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REVIEW AND SOME CRITICAL COMMENTS ON A PAPER OF GRUN
CONCERNING THE DIMENSION SUBGROUP CONJECTURE

Frank Rohl*

1. The beginning of the dimension subgroup problem

In 1935, Magnus' paper "Beziehungen zwischen Gruppen und
Idealen in einem speziellen Ring" [1] appeared, in which he
stimulated the famous dimension subgroup conjecture: If ¢ is
any group and AG the augmentation ideal of the integral group
ring, then the n-th integral dimension subgroup G(n):= G n(1+A”G)
of G coincides with the n-th term of its lower central series
(see [1] p. 260 and p. 265). Although Magnus did not work with
the integral group ring but with its augmentation-adic completion
— for free groups F, this is the ring of formal power series
with a set of free generators of F as variables — this did not
make any difference for free groups, which were considered by
Magnus and Griin to be the starting point for an attack on this
conjecture. In [1], Magnus was able to prove that dimension
subgroups of free groups are fully invariant (thereby allowing
to call the images of the dimension subgroups of a free group F
under F —~G to be the "dimension subgroups" of G, see [1]
p. 260 and p. 269) and among others, the following theorem, the
first of which is translated Titerally:

Pios 2B M8 wIFILTT. 71T Fn denotes the n-th subgroup of the descending
central series of F = F, s then the dimension of every element #1
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of B is at least n. If g # 1 1is an element of dimension =n,
then there exists an g]ement of E s which has the same summands
of dimension n as g ”, where 6§  is a fixed number for every n
(We interprete this theorem and conclude from its proof that

F, < F(”) and that F(")/Fn-F(n+1) is a torsion group of bounded
exponent. It seemed to be obvious to Magnus that F(”+]) C'F , see
[1] p. 270, so that he always claimed F(”)/Fn to be a tors?on
group of bounded exponent, see [6] p. 148. But there 1is no reasoning
for this last statement to be found in [1]. In 1979, Sjogren has
shown in [5] that already for arbitrary groups &, G(”)/Gn dis g
torsion group of bounded exponent.); ‘

P . 266 s alVias F(”)/FU”1) is torsion free abelian.

These were the tools, which Grun found when he started his
paper "Uber eine Faktorgruppe freier Gruppen I" [i]. Grin's paper
appeared one year after Magnus had formulated the dimension
subgroup conjecture for finitely generated free groups, and one of
its main goals was to prove it. It should be mentioned that the
dimension subgroup conjecture was not only of interest in its own
right, but also because an affirmative answer would imply (by IVa
above) that the quotients Fy/F,,q are torsion-free, which was not
clear at that time (see Griin's introduction in [Z] and for another
approach and a solution [4]).

Still one year Tater, in 1937, Magnus himself published a
combinatorial proof of his conjecture for free groups in his paper
"iber Beziehungen zwischen hoheren Kommutatoren" [3] (although he
points out in [6] that it contains a slight gap, which was filled
in by an identity supplied by Witt in [}]). And today, possibly
the most convenient way of proving it would be by Lie-theoretic
methods which go back to Magnus and Witt (see [3] and [4]).

Magnus' paper was submitted for publication on the_26t of
October 1936, and in it he admitted (p. 105) that in the meantime
Griin had already shown F(n) =i in "a simple way and by other
means" in [2]. In the Magnus-Chandler 1982 book [6], Griin is still
given the credit: "The first proof that F(n) = Fn was‘given by
Grin (1936). It uses matrix representations for F/Fn and is not
easy to follow. Also, it seems to have left no trace in the
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literature", (see p. 149 in [6]). Nowadays there seems to be some
confusion as to whom the credit for the solution in case of
finitely generated free groups should be given: either to Magnus
(and possibly Witt) or to Grun. The aim of this paper is to make
the results of Grin's paper [2] accessible to people, who have had
much difficulty with its outmoded German forms, and at times
unprecise mathematical expression. It turns out that there are two
gaps in Grun's paper, one of which leads him to a serious mistake.
Although it is unseemly to critisize the work of a deceased author,
I feel that the remaining results are very well worth the effort
of being understood and brought back to public notice.

