$(a_1)_{x_1}^{x_2}$ $(a_2)_{x_3}^{x_4}$ $(a_3)_{x_4}^{x_5}$ $(a_3)_{x_4}^{x_5}$ $(a_3)_{x_4}^{x_5}$ $(a_3)_{x_4}^{x_5}$

and this inequality together with (TV) and (18) gaven Theorem

tembers Theorem 4 has applycations to several equations over).

divisor at infinity has many irreducible components.

(a) (a) (b) (a) (b) (b)

has "few" monomials. $(q)^{2k}(q)^{2k}(q) = (p)^{2k}(q)^{2k}$

9 (4), PV (3)

Laksov, D., Weierastugas points on curves, Asterisque 87-88 (1981), 221-247.

[N] Mason, R.C., Diophantine equations over function fields, L lecture notes 96, Cambridge Univ. opress 1984.

[BB] Newman, D.J. and Slater, M., Waxing's problem for the Ring polynomials, J. Number Theory 11 (1979), 477-487.

[8] Silverman, J.H., The Catalan equation over Edhetion (selds, Trans. A.M.S., 273 (1982), 201-205.

[37] Stöhr, K.O. sand Verlöcht Jiff, Weitchetnass polints and cunve over finite fields, proc. London Math. Soc. (3) 52

(81) Volta, P.A., Integral points on variation, Ph.D. thesis.

On the other hand if $v_p(u_{\ell(p)}) > 0$ then $v_p(u_f) > 0$ for

rusde el sint . Le .u. 20 l'Instituto de Matematica Pura e Aplicada
tant abulanca en EstradagDonal Castorina, 170 (.u.)

dent obulanca ex Estrada Donal Castorina, d 22.460 Rio de Janeiro-RJ ON A VARIATIONAL INEQUALITY FOR A NONLINEAR OPERATOR OF HYPERBOLIC TYPE

Y. Ebihara(1), M. Milla Miranda, L. A. Medeiros and another and a second and bed separate

Introduction

The study of variational inequalities was initiated by Stampacchia [8], Lions-Stampacchia [6], Brezis [2], Browder [1], cfr. also Kinderlehrer-Stampacchia [4]. In Lions ([5], chapter 3), we can find the same type of problem for a non linear operator of hyperbolic type. In this note we study a similar problem for the operator:

$$\frac{\partial^{2} u}{\partial t^{2}} - (1+M(|u|_{0},|u|_{1},|u|_{2}))\Delta u - f(x,t).$$

The plan of this paper is the following

- 1. Notation and the main result.
 - 2. Proof of the theorem.

1. Notation and the Main Result and mumbers take each (E.I)

We denote by $(w_{\mathcal{V}})$ the sequence of eigenfunctions of $-\Delta$ considered on the space $H_0^1(\Omega)\cap H^2(\Omega)$, Ω is a bounded open set of \mathbb{R}^n with regular boundary Γ . We represent by $V_{\mathcal{K}}$, k=0,1,2,... the domain of the operator $(-\Delta)^{k/2}$ with the inner product and norm:

$$(u,v)_k = ((-\Delta)^{k/2}u, (-\Delta)^{k/2}v)_{L^2(\Omega)}, |u|_k^2 = (u,u)_k$$

Recebido em 14/12/85

⁽¹⁾ Visiting Professor at LCC-CNPq, Rio de Janeiro, RJ, Brasil.

The constraint $D \subseteq V_2$ will be a bounded set, not necessarily a closed convex set containing zero. Local solutions when the coeficient of $-\Delta$ in (*) is M(|u|,) is studied in Medeiros--Miranda [7] when D is a closed convex set containing zero, and $M(\eta) > m_0 > 0$; that is, the non degenerated case. In the present paper we suppose $M(\xi, \eta, \zeta) > 0$ and we use the penalty method suggested by Ebihara [3]. For the particular case k = 0, we write:

Y. EBIHARA, M. MILLA MIRANDA, L. A. MEDEIROS

$$(u,v)_0 = (u,v), |u|_0^2 = |u|;$$

the inner product and norm in $L^{2}(\Omega)$.

We assume that the following spaces are known: $L^{p}(t_{1},t_{2};H), C^{k}(t_{1},t_{2};H), L^{p}_{loc}(0,\infty;H), C^{k}(0,\infty;H), \text{ where } t_{1}, t_{2}$ are real numbers and H is a Hilbert space.

In order to establish the main result in this paper, we assume:

(1.1)
$$M(\xi,\eta,\zeta) \in C^1(\mathbb{R}^3_+)$$
 where $\mathbb{R}_+ = [0,\infty[$, and $M(\xi,\eta,\zeta) \geq 0$ on \mathbb{R}^3_+ .

Let $F(\xi)$, $0 < \xi < +\infty$, be a real function satisfying the following conditions:

- (1.2) $F(\xi) \in C^1(0,\infty)$,
- (1.3) there exist real numbers $\alpha > 0$, $\beta > 1$ and $\delta > 0$

F(
$$\xi$$
) \geq (α/ξ^{β}) for all ξ 6 (0, δ],

- of Let with regular boundary T_{*} , 0 < 3 for all 1 < 3 < 3 for all 1 < 3 < 3 with the inner product and the domain of the operator $(-\Delta)$
- (1.5) $F(\xi) = 1$ for all $\xi > 1$.

