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NECESSARY CONDITIONS AND SUFFICIENT CONDITIONS OF
WEAK MINIMUM FOR SOLUTIONS WITH CORNER POINTS

MAURO DE OLIVEIRA CESAR

1. Introduction

In some textbooks on Calculus of Variation, the second
Weierstrass-Erdmann condition is found to be incorrectly
formulated. We have shown in [c], by means of a counter-example,
that such condition is not valid in the ordinary case of weak
minimum.

It is not easy to find the historical origin of the
mistake. It seems that Weierstrass and Erdmann worked only with
strong extrema, in which case they have obtained the called
Weierstrass-Erdmann's second condition.

According to Bolza ( [b], p. 69), the weak metric was
introduced by Kneser (1900). Later on we found the same second
condition related with weak extrema attached with the names of
Weierstrass and Erdmann.

So we think that the source of the mistake was the
inadequacy of the Kneser metric to the study of weak extrema in
the case where the functions, with fixed end-points, exhibit
corner points.

The aim of this paper is to introduce, for such functions,
the adequate weak metric where the second Weierstrass-Erdmann's
conditions holds.

We show the adequacy of our weak metric by making a
systematic study about the necessary conditions and sufficient
ones in the above piecewise case.
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We add, in this study the case of smooth curves with
moving end-points, since it is closely related to the problem
of curves with corner points and fixed end-points (or moving
ones); we believe we have found an adequate language in order
with all these cases collectively.

We add likewise, in the final considerations, some
results concerning the study of sufficient conditions for strong
minimum.

The functional we consider here are of the following

type:
b
I(y) = J Elz; y, ylldz,
a

where F:DxIR -~ IR, F € C*, with D an open connected set in IR2.

We regard, as admissible, those real functions y, of a
real variable, defined and continuous on the closed interval
[a,b], of class D' (piecewise ¢'), whose graphs are contained
in D.

2. Necessary conditions of weak minimum

2.1. The usual metric. The Weierstrass-Erdmann's conditions.

A counter-example.

Let ¥ be the set of admissible functions of class p?,
defined on an interval [a,b] and whose graphs have in common
the end-points 4 = (a, a,), B = (b, b,), that is,

M = {y: [a,b]+R |y € D', y(a)=a,, y(b)=b,, graph (y) = D}.

In the calculus of variations, the following metrics are
introduced in M:

Strong distance between two functions y,Y, € M is the
real number

d,(y , y.) = sup y (z) -y (z)].
9=y 2 a<z<b l 1 2
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Weak distance between two such functions is the real
number

da (Y15 Yip). S  SUP |y1(x)-y2(x)| + Supb[y{(x)—yg(x)|(*)

a<z<b ases
We shall denote by
Vol €) = {y € M|d (v, y) < €},

the strong neighbourhood of center ¢ € ¥ and radius € > 0, and
by
V¥, €) = {y € M|d (v, y) < e},

the weak neighbourhood of center ¢y & M and radius e > 0.

From this point on, these distances and neighbourhoods
will be called verticaf, in order to distinguish them from those
to be introduced Tlater in 2.2. We shall denote them by

v v v v
do(ylx yz): dl(yl’ yz): Vo(lp: 8); Vl(q}, £) .

The following concepts of Tocal minimum are usual ones:

v € ¥ provides the functional I with a strong vertical

minimum if there exists a strong neighbourhood Vz(w, e) such
that

¥y 6 Vo(p, e) —> I(¥) < I(y).

Y € M provides the functional I with a weak vertical
minimum if there exists a weak neighbourhood Vﬁ(w, €) such
that

y € vy, &) = I(¥) < I(y).

In the calculus of variations, the following is a well-
-known theorem

(*) If y €D's sup |y'(z)| should be understood in the closed interval

aszx<b
[a,b] without those points where y'(x) does not exist.
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Theorem T,: I§ y € p' provides the functional I with a weak
vertical minimum, then y will fulLfill the folLlowing Lintegral
equation

X
Fy,(x, s Yl = J Fy(g, Yy, y')dg+C, wherne ¢ 45 a constant.
a

From this theorem there results the so-called

lét Welenstrass-Endmann condition: 14 & D' provides the
punctional I with a weak verntical minimum, then F ,(x, W(z), V'(x))
44 a continuous function of x at the corner points of V.

Some authors such as Akhiesen [@], Pans [p], also present
following "theorem"

Theorem T,: I§ ¢ € p!' provides the functional 1 with a weak
verntical minimum, then v will fulfill the §olLLowing integral
equation

XL

Flx, y, y') _y'Fy’(x’ Ys y') :J Fx(g, Y, y')dE+C, whene C 45 a constant.
a

From this "theorem" there results the so-called

z"d Weienstrnass -Endmann condition: 14 ¢ € p' provides the

functional I with a weak vertical minimum, zthen
Fle, ((a)3uiPprfa)d)is= ¢'(x)Fy,(m, Y(x), V' (x)) 45 a continuous
function of =z at the corner points of V.