This paper was stimulated by G. C1iff and S. Sidki to whom I
would 1ike to express my gratitutde as well as to A. Rhemtulla and
S. Sehgal for numerous hints.

2. From Grin's introduction

Grun's aim is to prove Magnus' dimension subgroup conjecture
for groups F, which are free on »n generators a. (2215588 %) by
the following means:

Let » be the ring of (n+1)x(n+1)-strictly lower triangular
matrices (i.;. zeros on and above the main-diagonal) with integer
coefficients, and let G be the (multiplicative) group E+r, where
E is the unit matrix. Starting with a representation F —— G, which
is defined by sending the generators of F to appropriate generators
of G, he finally constructs a representation

Y:F—— TG (non-restricted direct product),

whose kernel turns out to be F(”+]).
According to this program, the paper consists of two parts:
analysing the structure of G and construction of Y.
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3. The structure of G

There are many important results in Griin's 1, which are
partly well-known nowadays. It seems appropriate to state and
outline the proof of some of them.

1. and 4. (p. 773) Defining Sy (k=1,...,n) to be the set of
those matrices in r having non-vanishing entries only in the
k-th column, Sk turns out to be a left-ideal, whereas

gy 2u5eha453790462] is a two-sided ideal.

no

Taking now the k-th row (instead of column) gives right-ideals
(k=2,...,n+1).

e
b

Note that there is some inconsistency in Grin's indexing
in 5., which can be avoided by setting L A Fecs® B sy
(instead of Grun's gk), which is then a two-sided ideal.

With this correction, 6. (and everything except 7.) remains

unchanged: 4y 3= 2, N gy forms a two-sided ideal with gi = 0.

Instead of Griin's 2z,, one now has to take in 7.: 2, =

nQ

is a prime-ideal in ZE +r, :

He proceeds by mentioning that gi consists of those
matrices, which have zero entries in the first <-1 diagonals
below the maindiagonal.

Corresponding to 6., he obtains

Proposition 3. Ay = (E+gk) n (E+gk) forms an abelian normal
subgroup of G, and moreover (Proposition 4): G = Ayeencd .

ATl of these results are more or less direct conclusions
from the relations AijAk] = ajkAi1 (Aij the matrix with 1 in
position (%,4) and zeros elsewhere, Gij the Kronecker-delta).
Another conclusion from these relations together with the obser-
vation that "every element of G can be expressed as a product of
elements E+S ., where in 5, at most the Z-th column is not
vanishing" gives the first really important result with respect
to the second part of his work; namely,

b
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Proposition 5 (p. 774). G is generated by the =n elementst

i = . : -1
t; i E + Ai+1,i (¢2=1,...,m). Abbreviating tr it by .

7
-1 -1 -1, . 4 :
and s t,8t, 8 t, st. by t; with..s. arbitrary in G
the following relations hold in G:

k

s=1-s+1

iy -1 t,=1-t, +1
£/8 14,00t toprery) il B sodle. Tusthe rpred 51y

7 7

and generally:

s=1-s+1
%

B =1, s an element of G.

The following two propositions describe the lower central
series of G.

Proposition 6+7. G, is the set of all matrices in G having
zeros on the first <-1 diagonals below the main-diagonal. Thus

To show that this set Ai. contains Gi’ Grin simply makes
use of the fact that 4; =FZ + zi. The proof of the reverse
inclusion is nice: Letting Z (resp. k) be generated by tl"“’tn:
(resp. tz,...,tn), one finds H.K. = A., and on the other hand
obviously HiKi cG,.

He then mentions that it can be shown along the same lines
that the Z-th term of the derived series of G is Just @& :
(Proposdition 8).

