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SIMPLE PROOFS OF LOCAL CONJUGACY THEOREMS FOR
DIFFEOMORPHISMS OF THE CIRCLE WITH ALMOST EVERY
ROTATION NUMBER

MICHAEL R. HERMAN

Introduction

If g € B satisfies the diophantine condition, DCB:
Jd8 > 0,3y >0, ¥p/q € @ implies |a-p/q| > Yq_z_B and if
0/ < B <o g werproposeito givé simple proofsof some theorems of
[2, Annexe] (i.e. the local conjugacy theorems of diffeomorphisms
of the circle to rotations of rotation number a).

The main new idea is the use of the Schwarzian derivative
of a diffeomorphism £ € Da(T;), Sf = 8(f) = D’Log Df - +(D Log fo.
To solve foh = hoRa, R, being the translation of ' or R
R (0) =6 + a, we take the Schwarzian derivatives: 8 (feh)=S(heR))
which reduces to ((Sf) oh)(Dh)2 = (Sh)oﬁa - Sh; to obtain Sk we
solve the linear difference equation and as 0 < B8 < 1, a€ D0
we only "lose" 2 derivatives for the function «Sf)°hXDh)2. The
use of the Schwarzian derivative was in [2,IX.2.1], implicitly,
one of the main ingredients of the proof of the fundamental
theorem of [2]. The fundamental theorem of [2] has recently
been generalized by J.C. Yoccoz ([8] and [9]).

In the present paper we will only be interested in the
local theorems (i.e. the existence of a "smooth" diffeomorphism %
when f dis a smooth enough perturbation of R, ). Our proofs are
very similar to the case of rotation numbers of constant type we
have already given in [3] and [4].
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In I, we study the Sobolev smoothness of % for a € DCg»
0 < B <1, following the proof [3,IV.4.3] we have given for
rotation numbers of constant type in the Holder case (see also
[3,VII.10] for the Sobolev case for rotation numbers of constant
type). From I1.13 to I.17, we study (rapidly) the Holder case
(that is already known by [2,A]).

In IT, we study V. I. Arnold's local theorem ([1] and [2,A]).

For that if a € DCgs 0 < B < T, we also use the Schwarzian
derivative trick and similar ideas to those of the proof we have
given in [4,VIII] in the case of rotation numbers of constant

type. We refer the reader to [4,VIII] for some details. The present
Proof, that only uses the standard implicit function theorem,

yields also V. I. Arnold's result on analytic dependence on analytic

parameters.

A11 the results we obtained in [4,VIII.7 to 14] stay true
fior: 1oy E DCg, 0 < B <1, with the same proofs as the ones given
in [4,VIII.7 to 147 (for the global conjugacy the reader will use
[2], [8] and [9]).

In particular, by the same proof as in @,VIII.TZ],one
obtains Siegel's theorem for a € DCgs 0=« "Bl lad Byswabsimidan
proof as the one given for II.8 the reader can prove directly, as
an exercise, Siegel's theorem, by introducing the appropriate
Hardy Sobolev spaces on the unit disk {# € ¢, |z| < 1}.

Lest Dg be the set of mappings that are of the form identity
t$, where ¢ 1is a z-periodic ¢-analytic function on
Bg = {z € ¢, |Im z| < 8}, continuous on Ea. I nb LT 4% Fofl o withig
V.I. Arnold D], we study the dependance on o of the functional
equation
{+1) byt 80 fohly = Ao Ry

1 0 0 : !
where A € C, f € Ds and %2 € Dé/z' To do this we complexify a.

We only allow a to belong to aaclosed set QC¢C such that

AN E=c ={aem® | ¥p/aea, |a-(p/a)l > va 2B} where

0 <B <1 is fixed and Y > 0 is small but fixed. The set o is
defined in order to study non-tangential limits to CY (in contrast

to V. I. Arnold [1] we define @ directly, cf. [1, p. 244]).
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In IIT.6, we show, that if f-Id 1is "small enough" and
a € Q, then we can find solutions A, and ha o t(i+)y ofthat
depend continuously on a € @ and holomorphically on a € Int Q.

We define the mapping G by G(a,f) = (Ah,) € € XD?S/z and

a)

A & 0 - 0
denote by J the inclusion of € x D(S/2 into ¢ x D&M'

In IIT.13, we show that the mapping JeoG(z,f): 2€ Q +(%Z,hg €

GXQ;4 is Cl-hoﬂomohphic (et P IEI QTS El a2 Fit s ¢! in the sense
of Whitney and satisfies 3(J°G(s,)) = 0). This solves a question
left open by V.I. Arnold D,p. 251]. The proof is completely
elementary and reduces to the study (in III1.9) of non-tangential
limits of the derivatives of a € Int @ -+ G(a,f), with respect

to a, when g ~» CY’

The method is general, simple and can be applied to other
problems in small divisors (see, for example, a very similar
question studied by Belokolos in [B]). For a related question,
we refer the reader to J. Poschel's work [5].

In IIT.16, we recall well known properties of Cl—ho1omorphic
mappings on compact sets of €. For reasons we explain in 16, we
prefer the terminology Cl—hoﬁomo&phic to monogenic functions
(every Cl-holomorphic function defines a monogenic function in the
sense of Emile Borel).

I would like to thank Faye Yeager for typing with great
care the manuscript, Claudine Harmide and Marie-Jo Lecuyer for
typing the corrections, and Jean-Christophe Yoccoz for helping me
to improve the presentation of the paper.

This paper was written during my visit at the Mathematical
Sciences Research Institute and I would Tike to acknowledge
support from the N.S.F.

I. THE SOBOLEV CASE
1. Notations

Let Ths IR/7Z be the circle and d6 the normalized Haar
measure.
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We denote, for a € T' (resp. a € IR), by R, : x> xta the
translations of T (resp. RR). On TL, R, is also called a
rotation and its rotation number is a.

We denote by Ck(TI) the functions of class C
on the circle and we will also identify functions of ¢

functions ¢: IR > Ir of class Ck and Zrperiodic.

kK (xe m)

k(') with

We define the norms:

loll = sup lo(o) |
ca 6eT

loll , = sup | 70|

g 0<j<k c*®
¢}
where D9(8) = é%%—l.

2. Let 0 < B and DB be the set of the numbers
satisfying a diophantine condition of exponent 2+B:

DCB = {d € ﬂ?. HY Ze 09 ¥ p/q € Q’ i = %I z —éLB}.
q

If B >0, then R-DCq is of Lebesgue measure O.

We define the Sobolev spaces, k€ m,

(1) = {¢ € 5 (T% a0, ®) | 76 € 1, j=0,---,k}~

D being the derivative in the sense of distributions (and D°¢=9¢).