A counter-example. The following counter-example will show
that "theorem" T, and the 2" Weierstrass-Erdmann condition that
it implies are both fatse.

Consider the functional

2
I(y) = J (6y'™ - 14y'® + 9y'?)dx
0

where D = E?ﬂ A= (0, 0J, B = (2, 1), and the function

0, 0
Ylx) = 5
x—1, 1

1A
8

1A
~
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8

A
[\
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The graph of F as a function of y', sketched in the
figure, shows that F has an absolute minimum at the point
y' =0, a local maximum at the point y' = % and a local
minimum at the point y' = 1.

For each function y € D!

such that

<
=
8
b
1]
Y i
o7}
w =]
<
-+
=
-
=
««
-
©
A
8
N
~

we have I(y) > I(y) = 1.
Next, if yevi(y,

so sup |y'(z) - P (x)| < %3 there follows that I(y) > I(y) =1.
0<x<?2 £

This proves that y provides the given functional with a weak
vertical minimum. However, the function F(Y"(x)) =" (x)F (' (x))
is not continuous at the corner point = = 1. Indeed,

F(y'(x)) - w'(x)Fy,(w'(x)) =

2.1.1. Remarks

(a) Theorem T, and the consequent 504 Wedenstrnass -Endmann
condition will become valid if we replace the weak vertical
minimum hypothesis by that of strong vertical minimum (we shall
prove this in 2.4.1.). '

(b) Analogously, theorem T, will become true if we require
that all admissible functions of ¥ be ¢!, keeping the
hypothesis of weak vertical minimum (we shall prove this in
2.4.1.).

2.2. The suitable metric

Let ¥ € M. What we are going to call a regular
parametrization of ¥ to be a mapping
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B [ B] > aRA02BO8L = s[rlE) 5 yCtl ]y

satisfying the following conditions:

x(a)=a, z(b)=b, x € C', z(t) >0, Vte[a, b], y(t) = Y(x(t)).

Note that, although ¢ admits infinitely many regular
parametrizations, the functional I, when "calculated" in each
one of them, takes the same value 71(y), that is,

b . b
I(P) ='J Flx(t), y(t), %ﬁzzdi(t)dt = J Flx, Y(x), V'(x))de = I(Y).
a x(t) a

Any two regular parametrizations P, and p,, of the
same ¢ € M, will be called equivalent, and this will be

indicated by B, = Pt I is clear that I(P,) = I(P,) = I(y).
Let ~¥ be the set of regular parametrizations of the

functions of M, that is

n={P:[a, b]+R*|x€C*, yeD', P(a)=A, P(b)=B, x(t)>0, ¥ t€[a, b], im P =D}

In the set & the following metrics will be introduced:

Strong distance between Bl pze N is the real number

d,(P,, P,) = sup {|z,(t) -z, (t)| + |y, (t) ~y,(t)[}.
agt<b

Weak distance between P , P, € N is the real number

§y(t) g,(t)

d.(Py, P,) = sup {1m1(t)—x2(t)|+]y1(t)—y2(t)|} + sup
a<t<hb ast<h

&, (t) &,(t)
We shall denote by
V(B i el = P8 W |d(p,., BN <'Ef,

the strong neighbourhood of center P, € ¥ and radius € > 0,
and by

v, (P, &) ={P €& N | d,(P,, P) < €},
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the weak neighbourhood of center p, € ¥ and radius ¢ > g,
The following concepts of lacal minimum are natural:
P, € N provides the functional 7 with a strong minimum

if there exists a strong neighbourhood V,(P,, €) such that
FEER Y (PR ) samrs TE8, ) = TP,

P, € v provides the functional 71 with a weak minimum
1f there exists a weak neibhbourhood V,(P,, ) such that
PV iFiel—> TP .} S T(F]-

2.2.2. Remark

1f ¢ has a reqular parametrization B that minimizes I,
any other regular parametrization p
in other words:

, of ¢ still minimizes 71

I4 P, provides the functional I with a weak (strong)
mindmum and P, = Py, then p, $tilL provides I with a weak

dinong) mdndmum,

2.3. Fundamental theorem. The Weierstrass-Erdmann's conditions

With the weak metric introduced in 2.2., we are abie to
develop, in a satisfactory way, the theory of necessary conditions
{and of sufficient conditions) of weak minimum for functions with
corner points and fixed end-points.First we have the following
fundamental theorem

T.: 14 a negulan panametrizaiion of ¢ € M provides the

Lonad I with a weak minimum, Lhen O wALL Aulfill the
following integ

wal equations

x
Fy,(’ﬂ.‘, y: Zf/') =i ja Fy({:: ?f: y'/!d\‘: + c1
(.’XI
Elgy iy y) -—y’Fy,(.':', iy gt , Fo(g, s ¥')dg + O,
la

where ¢, and €, are constanis,
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Let P, (t) = [¢, ¥(t)] be the natural parametrization
of ¥ and P a regular parametrization defined by:

1

P(t) = [t + aAr(t), w(t) + Bu(t)], o, BER, X €C', nen',

AMa) = Mb) = ula) = u(b) = 0.

