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ON ISOMETRIC IMMERSIONS OF A TORUS INTO A SPACE FORM
WITH THE SAME MEAN CURVATURE FUNCTION

A. GERVASIO COLARES AND RENATO DE A. TRIBUZY

Blaine Lawson and Renato Tribuzy proved in [2] that, up to
congruences, compact surfaces in the Euclidean space g® " ave,
essentially, determined by the first fundamental form and only
the trace of the second. The possible exception is the case of
constant mean curvature which leads to a famous Hopf's conjecture
that the surface is the round sphere. An explicit statement of
their result is the following: "let M be a compact orientable
surface with a Riemannian metric and let #: M - R be a smooth
function. If % is not constant, then there exist at most two
geometrically distinct isometric immersions of M into MB(C)
with mean curvature #". Here Ma(c) is a space form of
dimension 3 and curvature c¢. Two isometric immersions are said
to be geometrically distinct if they are not congruent.

In this paper we generalize this fact to isometric
immersions of a torus into an n-dimensional space form Mn(@)
under the additional hypothesis of parallel normalized mean
curvature vector T%T’ where the mean curvature |H| s non-
constant and never vanishes. More precisely, we prove the
following: Let T be a torus with a Riemannian meztric and
h: T + R be a positive non-constant smooth function. Then,
there exist at most two geometrnically distinct full isometric
immersions of T into M'(e) with paratlfef normalized mean
curvature vectors and mean curvature function h, (cfr. Theorem 2).

’

Here # = |#|, where H is the mean curvature vector.

Recebido em 28/01/85.
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The hypothesis of ﬁ%— being parallel in the normal bundle of

the immersions is essential in our proof because permits the
existence of holomorphic quadratic differentials which in a

torus are constant multiples of each other, by the Riemann-Roch's

theorem.

In [4] is proved that given a non-constant function on a
surface homeomorphic to the 2-sphere, there exists at most one
isometric immersions of the surface in Ma(c) having such a
functions as mean curvature. This result also holds when the
ambient space is an n-dimensional space form M"(c) under the
additional hypothesis of parallel normalized mean curvature
vector. In fact, by a theorem in [3] we have reduction of
codimension and the immersion lies in a 3-dimensional space form,
and so the above result can be applied.

We also prove that if a torus T admits two isometric
immersions x: T > M*(c) and Z: T »»Ms(c) with the same mean
curvature function such that x is a full immersion and has
parallel normalized mean curvature vector, then =z is one of
two immersions determined by the-coefficients of the second
fundamental nfonms sofisx s (efre Thay 1)

§1. Preliminaries. Let T be a torus equipped with a Riemannian

metric and let e, , e, be a global orthonormal frame on T

associated to local isothermal parameters 2z = x + Zy. That is,
) = 0 i Seet s p) p

e1 = solks &p 5T 55/ 2> where A = |5§| = Igyl- The metric on T

is then given by

ds® = A\%|dz|>. (1.1)

Let w_, w, the dual frame and

Wy, = AW, + A, (15 )
the connection 1-form on T. Then
dw = -Kw A w, (1.3)

1.2

where K is the Gaussian curvature of T.
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Let " (e) be an n-dimensional space form of curvature ¢
and x: T ->M"(c) an isometric immersion. If eyl is an
orthonormal frame of normal vectors e, and (h%j) are the
coefficients of the secont fundamental forms with respect to e,

relative to e;, e,, the mean curvature vector is given by

H =

1 2 o o
7 ) (Fyy ot Bz g}
a=3

Suppose T%T is defined and parallel in the normal bundle of =x.

. H
We assume that e, have been chosen with e; = TET. Then the

globally defined form

n 4

d 4 b !
: (h?l 2 ih?z) (w, + tw,) (1.4)
o=

is homorphic on T because each matrix (hgj), a > 4, has trace
zero. If »n =4, also the quadratic form
N aige il . 2
(hy, = th ,)(w, + iw,) (1:5154)
is holomorphic on T. Hence we may assume that e;, e, diago-

nalize (% hence also (h;j), because the normal bundle of

L
7“7)5
z is flat (by hypothesis e; is parallel, hence also ey ).

L& i T-»M“(c) is an isometric immersion, the Gauss
equation is

det(h>.) + det(h..) = k-c (1.6)
1J 1d

and the Codazzi equations can be written
a a v o _z0 1N, o
'ej(hii) + ei(hij) + (-1) ai(hii hjj) + 2(-1) ajhij 0, (1.7)

where w,.= (-1)7 {aw +aw ), @ = 1,2, i #4,0 = 3,4 and

id°
a; is given in (1.2).