For k > 1, we have Ck(Tl)c:Wk’z(Tl)c:Ck-(]/z)(Tl)c:Ck/z(Tl).

If ¢ € W%, we have:

lo(z) - o(y) | < D8]l , le=y |/
1 L

If, moreover J $(0)dd = 0. then
0

(*) loll o ¢ =5 28l

c 2(3) L
see [3,VII].
We define

0

W?’Z = Wk’Z(Tl) - {¢ € Wk92

3. Lemma. Let 0 < B < 1

a € DC

B
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and k > 2,

49

then forn evenry

and ¢ € yX%, there exists a unique ¥ € WX*? such that
0 q 0

and furthermore

1

write

with

Proof.

’Y::

We have formally

1%

in

¢°Ra =y

2

MILZ

f

O

C, being a univensal constant and

14
q

q€m, g>1, p€Z

Q

¢ = 2
n§0 n?
2
o 1%l 7
a
Y] LiSen
n#0 n”(

-1
|

B

e

1

2mINng

m)

¢

|0kl -
L

lga - p|.

A

eZHLna_1)

and we deduce the result from

sup

1

W40 nzlezﬂina_]

4, Let us consider the mapping:

y: (¥,A) € W’

1

(T°)

(1)

L

2Min

S

It is enough to prove the Temma for k

Io%ell”, .

= 2, We can

1 2 2
XIR > A+ Dy -~ 5V € 5 -

the mapping

= ¢,

then

is

well

defined

and of
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We have v(0,0) = 0 and DY¥(0,0)(Ay,AN) = D(AY) + AX, where

DY (y,r) is the derivative of map V¥ at the point (¥,r). Since
py(0,0) is an isomorphism, if follows by the implicit function
theorem, that ¥ dis a ¢”-diffeomorphism of a neighborhood of

(0,0) € W,>® x R onto a neighborhood of 0 € L”.

5. For k €M, k> 1, let 0*(T' )}(rediffi(m) | r-1dec™(T")}.

The group Dk(rl) is the universal covering space of the group
k
of ¢

k

orientation preserving diffeomorphisms of the circle

with the Ck—topology. We denote by Id or Id'X the identity mapping
ofia set x.

For x €W, k > 2, we define

') ={repia) | s-1de wk'z};

pk>2(T') is a topological group for the wK>2_topology and we

have, since wko? < Ck'l, Dk’z(Tl) = Dk'l(ﬂl) (see [3,VI and VII]).

6. Schwarzian Deriyatives

For f € Ds’z(Tl) we define the Schwarzian derivative of f
by:

(1) 5f = 8(f) = D°Logdf - - (DLogdf)’

_0'r s [szlz
SDEC e T

We have
1/ 2 1
2 Sf = -2(D D
(2)  sf = -2(Df) [?;;3T7;]

If f € D***(T') satisfies Sf = 0, then f=Ry  for some X€& Ir;
5 i P -

indeed one has D((Df) / ) = ¢ € IR and { D((DFf) 1/2)d6 =0, so
¢ =0 and Df is constant. L

We have if f and g belong to D**2(T')

(3) S(fog) = ((5F)eg)(Dg)* + S(g)

DIFFEOMORPHISMS OF THE CIRCLE

and therefore

-1

- (4)  S(F7Y) = -(SF)er T NOF )

2

a €c°(M') a »0 on a < Oithen a = 0,

Proof. We have by (2)

-1/2) - a

RTRE

p*((DF)

and the lemma follows from the fact

1 1/2
Jo oD (80N a8 = 0. B

c
the induced weak topology from Wk on X

definition see [3,VII.6]), the set k<*°

K2 (for the

continuous.

9. “let '@ & DCg, 0<pg <1, and

Y = inf a*8lqa - p|.

g€lN,q>1,PEZ

Taking ¢ =1, one sees that y < 1/2.

a 4is as above and f € D°(T') has rotation numben o(f)
and satisfies

il sy < B Ys
&

7. Lemma. Let f € Da’z(ﬂl) such that S(f) = a with

8. For &k >3, we define the sets: K°* ={(he0®>*(T") | 2(0)=0

||D7<hnL2 < 13 (|05 , < limplies |lpr-1ll < 1,12, cf. (%)).
L

is compact, convex and
metrizable. By_[3,VII.6] the mapping g € Kk’2 +~ Sg is weakly

51

Theorem. There exists constants e > 0 and ¢ > 0 such that, if



52 MICHAEL R. HERMAN

then thene exists a unique #h € D**2(T'), such that: Hk(0) = 0
and

£ = hoR o '
& a

Moreover h satisfies the following inequality:

2’4l , < 2N s-R )l 5.
L c

<o

Proof. Let us define a map

which has a fixed point % which is the diffeomorphism we are
looking for.

If 5= hoRaoh—1 then fop = hoRa and therefore using
(3):

(sf)enXDn)® = ShoR,-5h.
For % € K3’Z, let

] 2
HEE R = -jo (5£)om)DR)" d8.

1
By 3, we can find wELZ, satisfying J Y (6)de=0 and such that:
0

2

(5) VoR, = b = ((5f)eh(Dr) + u(f,h)

a

(one has ((Sf)ek)Dh)> € W22, see [H,VI.5]). MWe have

c 2

vl , < f% | D% (((sF)em)(DR) ")
15

<

LZ
< ig (o (SAI ) ), + slioesell Norl” 1Al |+
c (6] & c 5
+ 2lsfll N0%Al" + 2lsel llorl |1o7Hl )
c c € c L

Using that 7 & 7% (i.e. JD7A] , < 1) and that, if ¢ € 7,7,

one has

* < g ~ {HAEVT 5
i H¢HC° < ;?:3777 HD¢HL2 wof = 1 1 1])
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we obtain that

(6) Il , < C,e
L

2

c, > 0 being a constant.

By 4, we can write

lis. 2

with V¥, € W

X € r, satisfying

”D]'I"]H 72 i C‘ae
(8) 4

o [ c,€

where ¢; > 0 is a constant and (¥,,A) s unique under the
restrictions imposed by (8), if € > 0 s small enough. We
define 1, € p°*%(T'), =&
conditions:

, being uniquely determined by the

n (0) =0
and
DLlogph, = ¥,
3 My Y +a
Tet v, € W’ such that Dy =y, then y, = ¢ 2, aEe
being chosen such that J; wa(e)de =13 finally

1

0
(e Jows(t)dt.

By (5) and (7) we have:

(9)  u(fsh) + ((5F)em(DR)" = sher_ - 5h,.