For each pair of functions X, p, the mapping P defines
a two-parameter family (with o and B as parameters) and the
functional, evaluated at the family, becomes a function of the
parameters, that is, I(P) = J(a, B).

It is possible to show that, given € > 0, there exists
o > 0, for which:

la] < o0, |B| < 0 = PVG V.o(P s €)s

Therefore, the function J has a local minimum at the
point o = B =0 and, since the partial derivatives Jq(o, 0)s
JB(O, 0) do exist, they are both zero.

By means of a well-known technique, one can establish the

following equalities:

t

b . . .
Jpl(0, 0) = J {Fy,(t, vie), v(t)) - J Fy(T’ Y(t), v(t))dttuct)de
a

B

a

b . . . t . .
Jo(0s 0) :J Va6 wt),w(t))—way,(t,w(t),w(t))—J Fx(T,lP(T),kU(T))dT}A(t)dt.
a a

Since the functions X and u are arbitrary, one concludes
that

X
F o, (zy, Y(x), V'(x)) = J F (g, ¥(E), V'(E))dE + C,
y e ¥

2
F(x, y(x), w'(x))—w'(x)Fy,(x, U(x), $'(x)) = J F (& V(E), VI(E))dE + C,,
a

and the theorem is proyed.

From this theorem and the continuity of the integral
function there result

The Welernstrass-Endmann's conditions: 14 a regular
parametrnization of Y € M provides the gunctional with a weak
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minimum, then the functions Fy,(x, Wledhs. S ! Cx )l and

Hitapiile) o bhile) )= w'(x)Fy,(x, V(x), Y'(x)) are continuous at
the cornen points of .

2.4. Comparison between minima

The following implications are immediate:

I,: strong vertical minimum =——> weak vertical minimum

I,: strong minimum —> weak minimum

In that follows we are going to establish other comparisons
between minima which are fundamental in this study. First we
antecipate, in a short way, the subsequent relationships:

I,: strong minimum <

> strong vertical minimum
I,: weak minimum =—> weak vertical minimum
ok weak vertical minimum =%4> weak minimum

In order to justify these relationships, let us consider
a function ¢ € ¥ together with any of its regular parametriza-
tions, say, P, € n.

Regarding Proposition I,, we shall prove the theorem below

Theorem T,: A necessary and sufficient condition forn ¢ to provide
a strong vertical minimum L5 that P~ provides the functional
with a strong mindimum.

We shall prove the necessity, since the sufficiency is
immediate. '

Let P,(t) = [}, w(tﬂ be the natural parametrization
of ¥, P€ v a regular parametrization of y €& M, with
P(t) = [t + XMt), W(t) + wt)], and P, = P, defined by
By 5 [l A0 bhal 008 4 M) I ]

From the hypothesis we know that there exists € >0 for
which:

dy(y, y) < e —>I(Y) < I(y).

Since dy(v, y) =d (P,, P), I(y) = I(P ), I(y) = I(P),
we have:
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do(P,, P) < g ==> I(P,) < I(P).

Thus, it suffices to show that there exists 6§ > 0,
corresponding to € > 0, such that:

do(Pl, P) < § => do(Pz, B, & iE e
By the triangular property,
o, (B0 B PP R a0 DN P

we see that it is sufficient to show that there exists 0 <$§ <§

for which:

) et

do(P,, P) < &§ =—> d (P, P, e

Once we have

d (P, P,) = sup {|A(t)|+[w(t+A(t))=-v(t) |},
a<t<b

and since the function y(x) is uniformly continuous on [a, b],

there exists 0 < § < % such that, ¥ ¢ € [a, b],

[A(t)| < & == |W(t + A(E))=-V(t)]| < %

Thus, taking d (P, P) = sup {[A(t)[|+|u(e)|} <&, and
a<t<b
so' " Usup s facs ] @b Sthere rasul tsh
a<t<b
do(P,, P,) < sup |A(t)|+ sup [W(t+A(t))-v(t)]| < —§+§:§.

ast<b aftsb

Regarding proposition I, the following theorem holds:

Theorem Ts: I§ P, provides a weak minimum, then ¥ provides the
fjunctional I with a weak vertical minimum.

Its proof is immediate.
Explicitly, proposition Is means that:

1 ; ” ;s ¥
14 Y €D provides a weak vertical minimum, one cannot

&
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conclude that P, provides the functional with a weak minimum.

In fact, the contradiction of this proposition implies,
by the fundamental theorem T,, the truth of the an Welenstrass-
Endmann condition, which is false by virtue of the counter-
example of item 2.1.

We would like to point out that proposition Iy contains,
in our opinion, the fundamental idea of this work, and justifies
the introduction of the weak metric in the set &~ of regular
parametrizations, by means of which this theory is being
developed.

We would Tike to remark that proposition I, in the case
where the admissible functions are of class Cl, may be replaced
by the following theorem.

Theorem T : I4§ ¥ € ¢ provides a weak verntical minimum, Zthen
P, provides the functional with a weak minimum.

The proof is analogous to the one of theorem T,.

