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INTEGRAL GROUP RINGS WHOSE GROUP OF UNITS IS
SOLVABLE AN ELEMENTARY PROOF

Jairo Z. Gongalves (*)

1. Introduction. Let %Zg be the group ring of a finite group ¢
over the ring of rational integers 7z, and let Uy(zG) be its
unit group. The characterization of the groups ¢ such that
u(zG) is solvable was obtained by Hartley and Pickel [1], and
independently by Sehgal [2], using arguments involving free
groups and orders with solvable unit groups. We felt that an
elementary proof could be approached, and this is the objective
of the present note. Finally, we want to mention that we followed
closely the arguments of Hartley and Pickel [1], Theorem 2. We
are indebted to the referee for many useful comments and for his
short proof of Proposition 2.3

2. Some lemmas

We denote by @ the field of rational numbers, and by
GL(n,D) the nxn general Tinear group over the division ring b.
If H is a subgroup of G we represent by [G:#] the index of &
innags

The Lemma below is taken from Hartley and Pickel [1].

(*) This work was done while the author was visiting the University of Alberta,
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Lemma 2.1 - Let G be a finite group and Let e be a centrar
idempotent of  @G. Then [U(ZGe: U(ZG)e] < = .

Proof - Let m be a positive integer such that me € ZG. Then,
since ZGe/mZGe = (Z/mZ)Ge, the quotient ring ZGe/mZGe is

finite. Now, if we restrict the canonical epimorphism

Z Ge ——> 7 Ge| mZGe

to the group of units of ZGe, we obtain the multiplicative
epimorphism

w: U(ZGe)—> I,

where L =wU(ZGg 1is a subgroup of the finite group U(ZGemZ Ge
Therefore

H = ker w = {x € U(ZGe)|x = e mod mZGe}

is a normal subgroup of finite index of U(ZGe). We claim that
U(ZG)e contains H. Indeed, let x € # and let us consider
the element & = 1-e + ex € #G. MWe have by definition that

x = e + mye, for some y €& ZG, and hence

@ =1l-e + ex = 1-e + e(e + mye) = 1 +mye € ZG.

1

By the same reason g = 1-e + ex” ' € ZG, and observing that

e BRI T ] x, the conclusion follows. [ ]

Lemma 2.2 - Let G be a f§inite ghoup and Let e be a centrhal
Ldempotent of @G such that U(QGe) = GL(n,D), n>1. Then
fer(n,z): 60 (n,z) N U(ZG)e] < =,

Proof: We have the following Hasse diagram
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v(qce) = GL(n,D)
N
GL(n,Z)
U(ZGe).______G( )/////////
m
U(Z6)e GL(n,Z) N U(ZGe)

\ |
GL(n,Z) NU(ZG)e

Let T 1< T,J £ ", be the element of gGe corresponding
to the matrix of M(n,p) that has 1 at the position <, and 0
elsewhere, and let m be a positive integer such thatnwij € ZGe
for every < and j. Thus ZGe contains every nxn  matrix
over Z which is congruent to 1 modulo m, and hence U(ZGe)
contains G(m), the principal congruence subgroup of GL(n,Z).
By Lemma 2.1 [U(zGe): U(ZG)e] <= and so [GL(n,z) N U(ZGe ) :
GL(n,zZ) N U(zG)e] < «, and the conclusion follows. []

Proposition 2.3 - Let G be a group with center Z, and suppose
that G/z 4is an infinite group which contains no nontrivial
abetian normal subgroups. Then G is not s0lvable-by-finite,

Proof - If G/Zz has a normal solvable subgroup H/Z of finite
index, then the last nontrivial term of the derived series of
H/Z is a normal abelian subgroup of G/Z. E]

Lemma 2.4 - Gr(n,z), n > 1, is not s0Lvable-by-finite.