Using (8) and (*), if ¢ > 0 small enough, we have hIEKa’2

D Log Dh, satisfies (8) and therefore we have defined a

mapping:
o Ka,z N K3’2
b T H

10. Lemma. The mapping & 448 continuous gor the weak
topology on k2.
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Proof. Let (hi)i>0 be a sequence of k°>’® converging

to n, and o(h.) =g

7 z°

By (9), we have:
(10)  w; + (SF)ehJDR,)* = (5g,)°R, - Sg.

Let (g.

P converging

n)n>0 be a converging subsequence of (gi)iEO’

to g (this is possible since %% ys compact for the weak
topology).

As g; > 89; is continuous for the weak topology on Ka’z,
n
Sg satisfies (8). "

1
Since the maps %, » u(f,r;) = -j (SF) OhiXDhi)zde,
0

2
hy > ((8F)°h;)(Dh ) are continuous for the weak topology on Ks’z,

passing to the limit in (10), we obtain:
2
w ot ((5F)°hr(DR) = (Sg)°R, - Sg
and since g satisfies (8), by uniqueness, g = ®(%) and the
Temma follows. | |
11. End of the Proof of the Theorem

By Schauder-Tychonov's fixed point theorem there exists
hex®® and u € B such that

W+ (8F)omyDR) " = (Sh)oR, - Sh.
From (3) and (4) we obtain:

W+ S(foroR__) = ~(8(h7")en)(DR)

hence

LT + (S(fohoR
o (5(fehoR_

It follows that

By 7, one obtains:
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and therefore
f o= RxchnRaoh_l

As po(f) = a € R-¢, we conclude, using [2,1I1.4], that » =0
and we have obtained
o5}
s hORQOh

The inequality in the theorem follows from (8). B

12. Remarks.

1. By the same proof, for k > 5, there exists €y > 0
and Cp > 0 such that, if f € Dk(rl), P(f) = a and
Hf—RaHCk < e,¥, then there exists 7 € %% (r'y, n(0) = 0,

such that ¢ = koRaoh-l and with the inequality:

2.2 - [f =0t giee il fthel el K we constructed is
smoother; in fact #%-Id € w (r') (and even better

n-1d € ¢ 7B(T'y, if 0 < <1, cf. [3,VI] and 14).

13. Holder Spaces

For ¥ € mw and 0 < a < 1, let
of functions ¢ € Dk(Tl) such that Dk¢ is Holder of exponent a.

K’y be the space

We define the norm

k
H¢Hck+a 3 5“P0|¢Hcks | D ¢\Ca)
with
|¢I = sup ‘¢(.’E) - q)(ﬁ)‘
c?  aty | z-y|?

14. If p> 1 and qa € DCB’ then by the same proof as
for [3,IV.3.7] (see also [6]) we have the inequality:

1/p
1 e e N1+B
w1

O<[;|§N |na|?
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¢ > 0 being a constant and if x € IR

lall = inf =4 .
LEZ

15. By the same proof as in [3,1V.3.8.ﬂ one proves,
using 14, the following lemma:

Lemma. Let a € DCg, k €I, 0 < a< 1, with k+3 > 148 and

k+a 1 1
k+a - 1-B ¢ I then fon every ¢ € C (T ) with f
0

k Tohi
there exists a unique ¢ € C 18 1 B("lrl) satisfying:

and furtheamore

ey %
< = 1% |

”¢”Ck+a - 1-8 .

¢, > 0 being a constant.

If % = kta - 1-B € I,

2 > 1, then one has to replace
2-1¢ B

2
vect by veco* (i.e. D

[3,1v2 and 3]).

is "Zygmund smooth," see

16. Using the same ideas and strategy as in the proof of
9 (i.e. the use of Schwarzian derivative) and using the same
Holder techniques as in [3,VI.4.3] one proves the following
theorem:

Theorem. Let &k > 535 then there exists €, > 0 and Ce > 0 - such
that i a € DCgs 0 < B <1, and f ¢ Dk(Tl) has notation

numben  P(f) = a and satisfies
”f‘Ra”Ck 2 Y

then there exists a unique % € D[k_]—B](Tl), h(0) = 0, such

that

and &

satisfies

Nn - Id”CD?1"@
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-1
f = hoRaoh

°k
S T’Hf-Ra”Ck'

(If « € R, [x] denotes the biggest integer < x),

17. Remark

One can even show that *#

(and if k-1-B € v,
Besov spaces, cf. [3,VI].

II.

g c* 1B i k1
h o€ C(k_1'6)*). One can even

THE ANALYTIC CASE

1. Notations

Forit7s >

0

5l

et

Bsg = {z € ¢ | |Ime| < &}.

We again denote by i the translation

If a € IR then

RQ(B(S) = B(S'

z 4—Ra(z) =z +a (a¢€C),

denotes the space of functions ¢ Bg > ¢ of class
Int By and Zperiodic (i.e, ¢ (2+1)
We define the sup norm by

holom

If 0

where
point

orphic on

<rdlend

Do(z) =

2.

Holl . = sup o (2) .
Cs z€36

-8 ¢17V*

introduce

k
c on

and if ¢ € Og, then ¢ € 0?, and one has
Cauchy's inequality:

I

il , <lloll o/ (s-¢")
CcS' C(S
denotes the C¢-derivative of ¢

at the

817

Let k € WU {~}; for 6§ > 0, og
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2. Hardy Sobolev Spaces
For k € m, 1let

Ok,Z = {¢(Z) = 2 aneZ‘IT’l,nZ a, €0y “nE Zj ”Dk‘bHOo,z s +°°}

n€Z s
with e
Do = Z smina €2l
n#0 ®
and ; l ]61/2
loll oz = I la el
0" lnéz "
s
With the norm J1/2
2 k 2|
g2 = [laa1” 1050 ]
O(S 06,

the space O§’2 is a Hilbert space.

(1) We have, for &k > 1,

k k,2 k1
Og C06 COG .

1
If ¢ € Og’z and JO ¢(6)de = 0, .then

(*) ol , « —75 28l , -
Cs 2(3) 0s°

We use the following facts and we refer the reader to [4,VIII]:

(2) For %k > L, Og

(3) For &k » 1, if g € 05" and ¢ is holomorphic on

is a Banach algebra.

a neighborhood of g(BG) then ¢og € O%’z and on a small

enough neighborhood Vv of g in og’z the map
W E TV > doy € O%’zv

is holomorphic.

k2

3. The Spaces Ds

Let
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Rl ks 2
Ds = {Id + ¢ ' ¢ i€ 05 }
and
k2 k,2
kP =qn = 1d+0 | 6 805°,0(0) =0,
k
loll ,< 8/2 and |[D%| ,, < 1}.
C 9
s 04
If % B Kg’z, then

We use the following f
and % € Kg’z, then ¢

(0,7) € 0% x K" —

h(Bg) < E%SC I”t(Bza)'

act (see [4,VIII]): If &k > 1, ¢ €055
oh € o§’2 and the mapping

doh € O§’2 is holomorphic.