2.4.1. Remark

Finally, we are now able to justify observations (a) and
(b) of 2.1.1. The former is a consequence of propositions I;, I,,
together with the fundamental theorem T,. The latter is due to
theorem T ., together with the fundamental theorem T,.

2.5. Smooth curves with moving end-points

Until now we have always considered admissible functions
of class D' (or Cl), all of them defined on the same closed
interval [a, b], and taking the same values at the end-points.
In this section we shall admit that these functions are c¢', but
not necessarily defined in the same interval.

Let M be the set,

M

{y:Exl, z,] > R|y € ¢', graph (y) = D},

where [ﬁl, x2] is any closed interval on the real line.
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Clearly, in this set we cannot introduce those "vertical"
metrics of item 2.1 and so we will use the metrics of 2.2.

Let N be the set of regular parametrizations of the
functions of ﬁ, all of them defined on the same closed
interval [a, ], that is to say,

¥=1{p: [a, B] + B*|P € C', &(t) >0, ¥ te[a, b], im P < D},

In this set we shall define the following metrics:

Strong distance between P, P, € N is the real number

do(Py, Py) = sup {|x (t)-x,(t)]| + |y, (t)-y, ()|},
a<t<b

Weak distance between P,, P,6 ¥ is the real number
yi(t) g,

d,(P,, P,) = sup {lx (t)=x ()| + |y (t)=y (t) |} + SUP |- - - !
i A s ' ’ ast<h |& (t) & (t) |

The concepts of strong and weak minima are introduced in
the same way as the corresponding concepts of item 2.2., and the
remark 2.2.1. remains valid: If v:[a, b] » IR has a parametriza-
tion that minimizes I, any other parametrization of ¢ still
minimizes I.

We close this chapter stating the following theorem

Theorem T,: Let RIJE U be a negulan parametrization of gfunction
V:[a, b] » R, ¥ € M.
14 P, provides the gunctional with a weak minimum, then:

(a) ¥ wiLl fulfiLl the differential equations below

d = d I i
asz,—Fy, %(F y,Fy')_FCC

(b) F, i (a, V(a), Vi(a)) = Fi(by W(b), V'(b)) =0
Fla, W(a), V'(a)) = F(b, W(b), V'(b)) = 0.

~—
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3. Sufficient conditions of weak minimum

3.1. A Hc-family. Fundamental Temma

Let y:[a, b] ~ R, ¢ € ¢!, be a solution of Euler's
X d .7 . .
equation P Fy, y* We say that ¥ is normal if
Fy,y,(x, Ylx), p'izl)). # 05, V= & [a, b].
By arguments of continuity and compactness there exists

a neighbourhood Vv =D x IR, of the image of the mapping

T:[a, b] » ®®, T(x) = (z, V(x), $'(x)), where Foni(@ s y') # 0.
In the neighbourhood V, Eufer's equation can be normalized,

that is, expressed in the form y” = f(z, y, y'), f:V > R, f 602,
F= i}i(x, Ys y') ™ Fy'x(x’ Ys y') - y'Fyry(m: Ys y’)

Fyryl(x: ¥, y')

This equation admits a unique maximal solution relatively
to any triple of initial values (& n, n') € V, which is of

glass £°.
By a theorem of Hifbent [a], this equation and Eulex's

equation are equivalent in V.

Since the solution ¥ is defined on a compact [a, b], it
is not maximal and therefore admits an extension to a new compact
[a» D], a <a <b <b.

One we have fixed & €& [a, b], the set of solutions of
Eulen's equation relatively to the initial values (&, n, n') € v
define a two-parameter family.

Y= Wlw: n, ntle WOES N, N’} = n, wICE; n, n') = nt.

w:[&, E] +~ IR is the member of the family corresponding to the
initial values (&; n ng). It will be denoted by:
Ylz) = Wix; N, Nyl

By well-known theorems about continuity and differentia-
bility of solutions with respect to the initial values, it is

possible to determine a number o >0, such that:

o’

(a) Every solution ¥(x; n, n') becomes defined on the
interval [a, ], if |n - n,| <o, |n’' -ni| <o.
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(b) ¥(x; n, n') is of class ¢® in the set:

5<x<5,]n—nol<0, ]n'—n;]<0.

A family of solutions of Eufen's equation, that performs
both conditions (a) and (b), will be denoted by # . We will
indicate by Hgs § < o, the subfamily of Hy such that:
R T R PR | B A

The following 4undamental Lemma is basic for the study
of sufficient conditions of weak (or strong) minimum:

Lemma Tgo: Let :[a, b] » IR be a noamal solution of Eulen's
equation, fulfilling the following condition: Does not exist,
nelatively to Y, a conjugate point of a An the interval

Ja, b]. Therefore it is possible to determine a Hg - family
(0§ s0Lutions of Eulen's equation) and two nedlghbourhoods

v, c®r? v, ©Ir?% of points A4 = [a, wa], B = [b, Wb)],
such that:

B

(a) Whatever the points @, = [z,, y,] €V, and
@, = [x, ¥,] & Vg, through these points passes one and only
one memben o4 the family Hy
(b) Corresponding to such membern, there does not exist
a conjugate point of x, 4in the interval Jx,, z,].

