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ON A VARIATIONAL INEQUALITY FOR A NONLINEAR
OPERATOR OF HYPERBOLIC TYPE

Y. Ebihara('), M. Milla Miranda, L. A. Medeiros

Introduction

The study of variational inequalities was initiated by
Stampacchia [8], Lions-Stampacchia [6], Brezis [2] , Browder [1],
cfr. also Kinderlehrer-Stampacchia [4]. In Lions ([5], chapter 3),
we can find the same type of problem for a non linear operator of

hyperbolic type. In this note we study a similar problem for the
operator:

2
(%) 5 = (Clul s lul, sl ) < plase).

The plan of this paper is the following

1. Notation and the main result.
2. Proof of the theorem.

1. Notation and the Main Result

We denote by (w,) the sequence of eigénfunctions of -A
considered on the space Hz(ﬂ) n HZ(Q), 2 is a bounded open set
of R" with regular boundary T. We represent by Vi s k=0,1,2,...
the domain of the operator (-A)k/2 with the inner product and
norm:

£ k/2 k/2 2
(M,U) = =A s -A s Uu = P
e (O ) Ll e
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The constraint D<= v, will be a bounded set, not necessarily
a closed convex set containing zero. Local solutions when the
coeficient of -A in (%) is M(|u|,) is studied in Medeiros-
-Miranda [7] when D is a closed convex set containing zero, and
M(n) > m, > 0; that is, the non degenerated case. In the present
paper we suppose M(&,n,z) > 0 and we use the penalty method
suggested by Ebihara [3]. For the particular case k = 0, we
write:

2

(usv), = (usv)s  luly = lul;

the inner product and norm in Lz(n).

We assume that the following spaces are known:

IP(¥ g, £ )y OBty s o (0,250), ¢%(0,=34), “Where ¢ , t

are real numbers and # 1is a Hilbert space.

2

In order to establish the main result in this paper, we
assume:
1
(]]) M(Esﬂ;ﬁ) € ¢ (ﬂ?+) _where ﬂ?+ = EO,oo[, and

M(E,nsz) 20 on  R).

Let F(E), 0 < & < 4=, be a real function satisfying
the following conditions:

(1.2)  F(g) € c'(0,),

(1.3) there exist real numbers o > 0, B> 1 and ¢ > 0
such that

F(g) > (a/tB) for all & € (0,6],
(1.4)  F'(€) < 0 for all £ > 0,

(1.5) F(E) =1 for all E > 1,

Theorem 1. Let T > 0 be arbitrarily given number. Suppose

o
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(1.6) e, 0] BV %P,

2 2

loc(0s=3V ), df/dt ¢ L]oc(o,w;Lz(Q)) and M(E,n, 1)

satisfies the condition (1.1).

& B LR BT

Then, there exists only one function u: [0,[ > z%(q), satisfying
the conditions:

(1.8)  u € 15, .(0,=37,),

(1.9)  u' € 1%

0
]OC(O’w!Vu) nce (Osm’Vz)!

2

(1.0) 4" € 17, (0,%;5°(2)),

loc

such that

7
(T i) [ (w"-(14M (| u] o u)_ ]u] )}Au-fov-u')dt » 0
)O e 2

for all v in D, where D is a bounded set in v,

(1. 080 ) & U, ®IL0) ok

2. Proof of the Theorem 1

We shall use in the proof the penalization method of
Ebihara [3], and Galerkin approximations. In fact, let us consider
a real number X > 0, such that

2

+ BN N

With this hypothesis, for each € > 0 we define the penalized
problem associated to (*), by:

2
K'l“é]z 2.,

] uu_{'|+M(]u€|,]u€]1 ,Iug]z)}AueﬁF(—T——-)A u. =1

(2:2) u. =0 on Py

ug(x,O) =u,(x), u;(x,O) =i
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In the next step we shall define the approximated problem
associateéd tor(2.2).) It-consistsiinifindingva«function

m
TCOR I (Y
V=1

em
defined by:
" =
(2.3) (uem {1+M(|u€m|,luemll,luemlz)}Auem +
K_lu;mi 2% Ny

+€F(——_E—__)A RIS it T
for each v € [w R R ) ], the subspace of dimension m

1 2 m

generated by the m first eigenvectors (wv)’