4.0y Let aEDCB, 0<B<1  we define the number Y as we did in I.9.

Lemma. There exists C
a € DCy then fon

thene exists a unique

Furthermore we have
12

The proof is the same

5. Schwarzian

32

Let., £ € Ds

Sf = 8

and we have the same f
proof, Sf =0 1implie

=t 2

>0 such that, 4§ 0 <8 <1, k>2 and
1

2
evenry ¢ € Og’ with J ¢ (t)dt = 0,
0

N T S
v 0T with J w(£)dt = 0 and
0

ViR E NSRS 0L
c k
YW 0,2 5 ¥ 12" oll 0,2
Os Os
asyin L3,

Derivatives
with |pf - 1] < % on Bs then we define
(f) = p*Log bf - L(pLognf)

ormulas we had in I.6. By a similar

s f = Ra for some a € C.
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6. Lemma. There exists 0 < ¢ < = such that if a € 0
2 S

and f € D;’z satisfy:
la(z) - 1| < ¢
Ipr(z) - 1| < ¢
forn =z € Bgs and 4§
Sf = ua
gorn some w € ¢, zthen it folLows that u = 0.
Proof. One has (cf. I.(2))
LA Jo 5 7
p*((pf)™ /%) ==L wa (0p)7'72,
hence
PO PR b o -1/2
0 - [0 D*((0F) ™ /%) (u) au =-;uj0 a(t)(0r(t))” /2at.
5 1 -1/2
If ¢ >0 1is small enough, a(t)(Df(¢t)) dt # 0, hence
o= 0. B 0
1 X 2 1
7. Let 0% = {¢ ¢ 05°°, ( o(u)du = 0} and
§,0 Jo
. 192 = 0!2
EE T et

2
(V,2) > DY - 3 (¥)  + A
One has ¥(0,0) = 0, and using as in I the implicit function
theorem, we conclude that ¥ is a biholomorphic diffeomorphism
of a neighborhood of (0,0) in '*? x¢ onto a neighborhood of 0
in og’z.

8. Let a € DCB, 0 < B<1, and we define as in I.9
the number 0 < y < %. For & >0, and y > 0 we define:
% = = I1d + € 0%, ¢ < eyl-
o o | o ob el <o)

$
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Theorem. Given & > 0 there exists e >0, e <+, and a

hofLomorphic map

such that, fon f €V y F(f) = (A,h), one has:

(+) (£ + A)on = heR

. Funtheamonre, we have
§/2

F(IdIB6) = (a,Id‘Bs/z)

and there exists n > 0 such that, if (A ,h ) € ¢xxé}§
satisgies ||n,-1d|] <n and (A +f)eh, = hyeR_, then

3,2
F(F) = (\,sh).  Os/2

Ak

Proof. We want to solve (+), so taking Schwarzian
derivatives we obtain

(5£)en\DR)" = (Sh)eR_ - s,

One has h(Bé/z) c BsS/h G Bq@/s' If >0 1is small enough,

by Cauchy's inequalities we have:

In® Gspyff, < =EX
045/5

¢ >0 being a constant. If e > 0 s small enough, let us
define a holomorphic map

3 B b 342
g Vg,ngcS/z - K(S/z’

such that the map A, - @(f,ho) has a fixed point %,
3

1
For % € Kdii, let u(f,h) = _J ((SF)eR(DR)* ) (u)du € @,
0

the mapping (f,%) » u(f,%) is holomorphic. By 4, we can find

61
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0,2 1
a unique V¥ € 06}; with J Y (t)dt =0 satisfying
0
VoR, - b = ((SF)ehNDR)" + u(f,h)
and since ||D%] .., <1, we have
0 6}2
llwll , , < constant ¢ §™°
O B
§/2
2

(to see that ((Sf),%)(Dh)" € og}j we use 2 and 3). The mapping
(f57) > ¥ is holomorphic. If € >0 is sufficiently small, we

1

can define ¥ '(y) = (¥ ,A), (wl,x)eol’2 x¢, ¥ (0) = (0,0)

1 §/2,0

and satisfying:

hence

It follows that the mapping (f,%) - (v ,A) s holomorphic.

1

1
Let v, € Og}i, J y,(u)du = 0 such that DYy, = ¥,
Y,+e ; e (< J lPz(u)
Ws = e with e = 1/a, a = J e du; if €
0

sufficiently small, a # 0 and 1y, is well defined.
define, if e > 0 s small enough,

By (2) = sza(u)du-

One has, if e > 0 1is small enough,

Then let

0 1is

Finally we

m€ KT (since [ny(5) - a2 ¢ (e ety Mllon -

N

§/2

and we have therefore defined a holomorphic mapping

; 3502 352
®: Vg»cSXKCS/z »Kd/z
(f,h) - hl

such that:

06/2

)
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(1) ((8£)en) (DR)® + u(f>h) = (sh,)eR, - Sh,.

We have o¢(rR_,n) = Id and if € > 0 s sufficiently small, by
a IBa/z >
an immediate calculation of derivatives, we obtain

sup |l[p,e(ssnlll < */2
)

where D,9 is the partial derivative with respect to the variable
n and || ||| is the norm induced by || || on the continuous
0574

§/2

2 'to itself. By the implicit function

. 3,
linear operators from 06/2
theorem we can find a holomorphic map F,: f >~ A € K;;i such
that % dis the fixed point for the contracting mapping

92

) 3i 42
h € Kd/z + o(f,n) € K@/z

and furthermore F,_ (R = Id .
#imo) ‘Ba/z

Writing that % is a fixed point we obtain by (1):

2

(2) (sf)enpn)” + u(fsn) = (sh)er, - Sh.

Furthermore, given n > 0, {if e > 0 s small enough, then
(:3) [lpr = )| 40 2 .
06/2

Using (2), (3) and 6, by the same proof as in I.11, we conclude
=1 ,

that wu(f,2) = 0 and f = R_thcRaoh CLIS: PO which

implies (f+x)on = heR, on By, (using (3) with 1 small

enough, %~ is defined on Bgsw and h_l(Bd/u) < Bg,,)-
Using I.(2) one sees that F : f - x s holomorphic.

We define now

(F)) € exk33?

F(f) = (7,(f), F hEs

2

The Tocal uniqueness in the theorem follows the local uniqueness
of the fixed point of a contracting mapping. B

10. Remarks

1. We can also apply Schauder-Tychonov's fixed point
theorem.
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2. If 0 <8 <1, then one can choose € = 8166 with
e, >0 independent of a and &.