Proof. From the above considerations, the solution ¢ may be
extended to an interval [a, b], & <a <b <b.

Relatively to ¥, a conjugate point of a in the interval
Jas b] does not exist. So, it is possible to find a point
g€, a < g <a, sufficiently close to a, such that: there is no
conjugate point of &, relatively to ¢, in the interval illeshdils
where d 1is a point sufficiently close to b, b <d < b. Such
a conclusion is a consequence of separation theorem of Stuxam.

Let H_ be the family of solutions of Eufer's equation

yP20Play AETRLES PEEE ny At V=mRJIPLEE; Ksvn') (=)n'.
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By a well-known property, the functions wn(x; Ay (08
and ¥, (z; ng, Ny, d@ <@ 2b,ong = W), n' = $r(E), are
both solutions of Jacobi's equation (equation of variations),
constructed with the function V. Besides, they are linearly
independent, since:

lbn(i; Ng, NY) =1, ¥

n,(g,' N, Ng) =0, ‘Pr'],(g,' Ngs Ng) =1

Therefore, the function x,X:[ad, 5] * &, given by
X(x) = ll)n,(a,- PR wn(x,- Ngs Mgt — Vpla; Ny, N2 wn,(x,- Ny, N¢)

is likewise a solution of Jacobi's equation, satisfying the
condittions < X(a) = g, X'Ca) #'0.

Since there is no conjugate of a in the interval Ja, ],
we have: X(z) #0, ¥z, a <z < d.

To complete the proof, Tet us consider the following
system of implicit equations in the unknowns n and n',

Wilaw's M5 000 =0y,

Yew, s, Nl =%,

where @, = [}1, y1] and @, = [2,, yz] are points close to
4 = [a, Y(a)] and B = [b, ¥(b)], respectively. Since

Wa; ng, n!) = ¥(a) wn(a; Ny Ny wn,(a; Mg N/ |

and the Jacobian #0
Wb; ng, ny) = v(b) Un(bs ne ng) (b5 ng, )
(once we have x(b) # 0), we may assert, by the implicit
function theorem,the existence and uniqueness of a pair of

¢® - functions
n=Y¥ile, ¥y, Ty ¥yl
, defined on v
s Yyt

A z B’
o= ¥ (.’E X
2 1: yI: 2

where 7V, 6 < ﬂ?z

4 P

) .
g & R, are suitable disjoint neighbourhoods
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of points 4, B, and taking values in a suitable neighbourhood
of point [n,, n:J: [n -n | <p <o, [n' -ng| <p<a. This
proves part (a) of the theorem.

With respect to part (b), let us consider the solution
¢n.(x; n,» n;) of Jacobi's equation. Since there is no conjugate
of point & in the interval J&, d], we have:

VYo, (x; ny, Nyl # 0, V x, E < x<d; or

nl

Uf'ny(x,' Ngs Ng) #0, ¥x, a < x< d,

where g., L < .a;«$ as0,1s @-point sufficiently close to &.
Therefore, by arguments of continuity and compactness, there
exists a number &, 0 < 6 < p, such that:

Ypolzs m, n') #0, ¥z, oy <z <d, In-mn| <8, In' -l <8,

Noting that wn.(x; n, n') 1is a solution of Jacobi's equation,
constructed with the function Y(x; n, n'), and performing

both conditions wn.(E; n, n') =0, é,(E; n, n') =1, we may
conclude that: if one restricts neighbourhoods 7V, and 7y in
such a way that ]n_nQ] <&, |In' - ny| <&, then there does not
exist, relatively to ¢(x; n, n'), any conjugate point of =, in
the interval Jx,, x,], since this would imply that y_,(x; n, n')
is zero at some interior point of that interval (Stuwm's separa-
tion theorem). The theorem is proved.

3.1.1. Uniformity lemma

In the theory of sufficient conditions of weak minimum for
curves with fixed end-points, the following is a well-known
theorem

Theorem T,: Let y:[a, D] » IR, ¥ € c', be a solution of Eulern's
equaiion pernforming the folLowing conditions:

(a) ¥ 4s positive noamals
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(b) there does not exist, nelatively %o Y, a conjugate
point of a in the interval Ja, b].

Then, ¥ provides the functional with a weak vertical
minimum, Ln the set M of functions of class 2

This theorem has been proved, such as in Gelfand, Fomin
[9], in the set of functions of class ¢’ However, by the
rounding argument, we may conclude that the theorem is still
valid in the set of functions of class D .

From the fundamental lemma T, and the theorem above, we
conclude that every member Y(zx; @,, @,) for the family &,
having as end-points @, = [z, y ] € Vy and @, = [z,, y,]6 Vg,
provides the functional with a weak vertical minimum; in other
words, for each pair &, € V4 Q, € Vg, there is a positive
number E(QI’ QZ), such that:

1
¥ y €D, ylz) =y, ylx,) =y,,

y € Vf(w(x; Q5 @), €, @,)) > I(¥(z; §, @,)) < I(y).