Proof - The property of being solvable-by-finite is inherited by
subgroups and by homomorphic images. So, it is enough to show that
PSL(2,z) =.sL(2,z) /1%t1}, where SL(2,Z)= {a € GL(2,Z)| detoa=1}

1 50
and I = [ 1], is not solvable-by-finite. By Proposition 2.3
0
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-

this is accomplished once we show that PSL(2,%Z) has no nontrivial

abelian normal subgroups. Suppose not and let N APSL (2,29 be-a
nontrivial abelian normal subgroup. Let o € v be such that
o # 1, and let y € sz(2,2). Then, denoting Y-]aY by oY, we

have oYs = aaY and so, either (a). aYo =aaY or (b) a¥o =-aa’.

[1 1 1 0
Now taking vy = and y =
lo!- R

that det o = 1, we arrive at a contradiction.

Let p be an odd rational prime, let 6 be a primitive
p-th root of unity, and let 1 be the usual quaternion algebra
over the rationals, i.e.,

= {x +yi + 35 +wk | % =3 = =1, 45 =--ji =k, 2,y.2w 6Q}:

Let M, = 9(e) ® m, and inside this g-algebra let us consider
Q

the subring
P A e I ot e v 8 L TR LR 7z[6] ).
A few observations are now in order now.

(i) If 'L is the subfield 'of H, generated by 6 and <, then

Hy = L ®rj as a left vector space over L, and the right
regular representation of Hy gives us the embedding

Y Hg > M(2,1)

[ oty s SE L
qi—r =
Va
-2+wT B - YT

where a = x + yi + zj + wk., The determinant of M(2,L) gives
us a multiplicative function

(ii) The center of U(R), which we will denote by GcU(R), is
U(z[e] ) and U(R)/zU(R) 1is infinite. Only the last assertion
deserves a proof. Suppose that this is note true. Then U(R) is

, and taking into account
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an Fc-group, and therefore its torsion elements form a subgroup.
Now since p is an odd prime, from the identity
p-1 .
YRR S e e ) .
=0 :
we conclude that 1 = (1+e)(]+92)...(1+ep']), and so
1+8% € u(z [8]). Hence

ST
(1 + o1z) = ———— € U(R),
1 + 82
1-67
and we claim that the product of the torsion units [ 2}j(1+ei)
1+6

and -7 has infinite order. Indeed,

. ozl 2
(122 5(1402) (-g) = L)
1+62 1+6

is a complex number, and if this number is a root of unity then

its absolute value is 1. Therefore |1-8¢]% = |148%|. Let us
calculate both sides of the equality above. Let 6 = cosgg-+isin %}
2m ‘

and 6,= cos & - £sin 20 Then
P p
2 - 2T
1 - 6z] = (1-62)(1+62) = 2[1 +sin 3

and, on the other hand

. ; :
[1+6%] = |1 + cos Hisig sin il] = /(1 +cos iﬂ) +sin? 4T
p p p p
= JAcos? 7; = T1ces %} :
Since. p 2:3,. the angle %; belongs either to the first or to

2m

the second quadrant, and therefore 1 + sin %} > 1 and icosﬁ; <15

a contradiction.

We are in position to prove the Lemma that is the crux of
the matter.
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Lemma 2.5 - U(R) 44 not solvable-by-finite.

Proof - In view of Proposition 2.3 and observation (ii) it is enough
to show that U(R)/tU(R) contains no nontrivial abelian normal
subgroups. Suppose not and let 4 < U(R)/tU(R) be an abelian
subgroup. Let o € 4 be such that o # T, and let Y & U(R).

Then

«¥a = Ga¥, d.e., ao” =a¥as, where 6 € U(Z [6]).

Applying the function & defined in (i) to both sides of the last
2

equality, we conclude that WN(6) = 68" =1, and so & = %1,
Therefore we have shown that if vy € U(R), either (a) aa¥ = a'a
or. (b) 0o’ = -aYa hold. Let o = r+yit+zj+wk and Y = if If

(a) holds then, from ao® = a’ac we obtain

(z + y2)(zd+wk) = (z5+wk) (x+y?) or

0

Jw
gz =0

If y #0 then w =2 =0 and a has two nonzero elements in
its support, at most. So, let us assume that y = 0. Conjugating
o by 4 we obtain either:

1]
1
Q

(al) gad—= ofy  or (b1} td

Let us assume (al). Then we obtain (x+zJ)wk = wk(x+zj) or wz=0,
and so either z =0 or w = 0. On the other hand, if we assume
(b1) we have

(x+zj)2 = (w'k)2 org B et = 0 and 4’ = 2*
and from the first equation we obtain that either = =0 or =z=0.
Hence, we have that o has one of the following forms:

(A) g =la 4wk, (B) o = 2l e g (c) a = 3j + wk,
Let us assume (A) and let +y = 1+6<. Then Y-] « el and so,

either ha
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v

b o (b2) oa' = -a

(a2) aa =af

Let us assume (a2). Then we have

(1462)aYa = [(1+462)z? - v (1-8%)] + 20w°¢ + 26uwwj + 2wwk, and

(146%)0a) = [(146%)x” - w°(1-6%)] - 200’7 + Mzwj + 2wxk,

Hence, from the equality of the coefficients of ¢ in both
expressions above, we conclude that 4pw? = 0, and so w = 0.
Therefore o =x € CU(R), a contradicton.

Let us assume (b2). Then, from the equality of the
coefficients of 1.and k we obtain

qwr = 0 and (1+8%)z® = w*(1-8%).

Thus, w=2 =0, and o is not a unit; a contradiction is
reached.

We can get rid of (B) in a way similar to the case (A).
So, let us assume (C) and let 7y = 1+62. Let us assume (a2). Then
we have
(146%)aYa = (08°-1)(2"+w?) + 20(2%+w2)<  and

0]

(148%) aaY = (82-1)(2%+w%) - 26(z%+w?)z.

So, from the equality of the coefficients of <, we obtain that
w?+ 2% =0. If w#0, then (£)° = -1, and /7T € @(e) and
hence /1 ¢ z[6]; a contradiction is reached. Therefore w=2=0;
a contradiction again.

Let us assume (b2). Then, from the equality of the
coefficients of 1, we obtain (62-1)(z2+w2) = 0, and 2=w=0,
a contradiction. Finally, we observe that the case o = z+y<,
which was not considered, can be handled by conjugation by y=1+67.

We leave to the reader the verification that the same
arguments work if we assume (b) at the beginning of the proof. [
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3. The Hartley-Pickel, Sehgal Theorem

Theorem.3.1. - Let G be a §inite group. Then y(zmg) 44 so0fvable
if and only 4§ G As an abefian orn a Hamifionian 2-group.

Proof - Only necessity requires a proof. Let @G = _é%M(ni,Di) be
the decomposition of the semisimple algebra ¢¢ asla direct sum
of full matrix rings over division rings. Suppose that for some %,
1= L i, we have ng< 1 and Tlet e be the corresponding
central idempotent in the decomposition above. Since UZ 6) e 1S
solvable it follows that u(zg)e is solvable, and by Lemma 2.2
GL(nz,Z ) is solvable-by-finite, in contradiction with Lemma 2.4
Hence, for every <z, 1 : o e By A 1 and therefore every
idempotent is central. It follows that G is an abelian or a
Hamiltonian group. Let us assume that G =<x>xK,, the direct
product of a cyclic group of odd prime order p by KX,, the
quaternion group of order 8. Let 6 be a primitive p-th root of
unity. Then

a(<a> x K,)

h

(¢<z>)ky = (@ @ @(8))k, = @k, @ @(0)K, =

]

4
NG (_@] @(e) @ @(0) %JH)-

Let e be the central idempotent of @G corresponding to

H = @(6) ® . Then
[

ZGe ={=x +yi+zj+wk€]fie | z,y,2,w €& z[6]} = R.
Again, since U(z¢) is solvable, u(zZG)e 1is solvable and by
Lemma 2.1 U(R) 1is solvable-by-finite, in contradicton with
Lemma 2.5. el

4. Final Remark. Despite the elementary character of our proof,
we are able to recover [1], Theorem 2. Indeed, if G 1is neither
an abelian nor a Hamiltonian 2-group, then y(zg) has a
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homomorphic image that is not solvable-by-finite. By Tits
Theorem [3], Theorem 1, U(ZG contains a free noncyclic group.
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