3. If rev, s and if f|, is real, then F(f) = (A,h)
is such that A € ® and %|_ is real (cf. [4,VIII.7]).

ITI. COMPLEXIFICATION OF THE ROTATION NUMBER

1. In the following we will fix the number B, 0 < 8 < 1.

For 0'< v < 1/2, we define:

CY = {a € IR' ¥ p/q €8, |a-(p/q)]| > Yq-z-g}.

h z (6) = "
We have for p € 2Z, Rp( Y) QY

Given €, 0 <e< 1, if Yy >0 s small enough the closed
set Cy is non-empty and the Haar measure of Cy mod 1 is
superior to 1 - e. In the following, we will suppose that vy > 0

is small enough so that CY mod 1 has positive Haar measure,

To study the non-tangential limits to Cy we introduce,
for @&bi= §/1:00 > 0 anthe iset:

.= R :{a+it€¢' a € IR, t € In,
Ys$

0.<'|#| n¢ &%, Ja, € cy such that Ia—aolfltl}.

DIFFEOMORPHISMS OF THE CIRCLE
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We choose &' = 6/100 to have no problems in the proof
of 6.
We have:
QNIR = C\'{.
2. Llet @m®R-cC, = I., where 1I. = s,
y ng f f ]aJ bJ[ are the

connected components of H%CY and J is countable set of indices.
To each interval Ij = ]aj’bj[ we associate the open disk:

A, = { Ty NEN T, & < bl <inf(x-q. - .
; x+iy a x b(7 lyl< (z-a, bj x)}
Let @' = {z € ¢, |Imz]| < §'} - | A..

j€T Y

Lemma.(1) We have Q = Q'.

Proof. We have Q < Q' since QN Aj = ¢ for all 4 € J.
If wu, €92 -mR®r, let & be the line of slope + 1 passing
through u,. Let u, = 2NR. 5If u, € ¢, then the segment(z)
[z g, 0 Us 70 ns i u, € ]aj,bj[, then the segment [p ,y ]
isiiing " s Since LR QLR = CY we have shown that Q' < Q. B2

It follows that @ is closed and @ mod 1 is compact in
C/z (2 mod 1 means the image of © in @/Z by the canonical
projection).

Since Ua. =UA., UR® we obtain:
jes? G

Int @

C §'} - A,
{z e ¢, |Imz| < ) ((E-JAJ)UCY)
={z=a+ 4t€C,a R tER 0 <|t <s¢',

Ja, € ¢, such that la-a,| < |¢]}.

(1)

In the definition of Q we take out the union of the squares A: and not
the union of disks as in [1], only to simplify the exposition.
(2) The segment [ﬁo,uI] means the closed segment of Tine in ¢ joining u,
to wu,_.

1
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BRCHIveni T2 e aindy . =8 10l O wiittha 108 Imzj s
5 =RORNERRANE iland 10 < Re(2, -2,) 1 &6'/%, we can find 2, € @
such that: 0 < Ims, <8', Rez, < Rez,, the segment [20,2:] has
slope + 1 and the segment E32’31] has slope - 1. This implies
that both segments [z,,z,] and [z,,2,] are in Int Q. To see
this it is enough to consider the Tine 2, through =z, of
slope + 1 and the Tine L through =z, of slope - 1 and to
take o= &0 n SLl.

Remark. This implies that the compact set € mod 1 has a
finite number of connected components. Furthermore, the set
@ mod 1 is locally connected. One also sees that the open set
Int @ mod 1 has a finite number of connected components Use
If 6§ >0 s sufficiently small, each U, is simply connected
and an is a rectifiable Jordan curve. We use the symbol 3 for the
frontier or boundary of a set.

4. Let (Dn)neﬂv be the connected components of
¢/z - (2 mod 1). Since 2 mod 1 has a finite number of components,
there exists #n, (i.e. n, = 0 or 1), such that, for n > n,, b,
is simply connected and each oD, is a piecewise linear Jordan
curve. For n <mn,, 3D  is a finite union of piecewise linear

Jordan curves. We have

(¥} T &) < e
n>0

where ln = Tength (apn).

5. For the norm || || 4., the space o%’z (defined in
O .

I1:7)/ista Hilberts:spaces $

Lemma. There exists C >0, such that for every a € Qy 5 and

eveny ¢ € oi’j, k> 2, Zhere exists a unique VY, € 0?:?2

satisfying
Yoo, =4, =4

and
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¢ k

k-
”D wa” Oo S < VHD ¢” 0,2
§ 8
(the constant ¢ > 0 44 independent of a € QY s)+ Furthermore,
the mapping: ’ '

k’z k-z’z
(a.,¢) €0 x0° > ¥, €05,

45 continuous and the mapping:

k,2 k-2 ,2
(as0) € (Int QY,G)xod,o *¢a € 06’0

is holomorphic.

Proof. The proof of the first part is the same as in I.3
using that

sup nt*é (1=~
n#0,a€Q

ez'n'i‘na) '

S0
where C; is a constant.

The properties of the mapping (a,¢) > ¥_, come from the
fact that we suppose that 0 < g < 1 and, if

sytog) = ] bzl gemine g g
0<|n|<w ezﬂ'ﬁna_1
then
c2
"M e ¢aHO§_z’2 < 57:§ilﬂ|0§,z

where C, is a constant (independent of ¥, ¢ and a € Q).
Letting ¥ » +o, the results follow since (a,¢) ~ v, s the
local uniform Timit of the mappings (a,¢) -~ SN(wa). ’ B

_Remark. As 0 < B < 1; the operator

2

K52 k-2,
¢ € 06,0 + v, € 05,0

is compact and depends continuously on a€kQ,, s for the norm topology
% k=2,2

on linear continuous operators from og’i fo 06 =
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6. We will use the same notations as in II.8.

Theorem. Given § > 0 and y > 0 there exists e > 0, € > 1/2
and a continuous map

$ X 352
G QY,GX VE,5 > ¢ K5/z‘

such that, for (a,f) € Q. s*V. 5 G(a,f) = (A,h) satisgies
(+) (f+\)oh = hoR, on BG/2

and

G(a,Id ) = (a,Id

B(S 86/2)'

Furtheamore, if a € QNIR = Cy, then G(a,f) = F(f), where F
i4 the Locally unique holomorphic map given by 11,83 Zhe

mapping

(a,f) € Int 0 xV_  +6(a,f)

€y 6

L8 holomorphic.