§2. Isometric immersions of a torus with the same mean curvature
function in Ma(@) and M“(c). et s T—»M“(c) be an
isometric immersion into a 4-dimensional space form of curvature
We say that = s a full immersion into Mh(c) if there is no

totally geodesic submanifold Ms(c) of Mh(c) such that
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z(T) = M3(c). We say that « has parallel normalized mean
curvature vector if Z is parallel in the normal bundle of =x.
Immersions with parallel normalized mean curvature vectors were
studied in [1] and [3].

Lemma 1. Let x: 7 > M'(c) be a full isometric immersion with

H

parallel normalized mean curvature vector Let e . cnim DE

a global frame on 7T associated to local isothermal parameters

diagonalizing the matrices (h;.) and (h;j) of the second

fundamental forms of x relative to the orthonormal normal frame
Came Gy, With en = —%T ! Then, there exist two Tocal isometric
immersion of T into M (¢) with mean curvature |#|, whose

second fundamental forms are given by

3 L 3 L
hll hyg P “hyg
and
L 3 4 3
7711 hzz “hyy hao

Proof: We will use the Codazzi equations for =, which can be
written, (fior o 2a 5=8394;

1)
@

7 o o
_ez(h?1) o el(“?z) & al(hn_h?z) + 2a h1z

2

I
o

‘ [0} o o o o
_81(7722) i ez(hlz) * az(hxl'hzz) = 2a1h12

Since e , e diagonalize both (%}.) and (%:.) we have

1 2 1d td
—e,(hyy) + ay(h]y-h3,) = 0 (2.1)
—e (B2) +a (h]-h) ) =0 (2.2)
-ez(hil) + 2alh:1 =0 (2.3)
e, (hy,) + 2a,h’ = 0. (2.4)

If we change h:l for -hY dn (2.3) and (2.4) we obtain

I

_ez(_h“ b 412, (~Ry1) =0 2:3)!
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and

e (-hy,) + 2a,(-h}) = 0. {(2c4)!

11

On the other hand, the Gauss equation for zx is

2

Whihaa = (B = ke, (2.5)

where X 1is ‘the Gaussian curvature of T.

Now, by adding the equations (2.1) to (2.4) and
subtracting (2.3) from (2.2), we get

_ez(hfl) i a1(h§1'h;z) * el(hgl) i 2a2h:1 =0 (2'6)
and
N N N
e (hy,) + a,(h],~h;,) * e, (h},) - 2a;h;, = 0. (2.7)

Observe that (2.5), (2.6) and (2.7) are the Gauss and the
Codazzi equations for a local isometric immersions x,: T - Ma(c)
whose second fundamental form has matrix

with respect to e . e

Similarly, by adding (2.1) and (2.4)', and then, subtract-
ing (2.3)' from (2.2), we get

5"

Y+ a (B2 =B Y 4 e (-n* ) + 2a (-A* ) =0 (2.6)
and
—e, (B3,) + a,(h] -h},) + e, (-h) ) - 2a,(-h; ) = 0. (2.7)'

Again, (2.5), (2.6)"' and (2.7)' are the Gauss and Codazzi
equations for a local isometric immersion x,: T - M3(c) whose

matrix of the second fundamental form is
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3 4
i1 “hia
4 3
-hl 1 h22
relative to e,, e,. Since both x, and =z, have mean curvature

function |#|, Lemma 1 is proved.

Let T be a torus equipped with'a Riemannian metric and
leti @gazielyp: M“(c) two isometric immersions and # and # the

mean curvature vectors such that |z]| = |Z| and both normalized
mean curvature vectors T%T and —@— are parallel in the normal
o H
bundle of =z and x, respectively. Choose normal frames
H ¥ Vi o o o
¢y = TET v iE o Rand* g, = TgT, e, L+ e,. Denote by (n;;)

and (2..) the matrices of the second fundamental forms relative
J

to e, and Eu, a = 3,4, taken with respect to an orthonormal

tangent frame e , e, associated to local isothermal parameters
Zojomt <y lLet

y

3 . .
B = (k] -h),-2th},) and H' = (hg g et s m2ehts Ji (2.8)

and define #° and #° similarly.

