ... = I -I. We

: 2 3 oy r -1 -1 -1
can write J (u )=z (z = ... % ~) = [xl...xn_z] x Tk, ] 0=

. ; y 5 S =1 s A =1
@1(ul)gl(ua)...Jl(un_4)gl(un_2)] lxn Z[b(ul)gl(u3) - Jl(un_g)] :
Then
=7 g . ; . ; : .
@, "= [Fw))d (w) oo G TG () [Gy ()G, (uy) .. Jaln,_g) ]
and from the equations left we can get L _gseees®) in terms of

J1(u1)""’J1(un)‘
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i ntd B . ‘
I iy e W Daay 2, we consider the following
ordering: Py S +vs TP, = 1,0 = .00 = P, = 1. We can write

[J'X(un):]_l [jl(ul)]_l = (xn_l v X _Z)le =

Ry d Cogthaes (o3, 0 1oy [l v (.0 gt T 5
So:

=1 Y B f q . = + .
x, = [31(“2)31(uu)"'31(“n-1)][31(”1)"'31(”n)] l[jl(uz)gl(uk)
"'jl(“n—z)] and we can proceed to get Tpseres X s giving us
an isomorphism.

For (b), when »n is even, we have two cases once more:

: _n-2 - - : - nt2 - i
.ok & e 1p0d Puty 1 or if k = =5 and P47 = 1. MWith

an appropriate re-ordering, these can be considered special cases

of (b) in the first case (when »n = 2k).

The map 4, , in the even case, is the same as J,» SO we
have nothing else to prove.
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