Proof. Considering a € € as a parameter and using that
the constant of 5 does not depend on a € @ (by the same proof
as for II.8) one obtains, for € > 0 small enough a map G
satisfying (+). The map G 1is continuous QXV€,6 because of
the following well known fact:

If (Y,d) 1is a complete metric space, X 1is a topological
space and L is a continuous map from XXY 4into Y satisfying
d(L(x,yl), L(x,yz)) < kd(yl,yz), for all =« € X and all Yy,
and y, in Y for a fixed 0 < k <1 independent of =z, y, and
Y,» then the unique fixed point of y > L(xz,y) depends
continuously on =x. (We have taken [t| < &' in the definition

of QY e to have no problems at the end of the proof of II.8.)

The fact that the mapping

3.2
(a,f) € Int 2 % V_ o > G(a,f) € Ky
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is holomorphic follows from 5, using the usual implicit function
theorem in the proof of II.8. B

7. Remarks

1. If e>0 1is small enough, (which we will suppose from
now on) then for all (a,f) € Ry 5%V s Glasf) = (A,n) satisfies:

IpAr-1]| ¢ S 1410
Cd/z

(This follows from the continuity of G on @ mod 1, or also, from

the proof of 11.8.)

2. If € >0 is small enough, then (a,f')G(Q-CY)XV€

extends analytically to a neighborhood of (aQ-CY)XVE 5-

’G*G(a,f)

(To see this it is enough to replace, in the proof of 6, the
s by the set:

. \ i
25" 1a+1t€¢ | €, teR, O0<|¢|<26', HaOGCY such that |a-a,| < ~2[t]I

and to observe that 5 holds for Q; 5 after changing the constant
¢ 0fi¢ Ba)

3. If p € z, we have G(u,p+f) = G(u-psf).

8. Let L € IR, 2] <1, a =28+ 2, a, € CY and

# 36 1l ={t 6 R, |t|<8'} +‘ag=ay wta, For fEV
E} E,(S
with € > 0 satisfying 6 and 7, we consider the mapping

0

t € 1., > G (t) € oxDg,,

3
where G, (¢) = J°G(a,) and J is the inclusion of € KG;

> 0
into $>(D6/u'

As a, € €, the mapping ¢ > G (t) 1is continuous and
IR-analytic on {teIé., t.# 0}, since, if +#0, atEInt Qlchan2).
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9. Proposition. The mapping

0
t € I »G ()€ € xDg,,

is 0f ckass C° and, for every k > 1, one has:

k

(4
sup 12) e (ol < +w
|t 1<87, agc., [A]<T
whene || || s the moam | |+ || || , on ¢ x oY,
06/‘4

Proof. We already know that ¢ € {t € Igis t # 0} > G ()
is R-analytic. We write G () = (A(¢),x(t)) with #n(z)(0) = 0.
We differentiate with respect to ¢, ¢ # 0,

(+) Feh(t) + A(t) = h(t)eR
ft
hence
(1) ALy ppon(s)dhlt) @éfloz?at A
and
drlt) (0) = o.

If we differentiate (+) with respect to the variable z we
obitainglef. 7):

(et ) Dfeh(t) = Dh(t)ORa LDh(E), £ # 0.
t
We multiply (i) by 1/Dh(t)cRa and we obtain:
t
1 ae(t) (1  dn(e)), IS 1 dXt)
(1) uammg T2 rze) dt)Rat "¢ T D(EIeR, T de
t
therefore
1
(iv) 42 Jo Dh}t) (6+a,)de = a.

§
map t € {t € I

As t Eipw, ek 5%%?7 € 02/3 is continuous it follows that the

sto ¢ #0} -~ é%%;) € ¢ extends continuously at
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t =0 and we conclude that the function ¢ - X{t)gois ofpclass
c! (we use the well known fact: If B 1is a Banach space,

¢: [0,1] > B is a continuous functionof class ¢! on 10,1[ and

. do(t) : . 1 . .
lim =~ exists then ¢ is of class ¢ on [0,1[; this comes

t+0
from Taylor's formula:

1
- as
¢(t) = ¢(0) = tjo az(h@du,

valid for 0 < ¢t < 1.)

If one applies 5 to (ii1), using 7 and Cauchy's inequalities,

dh(t ®
we conclude that the mapping ¢ € {t € Isis t # m-+-7%¥(t)805/u
extends continuously at ¢ = 0 and hence the mapping
t > n(t) € Dg/k is of class ¢*,

The inequality with & = 1 follows from 5 and 7 (using
Cauchy's inequalities) applied to (3).

The case k > 2 follows by induction on % and the same
argument as above (after differentiating (iii), using 5, 7 and
Cauchy's inequalities). B

105 “lLetanf € Ve - with € > 0 satisfying 6 and 7. Let

W = (Int Q) U ¢ ,. For u, 8 Int2 and %k > 1, we define

k
[é%] G(uy,f) as the ¢-derivative of the C-analytic
mapping u » JoG(u,f).

For uy = a, € C,, we define:

¥

[é%]ka(aoaf) = a'k[é%]kJ°G(at’f) L

where a, is defined in 8.

t

a)* 0o
The function u € W ~ {Bﬂ G(u,f) € € X05/H is well

defined and by 9 and 7.2 it is bounded.
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11. Proposition. Given f €V 5° where € >0 satisfies
€9
6 and 7, and k € m, there exists kK, >0 such that, forn ale

Uy and Siae 4n W we have:

M W) ety - (A atu, P < 2y,

whene || || <4 the noam defined in 9 and with the convention
0

[diu] GOIFY = reg(u.r).

Proof. (a) Case where u;,u; satisfy Im u; > 05 for
e ab 1.

By interchanging », and u, we can suppose that
(2) Re(u;-u,) > 0.
By the z-periodicity and the boundedness (in norm) of the function:

d

k
u € W~ [a—u-] (J°G(usf ) € wxog/u

- Id
) ‘waslk
we can suppose that

(3) Re(u, ~u,) < &'/w

(4) [Im uj| < 8'/w, for 4 =0,1,

Using 3, we can find u, € Int @ such that the segment
[u,>u,] has slope + 1 and [u,,u,] has slope - 1. By Taylor's
formula applied on E‘o’“zj = Int @ and on D‘z’“lj c Int @,

k
using that » - [j%] G(usf)s k> 1, 1is bounded, we obtain:

1) etas) - (&) ot < xt Txgms

and



74 MICHAEL R. HERMAN

II[j%}kG(usz) - [j%}ka(u;,fﬂl S Ky luy-uy |

where Ki > 0 s a constant. Now (1) follows from
2 2 2
lady e, | = 1“o_uzi * qu_ull
which implies
(5) 2 [”1"“()' > Jug-u,| + |u2—u‘| 2 SUp(]“o'“2|,|u1'uzl)-

(b) Case where u_, u, satisfy Im g2 0« (resp. Im uiosv0);,

0°? . sh=

for g =01,

This follows from (a) (resp. the same proof as (a)).