Possibly, the most interesting result of the first section
(although it has nothing to do with dimension subgroups) is

Proposition 10 (p. 775). Let &"

by all m-th powers. Then ¢" o G &
The proof is constructive and proceeds in three steps

be the subgroup of .G generated

Lemma 1. Z + V€ G —> F + nV € ",

This is simply a consequence of the fact that one can
express V in the form S1+"'+Sn’ where in Si all columns
except the Z-th one are null, and
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B mVERR(R S ) L B mE Y 2T (B s )" (E + sn)”’.
Lemma 2. £ + ' VE G, ——> E + (?)V T
Since one has
m _ m
[(Bea g D (BA, o 017 = (BrAy *4; 4 440,0-0)

m m
=B+ (D, % 41t Ao, s DB+ (0450 0]

where the left hand side as well as the first factor of the right
hand side (by Lemma 1) are contained in ¢",  this gives

m m .
E + (Z)Ai+1,i-1 € ¢°. In the same way, one can show successively
B 4GT § sertG. puldwhilich

that E + (”2’),4 € ¢", E + (’Z”)A

T+1,2=2 T+ ,72=3
generate the subgroup of all matrices of the form E + (g)v with

UGkl

{émtia P 327D ¥pApagl 1o F ARG (Z)V € ¢" (and taking s = m then

shows Proposition 10).
Grun proceeds by induction on s:

Let W := Then one has

S
k§1 Aier,iek-1

i

gt go pAsn ey

g TLAT L O B Aibgsqt 58

Now let Z be the ideal generated by all. B, where
E+ B €& ¢". With the above W, one then obtains (E+w)” =
S S
FE ) (Z)Wk € ¢", and hence } (Z)Wk € . By the inductive
k=1 k=1 ok

k

hypothesis, one already has (Z)W €°% #bP 2B 19luiye~1,"%dnd

whence: (Z)Ws €z
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’ my .S " m
It is easy to see that (S)g is generated by the hﬂAi+s,i
(z=13...sn)3 hence (Z)gs

Proposition 6+7.
Grin finishes this section by remarking that the

< %, and the assertion follows from

Propositions 1-10 carry over to matrices with coeficients from
some finite field, but there will be some further relations in
Proposition 5 arising from the modular situation.

4. A representation of F

Grun starts this part of his work by introducing somé
terminology from Magnus' paper [1]: Let 0O be the ring of formal
power-series in the non-commuting variables s, (Z=1,...,7) with
integer coefficients. Then one can extend el (=002 b
to a faithful representation of F (which was freely generated by
the ai) into the group of units of 0. Hence one may identify F
with the subgroup of the unit group of 0 generated by all 1+Si
(2=1,...,m). Denoting by ZF the integral group ring of F and
by AF its augmentation ideal, it turns out that

0 = Tim_inv ZF | A'F.

Grin then defines I to be the augmentation ideal of 0 (i.e.
the ideal generated by all s; (2=lsasn)) ‘and Ly Ztolsbe’ the
ideal generated by all Sf’sisk (2,k=1,...,n, k#Z2-1) and denotes
by F(Il) the image of F under

F—»O——-—>0/I1

aip—»]+3ik—+1+si % Ll
Before we come to the heart of the paper — Proposition 11+12-1
would like to point out the following: Throughout the whole paper,
Griin carefully avoids the use of a ringhomomorphism 0 — Z& + r
(remember that O 1is not the group ring but its augmentation-adic
completion, so that the existence of this homomorphisms is not
immediate) and calculates instead — for example in the proof of
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Proposition 11 - with the relations holding in F(Il)‘ Busty i f ‘he
wants to establish some kind of connection between the dimension
subgroups of F and those of G, he has to use this homomorphism
somewhere. So we will use it right from the beginning to streamline
his proofs to some extent. Further on, since Griin's language is

not only outmoded but sometimes very unprecise, the proof of
Proposition 12 given here (though still sketchy) may look very
different from the original one. But, it is essentially Grun's
proof!