Moreover, if one properly reduces neighbourhood VA and
Vp then the following result holds:

Unigormity Lemma: The choice 04§ €(@,, @,) 4n the above
Amplication may be done in order to exist e > 0 such that, if
Q1 €7, and @, EVg, then € < e(Ql, Q,).

Proof. Let y(x; & o Q,) be a member of the family Hd’ and

let x v be a compact, x - convex set such that:

z ¢ [a, b, Q, € Vs Q,€ Vg == (2, V(x5 @, @), V'(x; Q@ @) €K
Furthermore, let m >0 be the minimum of Eb,y,hgy,yv, (2,4, ") EK.

For each triplet (Q,, Qz, a)y, 0 <a <my, let us consider
the quadratic functional that associates, to the function
h: [xl, xzj +~ R, h(xz,) = h(z,) = 0, the number

s X 2
[ (Rh’2+Sh2)dx—aJ n'%dx, (n

Iz
1 &
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where
R=L8,, (o V@ @y @), ¥ias @y @),
s d , :
5= L[, (0 Was @ Q)0 V(001,000 ~FF, (@ bz Qs V(@5 €00))].

The corresponding Eulexn's equation,
d 5
- T [(R-a)R'] + Sh = 0, (2)

becomes reduced, for o = 0, to the Jacobi's equation (equation
. . d _ et o
of variations) of Eufen's equation T Fy, = Fy, relatively

Vlx; @, @,).
Let Ailxs Q@5 @, a) be the solution of (2) such that
R(E; Q5 Qs @) =0, h'(E @, @, ¥ = 1.

We know that there does not exist, relatively to
w(z; 4, B), any conjugate of £ in the interval J&, d], that
is, h(x; A4, B, 0) # 0, & <x < d. Therefore, by the continuity
of the solution #&(x; @,, @,, %, there exist F = VA’
VB S Vg V>0, such that:

q, eﬁA, QL €Ty 0 <8<V, == higs @, Gy 8L # 05 ¥u E 52 54,

By a well-known property, V @, GﬁA, Vg, € ﬁB, ¥ a,
0 <a < v, the quadratic functional (1) becomes positive
definite [c]. So, for a fixed ¢, 0 <ec <V, we have:

XL o

Y ar2ag, ¥ 9, € ﬁA, ¥Q, & Vg

)

i)
J (Rh'2 + Sh%)dz > cJ
Lo

On the other hand, if (z, Wx; §,Q)+h(x), ¥ (2;Q,,Q,)+n'(z)) EX,
x & [@, b], we have

X 2 X 2 5
I(Wh) - I(Y) = J (RR'2 + Sh?)dx + { (M= + Nh'?2)dx,
Lo Ja,
where )
- 1.5 7 L8 2 7 n'),
Y=lx; @, 9,0, M = ET(Fyyyh+3Fyyy,h'), W= S58F o BAE b r s )
with ,
= = : (o . + gh'(x
Foat = Frst(x’ Vlx; Q5 Q) + 6h(z), (z; @, Q,) )
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and 6, 0 < 6 <1, given by Taylor's formula.

Corresponding to a given number §&§ > 0, there exists
€ > 0 such that

d%(h, 0) < e —=>|M| <&, |N| <.

Besides, by using Schwarz's inequality, we have

X 2 X
hi(w) = U h'dx] < (2w ) J n'ide < (z) rz h'%, that is
xl xl .’El
(xz—xl)z x, (d - £)? (%2
_————J h'zdxf———2g—J h'idx.

xl xl

So, if |M| <& and |N| < &, we have

X 2 X
H 2 (MR? o+ NR'2)dx| < 8(1 4 Lgi)f *nt%dw  and
X

1 <]
- 2 T
T(Y+ n) - I(p) > [:c - 51+ A2 B )J J R,
Ti
Therefore, once we have fixed 6, 0 < § < ————ii———;, there
exists € > 0 for which: 1+ iéifi—

¥ .
di(h, 0) <& —=>I(y+h) = I(Y) >0, ¥ Q €V, ¥Q, €T,

Being so, the uniformity lemma is proved.

3.2. Smooth curves with moving end-points

3.2.1. Theorem

Functional I, when calculated in the member y(x; Qs Q,)
of family #s, @ €7V,, @, € V5, defines a function J:v, xv, >R,
J € C?,

xZ

J(Ql’ e,/ :I Flz, Y(x; §,, Q,), ¥'(x; @
X
1

- Qz))dx.
The existence of a minimum of the function J at point

[4, B], with 4 = [@s W(a)], B = [b, w(b)], is directly connected
with the problem of determination of weak (or strong) minimum for
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smooth curves with moving end-points.This is what we shall make

clear by means of the following theorem

Theorem T,,: Let w:]?, bl AR, W € Cl, be a solution of
Eulern's equation performing the following conditions:

(a) ¢ 44 a positive noamal solution;
(b) there does not exist, nelatively to ¢, conjugate
point of a 4n the interval Ja, b];

(c) I(Y) = J(A, B) £J(Q,, @), V@, €7V,, V@, €7TVp

Theregore, if P, 4is a regular parametrization of ¥,

P
1
rnegular parametrizations of admissible functions of class p?

