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DIAGONAL EQUATIONS OVER FUNCTION FIELDS

José Felipe Voloch

Abstract: Let k be a function field in one variable over ¢ and

a .,am,b non-zero elements of X, such that b is linearly

SR
independent from a s...5a over (. We show that for =
sufficiently large, the equation zz=1 aixz = b has no non-
constant solutions in X.

§1. Introduction

Let K be a function field in one variable over €. 1In
[s], Silverman proved that, if g4,b,c, are non-zero elements
of Xk then for max{m,n} sufficiently large the Cassels-Catalan
equation ax”+bym = ¢ has no non-constant solutions in K. This
result was generalized by Newman and Slater to equations
Y-, a;z; = b, for m arbitrary, when X = ¢(t). The main result
of this paper is Theorem 1 below which generalizes the results
mentioned above to m arbitrary and X arbitrary. We also prove
two other results by the same method which deal, respectively,
with diagonal equations for subrings of integral functions of KX
and unit equations.

For = € X, x £ ¢ we define degq x = [K:¢(x)], and if
z Eu we put deg x = 0. Thus deg =z is the number of zeros
(or poles) of x counted with multiplicities.

The results are the following

Theorem 1. Let X be a function field in one variable over @
and al,...,am,b non-zero elements of X, such that » is
linearly independent from @yse..5a, over C. If n is
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sufficiently large depending only on dega,,...,deg am,deg Dy
then the equation

[ e} =5 (1)

has no non-constant solutions =« . € K.

Theorem 2: Let KX, al,...,am,b, be as in Theorem 1. Let S be
a finite set of places of X such that al,...,am,b are S-integral.
Then given #xn > m(m=-1), any solutions %) 5...,x,  Of {(e)s
which are S-integral and such that alx?,...,ammﬁ are linearly
independent over ¢, satisfy
-m (m- o=l 5y - 2eps]) + B,
[n=m(m 1)]m2x deg #y & e (2g |

where
H o= ded ay + ...t deg a, + deg b.

Corollary 3. With the same notation as in Theorem 2, if m = 3,

7, Syl and if ai/aj (24#4) ai/b are not n-th powers in K,
then all solutions of (1) that are S-integral have bounded degree.
If n > 16 and ai/a. (Z#4), and ai/b are not n-th powers in
Kk then all solutions of (1) in X have bounded degree.

The following result is due to Mason (see [M] for the
case m = 2, the general case seems to be unpublished). We give
a new proof of this result.

Theorem 4: If X is as above, S is a finite set of places of K,
and®™ ™ . L are S-units, linearly independent over ¢,

1 m
satisfying

iz1 u; = 1 (2)

then max deg u, < Eﬁ%%ll (2g-2+|5]).
T

EQUATIONS OVER FUNCTION FIELDS 3l

The proof of the above‘results will be given in §3. It is
a generalization of the methods of [ws], where they employ
Wronskians of alx?,...,amxz, for solutions zyseeesz o 0f (1),
In our case we use the theory of Weierstrass points of projective
embeddings as is given for example in [L] or [sV]. The results
of this theory are proved by using Wronskians; however, by using
only the results we avoid explicit mention of Wronskians in this

paper. The results we need on Weierstrass points will be stated
in §2.

§2. Weierstrass points

In this section we state the results from the theory of
Weierstrass points we need. Proofs for these results can be found
in [Z] or [5V]. We follow the notation of [sV].

Let ¥ be as in §1 and let X be the algebraic curve (or
compact Riemann Surface) with X as function field. If" ' 'p €' X we
denote by v the valuation of K associated to p.

Let 5: 2apt be a morphism, which we assume to be non-
degenerate; i.e., ¢(X) 1is not contained in a hyperplane. By
choosing coordenates in P, ¢ is given by (fl:...:fm), with
fi € X for all <. So if p € X and ¢ is local parameter at Dy

e
¢(p) = (¢ Fr (p):i...: t PF (p)) where ep = min{v,(£,),.. .0, (F,)).

We define the divisor E on x by & 4 é epp. This
depends only on ¢ and we define deg ¢ = deg EP=X éX ep. If
p

¢ is an embedding, deg ¢ = deg ¢ (X) (the degree of ¢(x) as

m=1
a curve on P V.

m e
For 61 X 0w ther met {u P g wl consists
. pl L, w e ) | ay /

of m integers 0 = J, < jl < caed < deg ¢. (The i; depend

m-1
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on p, but the notation should cause no confusion). The integers
jo""’jm-1 are called the (¢,p)-orders, and {jO""’jm—z} =
= {0,...,m-1} for all but finitely many p € Xx. These finitely

many exceptions are called Weierstrass points of ¢. The number
m..l

w¢(p) A (ji_i) is called the weight of p and we have
=0

Z w (p) = m(m-1)(g-1) + m deg ¢. (3)
pEX
We also have that

dima{f =

We need the following.