(c) Case where Imu, > 0 and Imu; < 0.

Let u, € CY such that [u,,x,] has slope » 1. By (a),

we have:
H[é%}k G(ul,f) - [5%}k0<uo,f)u < K} ug-u,|
and by (b)
x K
I [g) ctepory - [&] otu ol < g lug,

where Ki is a constant.

Now (1) follows from

(7)) Jul-ug ] < (2)F Imowg < (2)M2 Juy-u, |
and
(8) ]ul—u;| < I“l'uo| s I”;'uol- B

12. It follows that, for k >0, the mappings

k
u € W~ [é%l G(u,f) extend to Lipschitz functions on £ that
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satisfy (1) and one easily sees that ueq - JoG(u,f) € @ng/u is
of class ¢™ on 2 - ¢y (see also 7.2).

This implies that the ¢° function:

(Q - CY)XBCS/h - ¢ x ¢
(u,2) > G(u,f)(2)=(A,h(2)),

is ¢ analytic on Int Q x Int BG/u and all its partial
3k1+k2

derivatives % —% (u,f)(2), kX, + k, > 1, are bounded.
1 2 -

(8u) % (@oi2)
By a proof similar to 11, these partial derivatives extend to
Lipschitz functions on @ x BG/M'
13. Let B be a Banach space. We denote by | || its norm
consider on IR"™ a norm | |. We denote by | ||/ the induced norm
the induced norm on the space L(IR”,B) of linear mappings from

m"* dnte B: if w & L(E™ B), then

lulll = sup_ Jlule) |-
| sup It

Definition: Let ¢ < R" a closed subset and 0 < g < 1(respectived

L = 1). We say that the mapping H : ¢ > B 4is 0§ class Cl+2

TP )

in
the sense of Whitney (respectevly C Lf thene exists a

mapping DH : C - L(IR@B), such that forn any compact set X < C,

there exdists L > 0, 4satisfying hon every x,y € K:
i) la(z) = d(u) | < 2, |=-4];
id) o lpa(=) = 2a(H)l]. & % lz=u| s

111)  ||a(z) - #(y) - DE(y) (==u)|| < 2y fe-y] 5

We refer the reader to [7] for some properties of functions
of class 01+2 in the sense of Whitney.

The following theorem generalizes a theorem of V. I. Arnold
[1, Theorem 3, p. 2527]. Furthermore it solves a question left

open by V. I. Arnold 1, p. 251

Theorem. Let f € Ve s» with € >0 gdiven by 6 and satisfying 7.
Then the mapping
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0
u € Q> JoG(u,f) € ¢ xpé/H
149

i85 04 class ¢ , 0 <2 <1 Un the sense 0§ Whitney.

Remark. Since u € Int @ >JeG(u,f) is ¢-analytic, by the

definition we will give in 16 and by the above theorem the
mapping u € Q@ > JoG(u,f) is Cl-hokomonphic.

Proof. We want to prove that for uy,>u, € Q, one has:

(9) 4, u)ll < & Ju-u, |’

for some constant X > 0 independent of u; and u, € @ where

Aluysuy) = 796(u,af) <906 (ugsf) = 2 Gluguf) (u,-u,) .

Once we will have proved (9) then with (1) we can conclude, by
definition, that the mapping u € g - G(u.f) is of class c¢'**
0 <& <1, in the sense of Whitney (and even CI+L1p1).

To prove (9), we will follow what we have done in the
proof of 11.

(a) Case where Im uj U054 RO e g R=00

We use the same notations as in 11.(a) and can suppose
that (2), (3), (4) are satisfied.

We use Taylor's formula on the segment [ﬁo,uzj and on
[uz,ulj and hence obtain, using that u» € Q - ij%JG(u,f) is
bounded:

2
”A(“z’“o)” <K' I“z'“o[
" 2
HA(uz,ul)H < K ]uz-ull
for k" > 0 some constant.
We have:

(10) Aluysug) = Aluysuy) - Aluy,u,) + B(ugsu su,)

where
Blugsuysu,) = |45 Gluof) - 2 G(uo,f)}(uz-ul).

£y
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Now (9) follows from (1) and (5).
(b) Same case as case (b) of 11.
(c) Case where Im u > 0 and Imu, < 05

We choose uj as in 17.(c) and we write

1
afu.,ug) = Alu,suy) = A(u,ouy) + Blug,u;,uy),

Using cases (a) and (b) as well as (1), (7) and (8) the inequality
(9) follows. B

14. Remarks. 1. The same proof, using 9 and 12, shows
. d !
that, for every k € W, the mapping u - [5%} G (L) iis ot

class Cl+l, 0<% <1, in the sense of Whitney.

2. The same proof shows also that the function:

(us2) €9%Bg, > Glu,f)(z) € ¢’

s of*e¢lass Cl+£, 0<% < 1, 1in the sense of Whitney, as well

as all its partial derivatives.

n

To the function (u,z) > G(u,f)(z) € ¢’ IR, we can apply

Whitney's extension theorem and conclude that it is the restriction
. 140

on @xBg,  of a function G: ¢x¢ - ¢® of class ¢t (cf. [7]).
G

We can even suppose that: (u+p1,Z+P2) = (PL-P2sP2) + G(u,z),

for every p, and p, € z

It follows that the function u€Q  G(u,f)-(u,0) em"gﬁ is
the restriction to @ of a Z-periodic mapping

0

Hi € > 0xDg ),

of class Cl+z.

15. Examples. 1. Let fp(2) = z+asin(zwz) + b where
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a,b € R and 0 < a < (2m) . By [2,III], there exists an open
dense set, U < IR, such that, if » € v, the rotation number
p(fb|ﬂQ % @ and fb[ﬂ? is not topologically conjugate (in the
group D (Tl)) to a translation (more precisely for p € v,
p(fb|ﬂ9 = p/qg, the function fq—Rp changes sign on [R). If

b € U, p(beR) = p/q> then on ¢/z fp has a unique attracting
periodic cycle (fg(zo))i>0 necessarily contained in T' and
of period ¢ (attracting means lDfZ(ZD)l <0 Oq ¢/z f, has
a unique repulsive periodic cycle contained in T . [This follows
from the theory of iteration of entire functions of Julia and
Fatou:(3) In each immediate invariant basin of attraction of an
attracting or parabolic fixed point of fZ, n>1, (i.e. an
invariant Fatou domain of fZ), there exists a .critical,point
of fZ (fZ has no finite asymptotic value). One easily deduces
the result from this. using that 5 commutes with z - z, £
has two critical points in ¢/z and that » € v.] As the
property of having an attracting periodic orbit is stable under
perturbations, even when b becomes complex, this explains why
we considered @ such that @ R = ¢ is nowhere dense in IR.
The reader should also consult [2,XII].