Proposition 11 (p. 777). a,—t; induces an isomorphism
F(Il)—l» G

Proof: a,—t,. can be extended to a ringhomomorphisms ZF — ZE+r,
and since z s nilpotent so that ZE + x is already r-adic
complete, this can be extended to the completion of ZF to give

a ring-homomorphism

0—-—>E+£,

whose kernel obviously contains the ideal I, generated by all si,
8,8 (k#2-1). Thus there is an induced homomorphism

0/Iy—— 28 % 1,
and passing to unit groups, gives

P Iy S/ @ Wi a5+ ¢,

which is surjective by Proposition 5.
It remains to show that it is injective. For this purpose,
it is enough to prove this for its restric¢tion to the center of
F(I,)- ([This is soy because in L/I, ' every product of more than
n factors vanishes. Hence F(I;) 1is nilpotent and its center is
met by every normal subgroup, in particular by the kernel.
The next step consists of showing that the center of F(I,)
is generated by the residue class 1+sns

n-1""
this element generates a central subgroup. Now if 1 + » + I, is

aeeSynd T L Obviously,
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any central element, then rs; - s;» ¢ I, for all k. By the
definition of I,, it is easy to see that this already implies
847578 € I,, and the only elements r‘with this property, which
are not already contained in I,, are of the form M8 o\ o598+,
a €1,, m€ Z. Since one has

m

T +ms v, .3 8y = (1 + 8 ~.,.-8 )" mod I ,

this proves the assertion concerning the center.
On the other hand, the center of G is & which 1is

n’
generated by
E + An”’] = F + Am],n. U ERRPE Az’]
And since
1T + sn-,,_.slo——»E + An+1,n"',"A2,'l’

the above map is injective, when restricted to the center of F(I,).

Qed.

Remark. Actually, the proof shows somewhat more, which may be of
interest to those involved in circle and unit groups. Replacing
F(I,) by 0/I, and accordingly the center by the annihilator of
L/I,, the above reasoning applies to give:

F'; . . . v
ai'~——+ti induces a ring-isomorphism 0/I,—— ZE + r,

Having identified F with its image in 0, we may form
¥y := (1.+ I,) N F, which turns out to be a normal subgroup of F,
namely the kernel of F—— G with G =t .. Grun now proceeds
by constructing representations of F from the above one, by means
of endomorphisms of F, which do not leave ¥ invariant. To supply

these endomorphisms, he shows
n

Lemma 4. Let (¢, ,) € G1(n,Z) and define a; =y 1
t] -

(¢=1,...,m). Then F is generated by the alyeeydy together
with Fq, q arbitrary.

The proof is an application of the theory of linear equations.
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Since det (e. = +1, the above expression - looked at

7,,7<)
modulo F, - allows a unique solution for the a.:
= . i s ; expressed
a; fi Xi’ fi a word in the a. and Xl € F, p

in  the . ..
Z

Feeding these expressions into the X, and collecting
the fils then gives
@y = gi'Yi, g; a word in the a%,
in the a.; and iteration leads to the assertion.
Grin now simply states that this implies that

and Y. € Fy expressed

ot e A O R I O
ai'—"—*a;:

induces an automorphism of EVFk For alilgiksasSuryectivitty »is

indeed obvious, and injectivity follows then, since F/Fk is

hopfian (a weak version of this last argument may have been known

to Grun). Anyway, with each matrix C € G1(n,Z) there is associated

an endomorphism To of F, which induces an automorphism of

F/F Hence, a}F brsrits

i can be extended to a homomorphism

n+l”

— G, which - when composed with the natural map ¥— F/F

F/Fn+1 n+1

- gives a representation
(R e
al—+t..
A 2
With Y, as our basic representation aik—a-ti, one has

Ll = . == . = .
Yo'z = Y13 and hence ker Y, ¥ 41w 3 (keryysd Fpgjvwsk (n).

As Griin put it, "adding up" these representations will then
- s . /\
yield a representation of F with kernel 61 (n,2) ker Yc’ and the
main work consists in showing that this intersection is equal to

ﬁi”+]). So the outcome of our considerations will be

Y: F—> i G, where y(x) = (Y (%)) » .and
CEG1 (n,2) A W

Proposition 12 (p.781). ke 972 PORRE)
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Proof: Since one can extend YC: F—> ¢ to a ring homomorphism
0—> ZE + r such that the diagram

YC‘
F——ZE+2»
0
commutes, one obviously has F(”+]) c ker A7 for all £ €¥aln,Z);
and thus " > " 1in our assertion is already clear.