Lemma 5: If vp(fl) <o s vp(fm) then i vp(fi_l) + ey
T = 05t asm—1s
Proof: The lemma is clear for < = m-1 since jm'l is the largest

e
order that ) ot pfi can assume for a. € ¢. Assume that for

some S .k < m-1 the result is true for <.% k .and.that

0
Iy <vp(fi-1) + €, We have that

n

dimw{f h o fy ]ai SR T i - jk—ep} =

= dimw{f

n

¥ a f, [ui E ¢, v (f) > jk+1_ep} =
=m - (k+1).

But, by assumption, this first space contains the m-k
linearly independent functions fm""’fk-l' We have reached a
contradiction and so the lemma is established.

We shall use constantly the following two trivial
consequences of the lemma which are valid for any p € X,
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m
v (p) 2 ] v, (£5) 8)40) - mimet) (4)
w¢(p) > i%I [(vp(fi)*rep)-(m-l)] for any I1C{1,...,m} (5)

§3. Proof of the results

We start by proving Therem 2. Let X be as in §2,
Tyseesx A solution of (1) satisfying the hypotheses of Theorem 2
and ¢: x > 2™ ' the morphism given by (alx?:...: a z) which is
non-degenerate by hypothesis. The plan of the proof 12 21rst to
find Tower bounds for w¢(p) for p € X and then deduce Theorem 2
from (3).

To find Tower bounds for w,(p) assume first that p &S,
and let Ip c {l,...,m} be the set for which v (xi) >0 if and
only if < € Ip' It follows from (4) that

)

ug(e) 2 I (mw,(=;) + e ~(m=1) >

wq)(P) > (n-m+1) 75 v_(xz.) + mep. (6)

If p €5, define <(p) such that

To bound w¢(p) for p € 5 we make a change of
m=1

coordinates in P such that ¢ is given by (a z™%...:b:...:q xn)
1 a mm
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where b occurs in the <¢(p)-th place. From (4) it follows that

(apte that | 2, S=Brteinitemil)
Py (P) 2 1§z(p) trgld,sf) 000, (s iaey) 3
© B e % i 4 gy ) =
which we rewrite as
v, (p) > irflup(aixi) g (m+1)vp(ai(pf€(p)) o i m£1 Ao ¥t

We now are going to substitute inequalities (6) and (7)
into (3), but before let's notice that, by definition

189 9.7 47, ke Ve o) 1 L
We then get
(n-m+1) p%s vp(xi) + mpés el
5 i +1)v_(a x" ¥ ot (b)}
, pés {iZ1vP(aixi) - (), (e 5) % (p) p
...1) % L3 7
. Ti%;——lsl Rt et mp%s " pés "o (35 (p)2 ()

This reduces to,

(n-m+1)p%sup(xi) + pés(nvp(xi)wp(ai)) - pésup(ai(p)x;f(p)) +pésvp(b) <

< Mot ((2g-2)+]81)

Using now that Vi (Le) iz 0. and
p%X et
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4 p;es(vp(al) & vp(am) + up(b)) <deg o, + ... + degq +deg b = g,
we obtain
m m(ma-1
S ; v vk n < ) )
n=2) b D70 L % tap)hp)) € T (gmzelsh) v .

To complete the proof of Theorem 2 its suffices now to
prove that

[n=m (m-1)] max deg z, <
< =(m-1) ¥ Z vp(xi) - pgs Up(ai(p)xZ(p)) + H. (8)

To prove (8) let J be such that degq z. > deg gz,
A ey ) 4 4

9 G ) < deg 2. we have

; Z x m

: v 50 £ de % 9
b 34y p( z) 4 9 a:J (199

By definition of <Z(p) we have
- n - n
v (a.x.) < vp (ai (

p 5% B8

Let S, be the subset of S where ; has poles. Then

ndegz, = -1 p(a%) =-T 4 (aiM+ ) v (a.
J PESI BYY p€s, p JxJ PESY p J) b2
R (AR x” + {
3 PES, p( i(p) 1(?)) pésl vp(aj) AL
Lt # S5 = Splig g i T 0 5 o
2 { | p( i(p) z(p)) < 0} and g, S-5 then
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If p €5, itis clear that v (a, wli YL Lol 15,

i(p)7Z(p) p
hence
n n
obs ~ @) 2 b T ) T L, P (1)
So, by (10), (11) and (12)
n .
n deg T8 " st )mi(p)) + pésavp(b) + péSI vp(aj) <
n
< _pésup(ai(p)xi(p)) + deg b + deg P %
n
< -pés Up(ai(p)xi(p)) + H. (13)

Now, (8) follows from (9) and (13) so Theorem 2 is proved.