(2.4) uem(O) ¥ R-gsupiietes mier

(2:5) UiV (00 =2ne habu »iugt odin o Ve

Note that =« .,'u belong to [w ,w,,...,»,]. We know that

om im
ugm(t) is defined in some interval B),dem], 8om » 0s
We shall obtain a priori estimates for the approximated
solutions u that permit to'pass to: the limits Tn"(2.,3)<1n

em
order to get a solution for the penalized problem (2.2), that

will be the solution which we are looking for.

The proof of the Theorem 1 shall be divided in the
following eight lemmas.

Lemma 1. We have

for-all #i5l05 %% 20 dand " m >l

Proof. Let us fix € and m. In order to work with an easy
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notation, we omit €, m .in ,uem. The proof shall be done by
contradiction. In fact, suppose there exists 0 < £ < Gem such
that:

*

(2.6 B2 NAFSEPRl af I brsedy Smfiad AAI 48 g Ol v ¥ | B3y ¢

Taking v = u" 1in the equation (2.3) and integrating
from ¢ to t, 0 <t, <t <t*, we obtain:

(F(t),u"(T))dT +

35

t K—|u'(’r)l§ t
S EAL N |

t

¢ ¢ 1
: jt Q) o), () @) (e - [ o),

1 4

We observe that the right side of (2.7) is bounded by a
constant ¢ (+*), which depends on e and m, but is independent
of % and t. We then obtain:

i 2

By(Qut ()| ) dr < 2e(t ™),

t K-|u'(1)] 5

(2.8) eft F(

for all. O % et Q¢

£

By the change of variable
1 2
K-lu'(1)],
Elm) = =
€
in the integral (2.8), choosing t,  such that g(t ) < ¢
(s as in the (1.3) of the definition of F(g)) and using (1.3)

we obtain:
As ) (', )
ae? g'Bdg < g F(g)dg < ZC(t*)
g(t) g(t)

for all 0 <t <t < t*. It follows that we get a contradiction,
because by (2.6) &(t) > 0 when ¢ » t*, which implies the
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divergence of the integral of & ° on (g(¢).g(¢,)), and it

cannot be bounded by «(¢*). This contradiction proves the
Lemma 1.

It follows from the Lemma 1 that u« (¢) 1is defined on
all the semi line [0O,o). By the Lemma 1 and the fundamental
theorem of the calculus it follows that:

(2.9) lu ()], s e(T)
for all & € 0,4, e 01 and.  m > 1.
Lemma 2. We have
2
| OETT, Ps o] 20 O

for RN 2IPOAFGITRY & 1> 10 Snd e " 2
= 0

Proof. Omitting e, m in U and doing v = 2(-A)“u' in the

approximated equation (2.3), we obtain:

(Ju' ()2 + Jule) |2+ M(pu(e) | u(e)] s lult)] ) u(e)]?)" <

1 2 5

2
u

SIAOL + ut(e) |y + B Mu() [ u() | lu()| )] u(t) |

It follows from Lemma 1 and (2.9), that

d
| M u() |5l u(e)|
By the Gronwall inequality the proof of the Lemma 2 follows.

Lemma 3. We have

for a TF" T L SR glen| BN e 5708 Na nd Wt ¥
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Proof. In order to obtain an estimate for u" , we first find an
. \ . em
estimate for uém(O). In fact, taking ¢ = 0 in the approximated

equation (2.3) and doing o = 4" (0), applying Cauchy-Schwarz
inequality, we obtain:

(2.10) [w" (O) ] < Cv4m([u(0) [, u(0)] ,|u(0)] )} au(0)| +

1

k-lu'(0)];

+ eP(——————2)[a%u" (0)] + [r(0)].