To prove the reverse inclusion, let IC be the ideal
generated by all x-1, x € ker YC and

Fiu= 7S IC.
€6 al{n.z)
Because of ker y = n ker YC &1.+ 1, it suffices to show
i . les Ln+1. Denoting the image of I under the natural
map 00— O/Ln+] by éc’ this will follow once we have shown
£:= n g = 0.

Let Ok be the set of homogeneous elements of (0 of degree k,
then

n+1
K] L = @ 0 3
kG]JVO k k>n s

n+1

and thus 0/L can be identified with the Z-module

™~
{1}
@@=

(074
% k

0

Structure transport via this identification then makes 4 a ring.

Now let = € J. Since g s an ideal in .4, rthere ‘exists
already a y € 1” i) (1" "the }mage of L in A), which does
not vanish, pro;ided x #_0. Hence, y 1is an integral linear
combination of homogeneous elements of degree =

y=2a. ein B M ) T8
Jyseee
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where the summation is taken over all n-tuples (jl""’jn)’
1 <. <n. MWewant to show y'='0.
7 7’ = . .
Now , I, is obtained from 71, by applying an endomorphism

To of 0 (namely the extension of air——+a;). This T o induces

an endomorphism %C of 0y

so that ic = rc(gl). We claim
that ?C is bijective: T induces an automorphism of F/Fn+1

and hence an automorphism of Z(F/Fn+]), which gives by

ZF/F, 1) —1—+ZF/A(F,FH+]) (A(F,F, 1) the kernel of ZF— Z(F/F, )
g 3 +1
an automorphism of the latter quotient. Factoring out A% EVA(FJ%+])
n+1

still yields an automorphism, which carries over to one of 0/L

via

1

o PR

(zE/8(F,F, )N R (R, F )= 2

So if y € T,(z,) for all C € Gl(n,Z), then

T, e s, ¥ CEGlnz).

g b ; o
For , C .= (ci,k)’ T, can be described in by
% Gt
S e | G D =13
% k=1

on expanding this product we get

n
To 8 P kzl c%,ksk + terms of higher degree.
For (c%,k) = C'], it is easy to see that ?0—1 is given by
~ _'l n 2
To 3 etk kz1 ci,ksk + terms of higher degree.

-1
Since if C runs through Gl1(n,Z), the same happens to c . , we

have to show that: ;C(y) € 24 ¥ C € Gl(n,Zz) implies y = 0.
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Every product in 4 = 0/Ln+] of more than »n factors in s

2
vanishes, and To is multiplicative. This implies

A[n n n
weloll T8 ] = 1 { ILale., b e
Cly=1 *p =1 W21 ek K
n
Hence, the contribution of any constituent 1T s. forming y to
r=1 r
the coefficient of Py be RRd . r W after having applied To is
precisely N
r£1 cjr,n+1-r'

Now gl (as the image of I,,» which is generated by SZﬁ%s

k#Z-1) contains every product of #n factors except s, 8

k3
n_'l'...‘sl;

g ) N e 5 s
and since A4/%, -+ 0 /I Y . E o+ r (by Proposition 11) is torsion-

with b € Z implies b = 0. Hence, the

free, b-sn-...-s1 € z,

coefficient of s, .....5 in y =7 (y) €2

5 I L, must vanish; and the

same happens to the coefficient of every sj ""'Sj ,» Wwhere
1 n

(jl""’jn) is a permutation of (1,...,n), since exactly

Sy Bl iy SLA contributes (and is sent) to s .....s by an
JI Jn n 1

appropriate permutation matrix.

Let &l ndelrepas 8y be one of the remaining
’Ll,-v-a'l-n 7,1 in

constituents of y. We construct a matrix ¢ € Gl(n,Z) such that

the contribution say a of this term under T to the coefficient

(o]
of 8,°...+8, will be sufficiently large to force a; a0
; 100008ty
n
= . . . . g
One has a = a, b aret b rfl cﬁp’n+1_r. Let C' be the
matrix with 1's precisely in all positions (ir,n+]-r), PP s Ty

and zeros elsewhere. By (only!) interchanging the rows, ¢' can be
brought into reduced row echelon form, which amounts to form D.C'

with an appropriate D € Gl(n,Z). DC' is an upper triangular
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matrix, not all of its main-diagonal entries equal to 1, since
(il,...,in) is not a permutation of (1,...,n).
Define ¢ := J |a. . |» replace the non-zero entries
Jla...,Jn

in p¢' outside the main-diagonal by ¢ and fill up the main-
-diagonal with 1's. With the resulting matrix ¢" define

c = D—]C". Then one has det ¢ = det D_]-det .t = cbdet ot =&
n
hence ¢ € gl(n,z). Further on, T = o™, where m

