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ON A CLASS OF FIELDS ADMITTING ONLY CYCLIC
EXTENSIONS OF PRIME POWER DEGREE

REMO MORESI(")

Abstract. We will give three characterizations of such fields and
an application to quadratic forms in characteristic 2.

1. Introduction

Let X be a field of characteristic p # 0.

It is often useful to know exactly how X 1is embedded in
its separable closure, or more particularly how X is embedded
in its p-separable closure.

This is equivalent to having exact information about all
finite separable extensions of X, respectively all finite
separable extensions of X having degree a power of p.

The simplest (nontrivial) instance of this situation
obviously occurs when all such extensions are cyclic (i.e. normal
with cyclic Galois group). In the separable case perfect fields
with this property are called quasi-{§inite (cf. e.g. [6, ch. x111.2])
In the p-separable case we will call them p-cyclic. The present
work gives three characterizations of p-cyclic fields k. The
first identifies them as the fields with (kx: P(k)) = p, where
P(k):= {aP-a/a € k}.

To describe the second Tet Kps be the p-separable closure

of XK and o € K\P(XK). Call an extension X C+L(1+Kps a-maximal
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if it is maximal with the property "o £ P(L)" and call X it
self a-maximal if the extension KC,KC,K R
It then turns out that "p-cyclic" is equivalent with

is o-maximal.

"o-maximal" for some a. (The reader may note here some analogy
with an idea of E. Artin: cf. e. g. S. Lang, Algebra, p. 230,
Ex. 38&4).

The third characterization is made in terms of the Galois
group of Kps over KX: this group is isomorphic to the p-adic
integers Zp if and only if Kk 1is p-cyclic.

It is interesting to observe that each characterization
reflects a different point of view useful for applications: the
first is "practical", the second is "intrinsic" and the last
is especially adapted to the methods of Galois cohomology.

There are many possibilities for proving the above result:
for example, using [4, ch. II-4, cor. 1] or [6, Satz p. 237]
the proof would be quite short. But the matter is simple enough
to be handled elementarily: we will only use the criterion of
Albert for cyclic extensions (cf. Lemma 1), a key-lemma on the
behaviour of P(x) under separable extensions of degree p and
some basic facts about inverse limits.

A p-cyclic field X has the following interesting property:

the subgroup Brp(K) of p-torsion of the Brauer group Br(x) of
k is trivial. If p = 2, this says that every quaternion algebra
over K splits. We shall apply this fact to the theory of
quadratic forms in characteristic two getting a partial answer to
a question of Baeza [2].

Throghout the paper we shall make use of the following
elementary facts:

i) The degree of a finite extension K'C*L(:*Kps is a power
of p.

ii) The galois group of a normal separable infinite extension
of fields X CsE is isomorphic to the inverse 1imit of the
Galois groups of all finite Galois extensions KT, LC,E.
The morphisms are the restrictions.

~ir
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iii) z, Z 1im z/p"z (with respect to the projections
bt 1
n
2/o" 5 s 5/p"2)

iv) A regufar quadratic form ¢ over a field k of characteris-
tic two can be represented as follows

n m
¢ =L la;0] 1 J_‘—Lz [e].  azbje; €K
where
[a,b] and [¢] denote the form ax?+xy+by?, a,b €K,
and cx?, ¢ € k\{0}, respectively.

A form g with representation
n
q ._l_ [:ai,bl—-l
=1
is called non-singular.

v) A cyciic p-algebra 4 of degree p over X is fully
characterized by a separable subfield K(P_I(a)) and a
purely inseparable subfield K(gﬁ), a,b € K. We write
4 = [a,b].

2. p-Cyclic Fields

Lemma 1. Let K be a field of characteristic p, K CiB, ~d
cyclic extension, S a generator forn the corrnesponding Galois
group and L:= LO(P"l(B)), B € L\P(L,). For KC,L o be
cyelic it is necessary and sufficient that B8°-8 = YP-y fox
some Y € K with TK°(Y) Z 0.

Proof. Let & be a root of «P-z-B. As is well known, S extends
to S8, :L >~ L iff 5,(8) is root of xp-x—BS. This implies
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ff (mod P(L )), say BS-B = P(y), Y & K. Putting S:(g) = This proves B C P(E). Since the other inclusion is obvious,

We''get” B = P(E).
It is now an easy matter to prove that

"

B

= g+y, one computes SIZO:K](g) = § + Té”(Y). So we see that
the trace of y determines the order of 5,. The rest follows
easily. (see [1, ch. IX.3, th. 3 & th. 4] for details). E/P(E) 2 K/P(K)

‘ which establishes the lemma.
Lemma 2: Let K be a field of characteristic p with (K:P(K)=p; 1 We can now state the main theorem (cf. definitions and
B € K\P(K) and E:= K(P_J(B)). Then (E: P(E)) = p. notations in the introduction).