By the conditions (2.4), (2.5) on the initial data, it
follows that the right side of (2.10) is bounded by a constant
¢. independent of ¢ and n > m, . We then have:

(2.11) lu" (0)] <c forall €>0 and m > m

em 0"

Differentiating the approximated equation (2.3) and taking
v = 2u", we have:

(2.12) (Ta*]%)" '+ 2[m M) u] o] )] (-bu,ut) 4

+ 2(]+M(!ul,lull,lulz))(_Aul,un) A Z(f",u") 3

" : s
-~ 4F V‘*E———)[(u',u")J + 2551——1;__£>,uu’: = O

Noting that the Tast two terms of (2.12) are non negative,
by Lemma 1 and the estimate (2.9) we obtain:

2

(u"(#)[7)" < € (T) + ¢ ') |2+ [u ()]

whence by the estimate (2.11) and Gronwall inequality the proof
of the Lemma 3 follows.
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Lemma 4. We have:

b (B -ula(E2) ], < C(n)] 8,3,

for all 0 < t, <t, < Ty >0 and mo>m

2 [

Proof: We have

By the Lemmas 2 and 3, the proof is done.

Lemma 5. The following estimate holds:
- ! 2
K |1,¢€m(t)|2

€

eF( )5 e(o)

for all ¢ in [0,7], € >0 and m > m

Proof. Taking v = «' din (2.3) we have:

Ll O
(2.13% s P2 L (f+{T+M(Iu|,Iull,fu|2)}Au-u",u')-

If ]u'(tu)i: < K/2, then by the properties (1.4), (1.5) of
F(g), we have for sufficiently small ¢ > 0:

K- 1
gF(__lu_it._o_)l_ﬁ) =iet

If ]u'(to)li > K/2, then by (2.13), the Lemma 1, (2.9)

and Lemma 3, we have:
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<& Orllul sl Ll Ll Wl L el 1], < o).

Thus, Lemma 5 is proved.

From Lemmas 2, 3 and 5 we can extract a subsequence of
(#.,)» still denoted by (u.,)» and a function wu(x,t) satisfying
the conditions

(2,14 u +~ u weak star in  1%(0,7;7,),
(2o 18) somiee > m's mank stan in s d 020, ),

(2.16) ARs canredenle startiin W6, 00 ('Y,

2

K—[u' | )
eEm

(2.17) eF( % weak starTin M (05 7).

E

As the embedding of v, in v, is compact, it follows

from (2.14), (2.15) and Aubin-Lions Theorem that

2
u, o SRy in, L (0.mw, ),

€em
whence
(2.18) MCluglolu o |slu_,1,) > M0l lul s lul,) strongly in
i [07FT.

As the embedding of V, in ¥, is compact, by (2.15),
(2.76) we obtain:

(2.19) u;m » ! L istrongly iin LZ(O,T;VZ).

By the compactness of the embedding of V, in ¥, and
Lemma 2, we have that
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ul (t) 1is relatively compact in ¥, for each t in [0,7],
and by the Lemma 4,

“ém is equicontinuous on [0,7] with values in V,.

Therefore, by Arzela-Ascoli theorem,

0
(2.:20) L in, e ([O,f];VZ).

By (2.14) - (2.19) it is permissible to pass to the Timits

in the approximated equation (2.3), obtaining that
(2.21) w" - {14 (] |u] | lul, ) Pausxa®ut - f = 0

in the distributional isense ioh! g = (0,02)xQ, landi by (2,14),'(2.16)
we have that

{2293 u(0) = u

2
Lemma 6. If |u(t,)l, <k, ¢, €]0,7[, there exists some interval
]to—p, ty+o[ where X(t) = 0 almost everywhere.

Proof: We use the following notation,

2 2
sl il - K-|u'('bo)]2
a = — b = & 80
2 g

Then there exists some interval 1I(t,) = Jto-ps to+tp[ such that
2
| (B3le'dve) i for all ¢ & It ).

By (2.20) it follows that iuémlz converges to |u'[z uniformly
in [0,7], therefore,

lul (2315 = lu'(£)15] < B

>
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for AANE €xB s oY and! e~ ¢ € simis mER S Thash., forls i Bt V%
we have that

2
lug, () |2 < Iu'(t)]z + b < ath < K-b
or

f 2
K -]usm(t)|2 >b >0 for all ¢t € V(t ),

and e < e, m > m,. Therefore, for e small enough, we have that

.2
K—|u€ml2

er( e )

= € in I(ty),

which implies the proof of the Lemma 6.