C.
+]-
r=] zr,n 1 r

is the number of elements not on the main-diagonal of ¢", and

n
forming now any other product I cj g (with precisely one
r=] r’
oy

J“},,'-~5j

factor from each column) gives ¢ 7 (lor' zero), which is

at most equal to A g

The coefficient of Byt % .28y in ?c(y) is given by

m. .
l7 s 5(7
& e 1 m
e N I et L N
(the summation taken over all (jl,...,jn) 7 (i],...,in)), which
by the choice of ¢ 1is only possible for (o SO =
s i i iy
1 Za Qed

Proposition 12 says in other words that the free nilpontent group
on n generators and of class » 1is residually a G-group.

Having established now Proposition 12, everything happens
very fast. Since Grun uses the term “representation" somewhat
loosely, let us give a literal translation of his Proposition 12,

which may serve as a definition of his use of the term “representation":
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"The representation T of F formed by adding all or at least
sufficiently many representations of F, which are obtained from
the representation G of F given in 1 by automorphisms of
F/Fn+], is isomorphic to F/F(n+])." Hence, T = Yy (F) by what
he has proved; and he concludes: "If we denote by T(k) the sk-th
dimensian subgroup of T, then on the one hand by Proposition 7
k5t A Tx (k=1,...,n) and on the other hand by Proposition 12

T = F/F("+1) e - Fk-F(n+1). By Proposition III of
the cited paper of Magnus (see [1] p. 265 or 1 of this work),
% (k=T Karhsnd . "

There are two objections to his conclusion:

and hence F(

this implies F K F

1) y: F —— TG 1is not surjective so that Proposition 7 does
not apply. Taking a closer look at the preimage of (HG)(k) =
HG( l s HGk = (HG)k’ one obtains

k) g (Fk-ker YC),

and it remains open, whether the desired result
3 P =g .pintl)
n (Fk ker YC) = Fk( N ker yc) =y ker y = Fi°F

really holds. The same kind of argument on p. 778 leads to an

error: Taking it for granted that F(”+]) = Fn+1, Grin concludes
from Proposition 10 and Proposition 12:
m m_
r° o Tm =2 2F -+ D Fm

This holds for all m and xn. But remember that 7 is free on »n
generators, and one certainly would like to make this inclusion
independent of the number of generators of 7. The argument given
by Griin to conclude F(k) = Fk_ﬁin+1) for arbitrary finitely
generated free groups from the same equality for free n-generator
groups applies also here: If m is greater than the number of
fre@fgemeiattors NOANEY Tehndose FEINTHEC IO | o ot a5 s

1 n 7
where mx». Then one has an injection
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JEE N J(ai :
and a projection

m: K— F by setting n(a yREL]%

n+i
Apparently 7j = IdF. And if Griin's conclusion
™ o ==>K"g SDak would be true, then
m r+l m
F= wgl? ) e nlz, )i ﬂ(KmKP+]) = Fm-Fr+1-

Hence, the assumption F(k) i for all &k implies along Grin's
arguments:
e
FmCF Fn

+1 forall m <»n and all finitely generated

free groups.

In particular, it would follow that every finitely generated

nilpotent group of exponent m would be of nilpotency class less
than m, which — as is well-known — is wrong already for m = 4.

2) But even if one accepts F(k) = Fk-F(”+1), I don't see a

possibility to conclude F(k) pelll ¥ from Magnus' Proposition III
without serious further effort (at least as long as one wants to

avoid the use of F(n+1) c Fn’ which is contained — but not

proved — in Magnus' paper [1], see p. 270).
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