Proof. It is easy to compute that : Theorem 1. Let X be a field of characteristic p, o € K\P(K).
The following are equivalent:

p-1 . p-1 z 2, &
P(E) = { L (P(A.) + p (i))el/x_b. g K,0.(3) = £ (9)\Bg?77%,
iz0 * P P J=i+1 .

1 K 448 Oo-maximal

2 (k2 P(K)). = p
pp(p-l):z 0} where 0:=P 1(g). We claim that 8 s poagnlie
b = 4 Aut. (x ‘)= g,
P(E):K@Ke@...®Kep2@P(K)-ep1::B 1 K “ps P

Let a,+a,8 + ... + ap_gep_z + P(xp_l)ep'l € By Ap_y» @ € K. 1 Proof. (1) —> (2): is clear.
There is an #n € {0,...,p-1}, xp_2 € X such that @2hi—> (3): Let K<:+L(1+Kps be a finite ?xtension and L
the normal closure of L in Kps. Then KXC,L is finite and
a,_y = nB + P(Ap-Z)' Galois with degree a power of p (f. 1(Z)). There exists m € W

and a chain of subfields

id A -1) AP = P(A__,) + p_(p-2, I =
Consider P( p—2) s fp=14 A% -6 =oBf p-2 pplP xp_z i TR A SRR I
\
\

There is an m € {0,...,p-1} for which i
Such that [Lv,'+1:L7,'] = ptoVednsigsvii m=1.

(p~1) Xg_ZB = mB  (mod P(X)). By induction we can assume that X C.IL _, is cyclic and by
We need m= n. If m# n, say m > n, then let »r:= m-n and 3 e S (s P “Fn-1’ P(Lm_l)) e 1
consider X S9N + r in place of A___. It follows that ‘ We choose B € I, e Sl Lm—l(P- iy
p-1 p-1 pad Let S be a generator of 'AutK(Lm_Z).
(p_l)kg_lg =nBza_, (mod P(K)). ; There is an n 6 {1,...,p-1} and v 6 k with 8° = n8 + P(Y).
One can argue similarly to find Ap-zs---,xo €k such that ‘ e e b S SRR LRl L e Rl S e

=1
POA 4+ A6 #...4 A eP‘% S atd O+ .0 Fa ep’24.p(x )ep'{ only on the class of g mod. P(L ), we can assume that T(y)#0.
0 1 e e p_] 0 1 Y p_2 p_l m

trace function T:Lm + K is not zero, and that I depends
-1
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Applying Lemma 1 we see that X C, L is cyclic. Because
KCLCIL, KC L is cyclic too, and L = L.
(3) ==>(4): This is clear, because of 1(<Z) & 1(ZiiZ).

(4) > (1): Let KC—’LC_*Kps
L 1is cyclic over K and there is
Note now that it must be

KCsL, Cs L with [L :K]=p.
(K:P(K)) = p (otherwise it would be
possible to find a noncyclic extension of Kk of degree pz). So
K and L, satisfy the assumptions of Lemma 2. In the proof of
this lemma it is shown that x C P(L,). In particular X C P(L),
which means that K is o-maximal for any a €& X\P(X). This
completes the proof.

As a corollary of Theorem 1 and [3, Th. 3] we obtain immediately

Theorem 2. Let X be p-cyclic. Then Brp(K) = {1F.

We are now ready to apply the results just obtained.

3. An application to quadratic forms in characteristic 2

Let X be a field of characteristic 2. As remarked in
1(Zv), there are two types of quadratic forms over X.
We define

%(k):= max{dim ql/q
u(k):= max{dim q/q
%(K)s u(k)

anisotropic regular form over K}
anisotropic nonsingular form over K}
u(k) <u(k).

are obviously invariants of X and one has

Moreover, one can easily prove that
k:x*] < %(k) < 2[k:x%].

In [2], R. Baeza asks if one can "separate" the two invariants
(i.e. for m,n & WV, is there a field X with

u(k) = 8", a(k) = 2™ ?). It is not difficult to construct
examples of fields X with w(k) = 0 and #%(XK) any power of 2
(or @). We can now answer affirmatively the above question in

the case where m = 1.

1 <m<n,

We will prove

be a finite extension (nontrivial).

Theorem 3. Let r be a power of 2 or o,

FIELDS ADMITTING ONLY CYCLIC EXTENSIONS 107

Then thene 43 a

§ietd X, char(k) = 2, with wu(k) = 2, %(K) = ».

Proof.

K # P(K). Let a € K\P(K) and let

i

et Kk be any field of char 2 with [k:k’] = »

KCL,LCL+K23 be an a-maximal

extension. Then L 1is p-cyclic and by Th. 3, u!/L) = 2.

Moreover,

[L:LZ:] = [:K:sz

(see e.g. [2] for a proof) and it

follows that w(k) = :1%].

e - ALh
[2] R.
[3] oD.
Bl
5] 9.
(6] E.
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