As a consequence of the Lemma 6, we obtain that if U is
an open set of points ¢ € ]0,T[ where [u'(t)|§ < K, then

(2.23) %(t) =.0 a.€: for HlEe U.

Lemma 7. If we choose X > 0 Tlarge enough such that

2
K > max{igg el ] b

then the function wu(t) constructed above satisfies the inequa-
Tity (1:11)

Proof: We have from (2.21):

T
JO (= Qe uls Ju | u, |) Young, v-u')dt

i
= J Xty u'-v)zdt
0

nv

z 2,
J Xlu' |3 = [u'l,[0],}at
0
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= 2
for every v €0, = {v € 7V,; |v],

. K}. We observe that

A

2

(2.249 it Iu'(to)|z= K. “then |u‘(to)2 -SludilEsdialely > 0.

Thus, from (2.23) and (2.24), it follows that the Tast integral
is nonnegative, and then (1.11) holds for v € D < DK. Therefore
the part of existence of Theorem 1 is proved.

We finally have the uniqueness:

Lemma 8. The function wu(t) s a unique solution of (1.11) in
this class in which wu(t) belongs.

Proof: If we have another function wu(t) which satisfies (1.11)

and belongs to the same class of wu(t), setting for each 0<¢ < T

u'(s) praPg iz g 2o
v,(s) =

u'(s) t < gk

u'(s) 0 s <t T
bl (epu=

RE(B) aiwBef BvEiDa

we know that wv,(s) € bK’ vy(8) € DK,' where BK = lo g, fvl, 220
Therefore we have

t
[ (u" = {'I+M(]u|,!“l 9|ul )}Au'fs ZTtl'u')ds 2 0,
0 g p

6 o S tae g 7
[ G - v a]LE] TR eEer, w-E)ds 3 0.

Then, w(t) = u(t)-u(t) satisfies w(0) = 0, w'(0) = 0 and
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t
JO (w"-Aw—M(|u|,|u[1,{u]2)Au+M(|ﬂ[,|ﬁ|1,|ﬁ|2)Aﬁ,w')ds Sq O
Therefore,

2 2 t 2
ot 1501} [l Ll ol ) (1wl ) '

t
* Zfo el s lul slul ) = m(lal 1@l lal,) Y (-0d,0")de < 0;

then

21
tloly o+ wClulaulyylul,) o] ?
t
d 2
€ [ 1 HCulilul el ) 1ol s

t
. zjo sl ol ) = wClE1 a1 Ta] e e

Here we know from our assumptions that

max & wClulslul Ll )] < oo(n),

£€ [0
and
M(lulsfulslul,) - MClul,lul olul),)
s ol wl + Jul, +1lu,| - |ul, 11,
and
2 2 -
TAEeTETARL L vl e S
el +lal, lul *lal,
lealwll+2_|ﬁlalyl1 Rk lw], ‘
ul |2l X lul +1u],

Thus, we have
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|
|
i
2 2 |
lw' ]+ |w], +M(|u|,|ull,|u|2)|w|1 (7] L.A. Medeiros - M. Milla Miranda - Local solutions for a
nontinear unilateral probLem (to appear).
t t w . o ;
< o(1) J |w|2ds + o(r) [ ] b e lol, }|ﬁlzlw'|d3 [8] G. Stampacchia - Formes b&[&nea&neé'bun Les ensembles
2 1 J0 1 |u|+|&] convexes. C.R. Acad. Sc. Paris 258 (1964), 4413-4416.
2
’ ¥
t b 2 2 2
< c(r) [O o'+l #mClulslul s lul,) o] ids.
Department of Applied Mathematics
o : Faculty of Science, Fukuoka University
This implies w'(t) = 0, w(t) =0, ¢ € [0,7]. Consequently, ‘ Fukuoka 81401
we have completed the proof of Theorem 1. Japan
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