Lemma 2. Let x,x: T - Mh(c) be isometric immersions with the

same mean curvature functions and both having parallel normalized

=9

|

mean curvature vectors ez = T%— and e, = | . Suppose B #0
and i # 0. Then, either

[est

H = H (2.9)

or the mean curvature is constant.

Proof. We assume that the global orthonormal frame e, , ¢, on

7 is locally associated to isothermal parameters. Denote by

w w the dual frame. Since (h;j) has trace zero, the qua-

1°2 2
dratic differential H“(ml+iw2)2 is holomorphic. By Lemma 2.18

in [4], the quadratic differential (Ha-ﬁa)(w1+ w2)2 is holomor-
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phic, because (h;j) and (ﬁ;j) have the same trace (by the
hypothesis of equal mean curvature functions), hence the
difference has trace zero. On the other hand, by the choice of
e; » e, both are parallel. Hence the second fundamental forms
relative to e, and e, are simultaneously diagonalizable.
Therefore, we may assume that e s e, diagonalize both (h;j)
and (h;j).

By the“Riemann-Roch's theorem the two holomorphic
quadratic differentials H“(w,n’wz)2 and (Ha—ga)(wﬁiwz)2 are
constant multiples of each other, because the surface is a torus.
Thus, we may write

H - H = bH , b = constant
(2.10)
Similarly, A* = a#", a = constant.
Now, because H® = n2 -hd, and #® = ki, -h}, -2k},
we have
3 =3 3 3 =3 '3 e 3 = 3
g -8 .F (hll'hzz) 7 -Agd bz 28R E) 1= gl 4 (2|2[-71y) -
=3 6 3 3 =3 >3
RY o+ (2|H|-Ry,) - 2th,, = 2(h] <R} ) - 24R],,

where |H| dis the mean curvature function. On the other hand,

Lo " <y _ £ 3 73 '1 - 4
H' = 2h; . Therefore, writing b = b +ib,, h} -h  -th , = bhy,
which gives that

3 T "
h11 - h ="b
and By sl bio (2.11)

From (2.10), writing a = a,+Za,, we also have

o '
Riy = 930
o 4
hyp = @,k (2:12)

ISt Case. Suppose R SRR P T pure imaginary. The Gauss

~equations of the two immersions give that
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3 y N ~3 e
det(hij) + det(hij) = det(hij) + det(hi.).

J
Hence,
2 _ 73 =3 = 2 ~14 2 ~ 2
o (21B]-R2 ) = (nd ) =R (2|8]-R} ) - (B0 - (R - (RY,)
By using (2.11) and (2.12) we get
3 2 ~3 2 L 2 2 L 2 2 L 2 2 L 2

Z(hil_zil)lHl_((hll) —<hll) )-(hll) +b2(h11) +a1(hll) +a2(h11) =

~3 2

S e et A L A i BT 0 R ol 1 e

11

w0 u : R » R W ) booy2
2b |m|n - b At (hD 42 ) - (V-bZ-a?-al)(n},)* = 0.

1 211 1%k

Dividing by h:l we obtain

3 78 2.2 Tt | e
2b |Gl = b, W 452 Y = (1B et =gl Jh, = O,
But #° = n® -b n" ., Substituting we get
A 3. y O U |
26 |H| - 2b R 4+ b*R* - (1-b%-a’-a’)nr' = 0.
1. 12 i | Ly 3 2 1 2 133

By hypothesis, either #° - > = 0 or b, # 0. In the last

case dividing by b, we get

3 1 D S T "
2|H| = 27711 = 31—-('|-Z>2-czl-a2--bl)h11 = (0,
3 ) 3 gt VS lg 3 i 3
But “ 2]8| = 2k | = 2|8|=h Ay = Ry.=h,, =ieE . SRence
3l 1 2 2 D o 2y..h
H = m (]—bZ—al -az-bl )H

proving that #°’(w,+iw,) 1is holomorphic. By Lemma 2.18 in [4]
the mean curvature is constant. Therefore, either b = 0, and so

sk Case.

or the mean curvature is constant, finishing the proof of 1
Note that, in this case, we do not need the hypothesis of that
T

H' # 0.