We now prove Theorem 1, by induction on m, the case m=l
being trivial.

Suppose a,...,am,b, are given and #»n >m(m-1), suppose

that « L is.a solution ‘of (1).

190

n .
1f alx?,...,amxn are linearly dependent over (, we

have (say) that amxm = fatalxl, qie ¢, and so
m=1

7IL--.
izx (1+a )a x, = b,
which is impossible by the induction hypothesis if =n 1is
sufficiently large.

Iif alx?,...,amxz are linearly independent over ¢, let

be the minimal set os places of Kk .for which a},...,am,
xl,...,xm,b are all S-integral. Then
m

|s| < B+ ) deg x;

. ; S H+mdeg ¥
=1

if deg z > deg T T = AL

»
Ve
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To Theorem 2 gives

me{m-1) deg T m(m-1)(g-1) + [m + 2]H,

Dian(m—l)]deg o <
Hence if n is so large that

m(m=1)(g-3) + [Z21) 4 1

_om(m=1)(m+2)

deg z; = 0. So deg ©, = 0 for<=1,...,n, and =z, € ¢ for
I R which is impossible by hypothesis,

We now prove Corollary 3. In the case = 7, et

, be an S-integral solution of (1) If a x| azxz, asx?

are linearly independent over €, the result fo]]ows from Theorem 2.
So we may assume that alx?, azxﬁ, asx? are 1iniar1y dependent

over ¢. We claim that two among alx?, azxz, a,x, are linearly

>
TZ
X X X
12%20

& < n n
independent. For, otherwise, we have that a,z, = o a,x,
n

ao g alx?, Sayh L E 0, 5 ay fig, is an n-th power, which
contradicts the hipothesis, so a =0, Similarly, B8 = 0. But
then, ale = b so a,;/b 1is an n-th power, which again contradicts
the hypothesis and proves the claim.

We may then assume that alx?, azxz are linearly independent

over ¢ and

aaxz = aa1x7 + Ba,xy, a,B € C (C15)

then " v
(1+a)a, @ + (1+B)ayx, = D (16)

If (1+a)(1+B8) # 0, we can bound deg =z,, deg %, from
Theorem 2 applied to (16) and so bound deg x5 from (15). The
first part of Corollary 3 will be proved if we show that
(1#q) (2+B8) #0.  But, if 1+4a =0, ‘say, then 1+8 # 0, since
p'#0y wo Gt ifollows from %(F16) “that b/ ay'= (a#8)x 1< i an, mith
power, which contradicts the hypothesis and shows that (1+a)(1+B)#0
as desired.

The proof of the second part is similar. One has to use
the proof of Theorem 2, especially inequality (14).



38 JOSE FELIPE VOLOCH

We now prove Theorem 4.

e -1
We consider Pu X > P"

estimate w¢(p) fior.  p E€LSF Given p, " et =

given by ¢ {u.o. W

v_(u. ) < v (u.). Changing coordinates of P

P, HAPGYOF gl , .
that ¢ is given by (ulz...:l:...:un) wiith L. - am
place. Then by (4)

:um) and

be such that

we may assume
the <Z(p)-th

). (18)

velp) z 1 Doplug)=opluy ) )] = vy (uy )
1#<(p)
i m-=1
* ok tglety by, 11, @upgtphen mi
Hence, by (3)
P A R e D
pgS iZlvp i i pES pi(p)
< m(m-1)(g=1) = m pés bp(ui(p))'
As péS Up(uz) = ngvp(ui) = 0, we get
—sz Op((p)) < ﬂi%fil (2g-2+|s])
define
Sy Titlp: €8, vp(”i) < 0}, we then have
de ug = 1S w ) € 1= el

On the other hand if v_(u
I Sl g ME 50 up(z u;) > 0.
S0/ . (”i(p)) <0 for. all. p, . and we .conclude: that

i )) > 0 then vp
Butta @is u, =1,

(”j) 240;) (for
this is absurd.

e
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_pZSI vp(ui(p)) < -pgs Up(ui(p))

and this inequality together with (17) and (18) give Theorem 4.

Remark: Theorem 4 has applications to several equations over
function fields Tike norm form equations and those considered by
Vojta ([v]), i.e., those equations which define a variety whose
divisor at infinity has many irreducible components.
The methods of this paper apply also to equation like
n.

) aixil = p and some other equations f(Xl""’Xm) = b where f

has "few" monomials.
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