Let P,(¢t) = [t, ¢(t)], be the natural parametrization

of ¥, P a regular parametrization of y € p' defined by

P(t) = [t + X(t), w(t) + w(t)], P(a) =@, €V,, P(b) =Q, € Vp
and Tet P, (t) = [t + Mt), ¥(t + At); @, Q,)]. Both parame-

trized curves P, and P have in common the end-points @,
and & ;

,5 SO by theorem T, and the uniformity lemma, there

exists € > 0, independent from @ 6 € V,, @, € Vg, such that:

d(¥(z; Q4 @), y) = d (P, P) < € =>I(P,) < I(P).

1?

By hypothesis (c) of the theorem, we have I(P ) < T ((P)se

Thus,

d,(P,, P) < e —> I(P,) < I(P).

Hence, it is sufficient to show that there exists & > 0,

corresponding to € > 0, such that:
d (P, P) < § ==> d,(P,, P) < e.
By the triangular property,

d. (p

(P, P) 2 d (P, P,) + dy(P,, P),

we see to be sufficient to show that there exists 0 < ¢ < %

such that:

provides the functional with a weak minimum, in the set of

£
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d (P, P). < 6 —=> dl(Pl, RO o

oo [m
E

Being

d,(P,P )= sup {|NE) [ [WE+A(E); @y,@u) W) |1+ Sup |W!(E#A(E); @, )-u(t) |
act atd AL

and since functions V(x; Ql, QZ) and ¢'(x; Q. Q,) are uniform-

ly continuous in a compact x € [a - », b + 2], |x, - a| < »,

ly, - ¥a)| <>, |&, =Db| <7, |y, - 9(b)| <», » >0 sufficient-

Y,
ly small, there exists 0 < § < g, § < »r, "such that: ¥ tG[@, b],

[Act)| < & |
Yt + Mt); @, Q) - w(t)| < £
'|U(a)| < § —> { 1 2 ‘p l 6
Wt + At); @, @,) - w(e)| < &
lucp)| < 8 g

Hence, taking
d (B, P) = sup {[A(E) | + |ut) |} + sup EKEZ_i%EﬁEL -Wt)| <6
a<t<b ast<b 1+XN¢t)

so that sup |A(¢)| < 8, |u(a)]| < &, |u(b)| < 8, there results:
a<t<bh

d (P ,P,)<sup |\M¢t) |+ sup |W(t+A(2);Q,,Q,)-W(t) [+ su P(E+A(8) 5Q,5@,) Ut
e zaftbl aft_gbl 12 @) ¥ lastgblw 9,,Q,)-U(t) |

<

o |m

+ £+
6

> |m
I
oo |m

3.2.2. Remark

An important variational problem, regarding smooth curves
with moving end-points, is the one in which the end-points belong
to two given curves, T, and T,. By virtue of the considerations
we have presented here, it is clear that this problem is attached
to the determination of the minimum of a function J restricted
to curves T, and rz; and a theorem, analogous to theorem T,,,
could be stated and proved without difficulties.
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3.3. Curves with corner points

3.3.1. Curves with one corner point and fixed end-points

Given a point @ = [X, Y] €D, a <X <b, let
M(Q) = {y €M | y(Xx) =Y}, M being the set defined in 2.1.
We shall denote by y = y'[a,X]’ Y2 :'yl[x,b]’ the

restrictions of y € M(Q) to the closed intervals [a, x] and
[x, p].
Let yet ¢ € M(C), C = [es y(e)], with y, €Ch y, € Cl.
We shall admit the following hypothesis concerning
function y:

(a) v, and p, are positive nonmal sofutions of Eulern's

equation;

(b) retatively to Yo, there 48 no conjugate point of a
in the interval Ja, c];

(c) ~nrelatively to b, thene 44 no conjugate point of ¢
Ain the interval e, b].

Under such conditions, if we apply the fundamental Temma
Te to the functions ¢, and y,, we may assert the existence
of two families Hg H6 (of solutions of Eufer's equation)
2
and of a neighbourhéod Vs of point ¢, such that:
¥V o= [x, Y] 6V,
(a) through 4 and ¢, there passes one and only member
of family Hg » which will be indicated by wl(m; Q). One has:
1
¥, (a, Q) = V¥(a), wl(X; Q) = XY;
(b) relatively to v (x; @), there is no conjugate point
of a in the interval Ja, X];
(c) through ¢ and B, there passes one and only member
of family Hy s which will be indicated by v,(x; Q). One has:
2
V(X @) = X, (b, @) = ¥(b);
(d) relatively to wz(x; Q), there is no conjugate point
of X in the interval JX, b].
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We shall denote by Ylx; Q) € M(Q) the function defined
by

v, (x5 Q), a % X

A
8
1A

Viz; @) =
V,(x; @), X <cx b

By theorem Ty and the uniformity lemma, we may assert, for

each ¢ € Vc, the existence of two vertical neighbourhoods

v
Vily, (x5 @), €), Vg(wz(x; Q), €), € independent from ¢, such
that:

(a) ¥ ¥y, € Dt; y,(a) = yla), y,(X) =1,

v
Y, € Vl(wl(x; Q), €) —> I(y, (=5 @) < I(yl).
Gl oM rgppi BB vy 20X ) 0= 8, y,(b) = v(by,
v
v, EV,(V,(x; @), €) —> I(p,(x; Q)) < I(yz).