Z"d Case. Suppose H3 - 5® is pure imaginary.
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Because (Z;j) and (ﬁ;j) commute (because the normal bundle of
z is flat) we have that
=3 = - =4 ;"3
(R )Ry 50 = (B ) (B (2.13)
Since Ay, = -h,,, (2.13) yields
~u ~3 243 ok ey
Ry (Ry =hy,) = 2k By, (2.14)
Now, either
~1u
ky, 0 (2.,15)
oL
or ho, £0. (2.16)
Suppose (2.15) holds. By (2.14) either
~1
hy, =0 (2:.17)
a1t
or o B Oy (2.18)
In the first case, (2.17), we have that TN (since 5:2 = o

which contradicts the hypothesis of the lTemma. In the Tast case,
(2.18) implies that

Bonon s = Oy (2.19)

'-o')

since e , e has been chosen to diagonalize (h;j) and (hig

1 2 %
and by hypothesis e LI pure imaginary. Therefore,

H3 TRy

proving the lemma under the hypothesis (2.15),
Suppose (2.16) holds. Dividing (2.14) by nt we get

12
: 2h n3, ayh bl 2a. b ; et
22 » AT a 1149 4

1 2
by (2.11) and (2.12). Therefore, (2.20) and (2.17) yield

n

or”

2a,b, ) e 2a,'b,
o hia ¥ By = (- —

L
+ ib, ).

This gives that
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3 2 a,b, b 2
H (w+Zw,) = (- o ¥ i—;)H“(w1+iw2) g
2

= o )
proving that Ha(w1+iw2) is holomorpi.ic, and so by Lemma 2.18
in [4], the mean curvature is constant. This finishes the proof
of the Temma.

Theorem 1. Let x: T - M“(c) be a full isometric immersion with

H

7 Suppose there
. o 3 .

exists an isometric immersion x: T - M (c¢) with the same mean

parallel normalized mean curvature vector

curvature function |Z|. If |H| is not constant, then x is
given by one of the two immersion of Lemma 1.

Proof: In the previous notation, we may assume that (h;j) and
(h;j) are diagonalized. We will show that
#° - H® = pure imaginary. (2.21)

Suppose B - B is not pure imaginary. We may apply the argument
in the 1% Case of Lemma 2 to conclude that

3 ~

H = H?, {2.22)

1St Case of Lemma 2,

In fact, by the observation at the end of the
the argument applies even when & 1is an isometric immersion of T
into Ma(c). From the Gauss equations for x and x, we obtain

3 Y . 73
dEt(hij) + det(hi.) = det(hij)’

J

hence, by (2.22)
L
det(hij) = 0. (2:23)
Since (H;j) is diagonalized, (2.23) gives that h;j = 0, con-
tradicting the hypothesis of that =« is a full immersion. There-
fore (2.21) holds and we have

73 3 73
Bow o iy (hence, Bep = 0.1,

Again, by comparing the Gauss equations for x and z, we get
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Ty ?
h12 = thiq.
Thus, (zij) is
3 L 3 _pk
hll hll Zllll hll
or
R R -nt ht
15 212 11 2 2

which are the matrices of the second fundamental forms of the two
local immersions of T into M*(¢) given by Lemma 1.

§3. Isometric immersions of a torus in Mn(c) with the same mean
curvature function. Let T be a torus with a Riemannian metric,
e

e, a global orthonormal tangent frame associated to Tocal

S

isothermal parameters on T. Let w,, w, be the dual frame,

1
Theorem 2. Let T be a torus with a Riemannian metric and %: T +R
be a positive non-constant smooth function. Then, there exists at
most two full isometric immersions of T in Mn(c) with parallel
normalized mean curvature vectors and the same mean curvature
function *&.

Proof. We separate the proof in two steps.

15% step - The ambient space is M%(c). Let =z,z,z: T + M'(c) be
full isometric immersions of the torus with the same mean curvature
function % = |H| = |H| = |H| and having

—ﬁ—, —5— and —g—

12" 7] 7|
parallel in the respective normal bundles. Consider the normal
orthonormal frame e, = ng and e, le; for the immersion =.

Take the quadratic differentials Ha(w1+iw2)2 and H“(wl+iw2)2,
obtained from the coefficients of the second fundamental forms

3 4 s 3 b s s e
(hij) and (hij)’ with' B UGando T asdini(2,8). . Similavly,
we define #°, ﬁ“, %' and #' relative to the immersions & and
z and consider analogous quadratic differentials.
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Observe that, none of H“, A% and H' can vanish since
by hypothesis, x, z and z are full isometric immersions. Then,
we may apply Lemma 2 to conclude that

B =73 and # = 53, : (341 )

), hence also (h;j).

) are also diagonalized

, chosen to diagonalize (h;.