2minz
e

2. Let fb(z) =2+ b+

n

e~ 8

where o(z) = § a z
1 n= "

converges on {z,|z| < R}, for some R > 1.

2mih
(=2

Let g,(2) = e + n(z))s with n(z) = z(e2™4(2) _qy,

We have:
2ﬂiz)

gb(e = eXp(Zﬁifb(Z))-

Any C¢-analytic function g3 can be obtained in this way, if
. A 2. . .
””HCO({|z|<R}) is sma]]lenough and n(z) = 0(z°) (this will
always be the case for 34 gpltz), ¢ >0, ¢ > 0).
The solutions of (+), in 6, are closely related to the
Tinearization of the holomorphic map gp at 2 = 0. If p = atit,

(3) - For more details see [4 ].
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a € IR, t # 0, the linearization is possible by Poincare's
theorem and if b = a € DCpgs it follows from Siegel's theorem.
To have a solution to (+), we need that the linearizing map #,
of T NE - b (e, ni(e?™Pz) = gyo hi(2) and DA, (0) = 1)
has a radius of convergence £, >1 and satisfies
h ({lz]<Ro}) @ {]z] <1}. This explains why we had to consider
Q pwithe RNk = ¢y, nowhere dense in I .

What we did in 9 and 13 gives information on the dependence
on b of the linearizing map of gp at 2 = 0, when 62ﬂ$b crosses

the unit circle (b € Q).

16 . Cl-Ho]omorphic Maps and Monogenic Functions. In this
last section following V. I. Arnold D] and A. Denjoy Qﬂ (see
also [B]), we propose to discuss E. Borel monogenic functions
([Bl__] and [Bz:])-

Let X=C be a compact set, B a complex Banach space
and ER(X,B) the space of functions that are uniform units on
K of B-valued rational functions with poles off K. The reader
can consult [G, Ex. 19 and 20, p. 238-239] and use the fact
that every B-valued function, holomorphic on a neighborhood V
of K, <can be approximated uniformly on X by elements of
R(K,B) (i.e. the standard proof of Runge's theorem, using Cauchy's
formula, works for B-valued functions, after choosing a smaller
neighborhood ¥V of X, such that V,=V and V, is a manifold
whose boundary oV, is a disjoint union of a finite number of
¢”-embedded circles).

Definition. Fox i a closed subset of € we say that the
function g:C > B is C -hokomonphic, fon k > 1, if g is of

k
class € in the sense of Whitney and 99 = 0 whene
5_1 ] la
I s loT it 9Y)

By 13, an example of Chak) (0 < 2 < 1) hotomorphic function

on the compact set X, = & mod. 1 is:
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g
u € K1—1‘>J°G(u,f‘) € C x

Id P

ICXB(S/“ 6/“
If "B =C and g 1is Cl-holomorphic on X, then using
Whitney's extension theorem and [G,1., p. 26], we conclude that

g € R(K,C).

Using 14.2 and [G,Ex. 20, p. 2387 it is also true that
the mapping g, defined above is such that g, € R(XK, ,Cx og/k).

We suppose that X = X, = Q@ mod 1 = ¢/Z = ¢*, and we

consider as in 4, the union of piecewise linear Jordan curves

(aDn)nEIN with the condition (*) of 4.

(a) If g € R(K,B) then Cauchy's theorem holds:

the boundaries (aDn)n>0 being oriented in the standard way.

(This follows from the fact that we can approximate g by a
sequence (gk)k of rational function with poles off X in the
uniform topology on X. For each Iy Cauchy's theorem is
true and one can pass to the uniform limit using (*).)

(b) Let x € X such that:

¥ [ |dz | < oo,

J 3=
n>0 dD
= n
For gy € R(K,B) we have Cauchy's formula:

glz) = 1 - J g
=0

3 =&
n
n
(If gy € R(K,B) is a rational function, then Cauchy's formula
holds and the result follows by Tetting gr >9 in the uniform
topology.)
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The reader should also consult [D, p. 139-1467.

Remark. For KX = @ mod.l1, since

- AL =4 Coi mode: 1o & €2 3
3K yaJ y
by Milnikov's result (see [Z,p. 112]) we have R(X,c) = A(K.q),
where A(K,C) 1is the space of continuous complex valued
functions on KX, C-analytic on Int K.

A monogenic function in the sense of E. Borel is a

tuple (g,(cn)nz]), where (Cn) is an increasing sequence of

closed subsets of ¢, g is a function defined on |J'¢ and for

n
every n, gic is a Cl—ho1omorph1c function. n2l
n

The function (g,(C.)

A n) and" “ (g% (¢ )n) are considered

equivalent, if Canczch c eyl wheh! L) me (10 % g < 1 <)L

gn :
ot A
Example. Let g(z) = § —£— (4_and a_ € ¢) and
=i e p p
p p
c. =¢ - | P where (Dp) are open disks centered around «
n n nien p

p21

p p
We suppose that De Dn+1 and the sequence (Ap)p decreases

sufficiently rapidly (depending the choice of the sequence

(c.).). (If sup la_| < +o, then the closed set ¢ will be
n'n p n

o F . Pr_ p Pp p
connected, if for By >:pih éither DY Ve pE2orhD Q5D = ¢.)
n n n n

The fact of considering examples of monogenic functions as limit
of rational functions is very natural taking into account what
we recalled earlier.

Every Cl-holomorphic function g on a compact set
defines a monogenic function (g,(Kn)),K7l =K

We have adopted the terminology "c¢!-holomorphic" (instead
of monogenic), for we believe that E. Borel. by choosing the
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sequence (Cn)n in an appropriate way depending on the function

considered (in the example if the radii of the disks Di and the
sequence ]Apl decrease fast enough), wanted his monogenic
functions to have quasi-analytic properties (i.e. monogenic
continuation) (cf. [D, p. 139-146] and [C, ch. IX]). We believe
that this Tast point is one of the main reasons of E. Borel's
work on monogenic functions (which is anterior to the work of
Denjoy-Carleman on quasi-analytic functions @l el

In this respect we can ask the following question: Let
t € Id. > G (t) be the function defined in 8.
Question. 15 the function G,(t)
Taylorn senies at ¢ = 0?

always "detenmined" by its

(I think that the answer is negative, for the linearized
equation does not seem to belong to any quasi-analytic class.)
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