The neighbourhood of center y(z; @) and radius ¢ > 0,
in M(Q) is simply the set

Vith(zs @), €) = {y 6 M(Q) | d°(y, w(z; @)) < e}

Functional I, <calculated in wl(x; @), defines a function
1?2 X
J,(Q) = Ja Flz, ¢,(x; @), w;(x; Q) )dx

and, calculated in V,(x; @), defines another function Iy

b
Mg = JX Flz; b,(z; @), !(z; @))da.

Let:
b
Ja) = Jl(Q) + Jz(Q) IJ Flz, y(x; Q), v'(x; Q))dx.
a

Under hypothesis (a), (b), (c) we may then assert, for
each point @ € Vs the existence of a neighbourhood V?wa; Q), €),
e findependent from @, such that: V¥ y € Dl,

y € Vily(z; @), €) —>d(Q) < I(y).

The existence of a minimum of the function J at point
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¢ = (e, V(e)) s directly connected with the problem of
determination of a weak (or strong) minimum, for curves with one
corner point and fixed end-points. This is what we shall make
clear by means of the next theorem

Theorem T,,: Let ¥ € M(C), C = [e, V(e)], with v, € C', ¥, € C.
Suppose that ¢ and J fulfill the foLLowing conditions:

(a) v, and y, are positive noamal sofutions of Eulern's
equation;

(b) relatively to ¢, thene 45 no conjugate point of a
Ain the interval Ja, c];

(c) retatively to y,, there 45 no confjugate point of c
in the interval Je, b];

(d) I(¥) =J(c) <J(Q), V¥ @€V,

Then, i§ P, 4is a regular parametrization of ¥, P,
provides the functional with a weak minimum in the set N of
negulan parametrizations of the functions of M.

Proof. The proof of this theorem is just an appropriated
adaptation of the proof of theorem T,,.

3.3.2. Remark

An important variational problem, regarding curves with
one corner point and fixed end-points, is the one in which the
corner-point belongs to a given curve T.

From our considerations, it is clear that this problem is
attached to the determination of the minimum of function J
conditioned to the curve T and a theorem, analogous to theorem
T,,> could be stated and proved without difficulties.
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3.3.3. Remaining cases

The case of =n corner points and fixed (or moving) end-
points may be dealt with in an analogous way, what reduces the
problem to the study of the minimum of a function J having a
suitable number of variables.

3.4. Final considerations

Completing this work, some results regarding sufficient
conditions of strong minimum will be stated.

In problems involving such conditions, it is fundamental
to consider the so-called Wedlernstrass' function E,

E:DXR® > R, E(x, ¥ y's 0) = Fa, ¥, w)=F(x, y, y' )=y ")F, (xs ys y")
or

E(x, Y y's w) =% (w-y')ZFy,y,(ac, Yys y' + 6(wy')), 0 <6 <1.

We say that a solution of Euler's equation y:[a, b] > IR,
v € ¢! has positive excess if there exists a neighbourhood
ve D x R, of the image of curve T:[a, B >R, T(x)=[a, Wix), ' (x)],
such that:

(x, ¥y, y') €V, w#y' > E(x, Y, y's w) > 0.

Regarding the study of sufficient conditions of strong
minimum, in the case of smooth curves with moving end-points, one
has the following theorem

Theorem T,,: Let y:[a, b] > R, ¥ € C', be a s0lution of Eulern's
equation satisfying the folLowing conditions:

(a) o L& positive noamal;

(b) thene does not exist, relatively fto ¢, conjugate
point of a 4n the interval Ja, b];

(c) Y has positive excess;
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(d) I(Y) =J(a, B) < J(Q,, Q,), V@ €V € V,.

g Rz 8 ¥y

Then, 4§ P, 4is a negulan parametrization o§ v, P,

provides Zhe functional with a Atrong minimum, in the set of
negulan parameirization of admissible functions of class D',

case of curves having one corner point and fixed end-points, one

Regarding sufficient conditions of strong minimum, in the

has the following theorem

Theorem T,,: Suppose that ¢ and J,

defined 4in 3.3.1, satisdy

the following conditions:

(a) v, and Y, are positive noamal s0Lutions 04 Eulen's

equation;

(b) retativeky to V,, there is no confugate point o4

in the intenval TJa, c];

(c) ~#relatively to V,, Zzhere is no conjugate point of

in the interval Je, b];

[2]

Lb]

[c]

(d) v, and ¥, have positive excess;
(e) I(y) =J(c) <J(Q), ¥ Q6 Vo

Then,
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