~3 ~y

Therefore, by (3.1) also (hij) and,, 1{%;

with e, s e

=3 .
by e, , e, because (hijz commutes with (hij)' Now, the Gauss
equations forx' land'"@eVgive that

8 4 2 5 m 78 el 2
hilhzz AT JEADO S IR A PRI GaT 1Y
Hence, by (3.1),
L =y
hyy = thy (3=2)
Similarly, one proves that
L =
hll X ihll' (3‘3)
Therefore, (3.2) and (3.3) gives that either A ) R R
This, together with (3.1) yield
gl = (3.4)
and §
either B' = E' or 5" 1angtt (8&5)

Because x, z and =z have the same mean curvature function,
(3.4) implies that

3 i) =3

(h35) = (Rpz) = (hg;).

On the other hand, (3.5) yields

. i th i
either (hij) = (hi

j) or (h;j) ¥ (Z;j

)y

Therefore, either x = * or x = x (since the normal bundles are

flat), up to congruences. This finishes the ISt step of the proof.

Z"d step - The ambient space is M”(c). Consider three immersions

c,z,x: T > M'(c), with the same mean curvature function and all
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having parallel normalized mean curvature vectors. Choose a normal

orthonormal frame e, e s--+5¢ s relative to x. We work
il

R
with a global orthonormal frame associated to local isothermal
parameter z = x+iy, wWith e = f%/x and e,
AL o A EEEE 8T o S

|ax1 !ay|' Denote by (hij) the coefficients of the second

fundamental forms relative to; . eysat.= 8 wsen  Withf respect to

= gL/A, where

e e, . Define

12 2
n

- o o . 0 32 g th

o = 1 0%, n, <20, )" (v 4iw, )

where w,, w, is the dual frame. It is known that ¢ 1is holomorphic

and globally defined on T, because each matrix (hiJ) has trace
o

zZeros for g tsEed i . 50

no~on "o~n

We use and = to distinguish entities relative

to the immersions =z and ;, analogous of those relative to the
immersion x. Since ¢, & and ¢ are holomorphic on the torus,
by the Riemann-Roch's theorem two of these are constant complex

multiples of each other.

Since T is connected and |#| 1is not constant, there
exists a point p €T such that ga(p) = 0.

and Bt of

the immersions =z, =z and ;, respectively, vanish in a neighbor-
hood of Pp.

We claim that the curvature tensors R, Rt

Suppose this is not true. Then, there exists a
sequence of points p;, converging to p such that, for each &
either
L ~L =

Ro(pg) # 0 or R7(p,) #0 or Ei(p,) # 0.
In this case, for a theorem in [f], each Py has a neighborhood
minimally immersed in an umbilical hypersurface of Mn(c) and so
|| is constant in such a neighborhood; therefore, dH (p,) = 0
and then, by continuity, also d#(p) = 0, a contradiction.

Thus

rt = o, &t

there exists a neighborhood Vv of p such that
0 and Rt =0 in Vv and this implies that the
codimension of each of the three immersions v =

1 e

x and x can be

"r b
¢ are reduced to

reduced to two. Therefore, in 1V, ¢, 5 and
the holomorphic quadratic forms
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y =
H (w1+iw2)z, " (w +7,'w2)2 and H"(w1+iw2)2

Moreover, in V, both '  and 7' are constant multiples of H*

We remark that the same computation in the first case of
Lemma 2 can be applied to show that 2 = Z°.

y

For, we need first
to prove that when (hi then both
3 =3

j) is diagonalized in 7V,
B 7 V' d R - B are not pure imaginary. But this is a con-
sequence of the following fact: there exist a point ¢ in the
boundary of Vv and a sequence a3 g V such that q; converges to
q and R¥(q,) # 0
theorem in [17,

(because #n > 4), and so, by the mentioned

73

H’(qp) = 0, hence, by continuity, B fqf =0;

The same holds for 53 Now Tet e, , e be an orthonormal frame

2
associated to isothermal parameters that makes real the coefficients
of ¢. In VvV such a frame makes #' real and then (h;j) 15

is diagonalized and 2 is real
(#°-2°)(q) s

The same holds for

diagonalized. Hence, also (h;j)
e b By, clomth nudity , B’ is real at qrERdTEh U s?,
real and therefore #° - #°

g = iR,

fisimelal "in 2 %t

Thus, in V, we have that #° = B° and #® = A°. The

conclusion now follows by using the same argument of the first
step of the proof.

[']

(2]

[3]

(4]
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