Theorem 1. Let T > 0 be arbitrarily given number. Suppose

- (1.6) $(u_0, u_1) \in V_5 \times V_4,$
- (1.7) $f \in L^2_{100}(0,\infty;V_4), df/dt \in L^2_{100}(0,\infty;L^2(\Omega))$ and $M(\xi,\eta,\zeta)$ satisfies the condition (1.1).

Then, there exists only one function $u: [0,\infty[\to L^2(\Omega), satisfying]]$ the conditions:

$$(1.8) \quad u \in L^{\infty}_{10c}(0,\infty;V_5), \tag{E.3}$$

(1.9)
$$u' \in L_{10C}^{\infty}(0,\infty;V_4) \cap C^{0}(0,\infty;V_2),$$

(1.10)
$$u'' \in L_{\log}^{\infty}(0,\infty;L^{2}(\Omega)),$$

such that (140 (17) (17), enotherwhele the trible and voltagener

$$(1.11) \int_{0}^{T} (u'' - \{1 + M(|u|, |u|_{1}, |u|_{2})\} \Delta u - f, v - u') dt \ge 0$$

for all v in D, where D is a bounded set in V_2 ,

$$(1.12)_{0.0}u(0)=u_0$$
, $u'(0)=u_1$.

2. Proof of the Theorem 1

We shall use in the proof the penalization method of Ebihara [3], and Galerkin approximations. In fact, let us consider a real number K > 0, such that marginal and to local and

(2.1)
$$K > |u_1|_2^2$$
. Choosing such the same (3.10 to 2.10)

With this hypothesis, for each $\varepsilon > 0$ we define the penalized problem associated to (*), by:

(2.2)
$$u'' - \{1 + M(|u_{\varepsilon}|, |u_{\varepsilon}|_{1}, |u_{\varepsilon}|_{2})\} \Delta u_{\varepsilon} + \varepsilon F(\frac{K - |u_{\varepsilon}|_{2}^{2}}{\varepsilon}) \Delta^{2} u_{\varepsilon}^{i} = f,$$

$$u_{\varepsilon} = 0 \text{ on } \Gamma,$$

$$u_{\varepsilon}(x, 0) = u_{0}(x), \quad u_{\varepsilon}^{i}(x, 0) = u_{\tau}(x).$$

In the next step we shall define the approximated problem associated to (2.2). It consists in finding a function

Y. EBIHARA, M. MILLA MIRANDA, L. A. MEDEIROS.

$$u_{\varepsilon m}(t) = \sum_{v=1}^{m} g_{\varepsilon m v}(t) w_{v}$$

defined by:

$$(2.3) \qquad (u_{\varepsilon m}^{"} - \{1+M(|u_{\varepsilon m}|, |u_{\varepsilon m}|_{1}, |u_{\varepsilon m}|_{2})\}\Delta u_{\varepsilon m} + \\ + \varepsilon F(\frac{K-|u_{\varepsilon m}^{"}|_{2}}{\varepsilon})\Delta^{2}u_{\varepsilon m}^{"} - f, v) = 0,$$

for each $v \in [w_1, w_2, \dots, w_m]$, the subspace of dimension mgenerated by the m first eigenvectors (w_{ij}) ,

(2.4)
$$u_{sm}(0) = u_{0m}, u_{0m} \rightarrow u_{0} \text{ in } V_{5},$$

(2.5)
$$u_{\epsilon m}^{\prime}(0) = u_{1m}, \quad u_{1m} \rightarrow u_{1} \quad \text{in } V_{4}.$$

Note that u_{0m} , u_{1m} belong to $[w_1, w_2, \ldots, w_m]$. We know that $u_{\varepsilon m}(t)$ is defined in some interval $[0, \delta_{\varepsilon m}]$, $\delta_{\varepsilon m} > 0$.

We shall obtain a priori estimates for the approximated solutions u_{cm} that permit to pass to the limits in (2.3) in order to get a solution for the penalized problem (2.2), that will be the solution which we are looking for. 30 bas . El sand 3

The proof of the Theorem 1 shall be divided in the following eight lemmas.

Lemma 1. We have

$$|u_{\varepsilon m}^{\prime}(t)|_{2}^{2} < K$$

for all t > 0, $\epsilon > 0$ and $m \ge 1$.

Proof. Let us fix ϵ and m. In order to work with an easy

notation, we omit ϵ , m in $u_{\epsilon m}$. The proof shall be done by contradiction. In fact, suppose there exists $0 < t^* \le \delta_{sm}$ such that: (0) and doing u (0) and (0) are some standard opening of the standard opening o

$$(2.6)^{63} |u^{1}(t)|_{2}^{2} < K$$
, for $0 \le t < t^{*}$ and $|u^{1}(t^{*})|_{2}^{2} = K$.

Taking v = u" in the equation (2.3) and integrating from t, to t, $0 \le t_1 < t \le t^*$, we obtain:

$$(2.7) \int_{t_{1}}^{t} \varepsilon F\left(\frac{K - |u'(\tau)|_{2}^{2}}{\varepsilon}\right) (u'(\tau), u''(\tau))_{2} d\tau = \int_{t_{1}}^{t} (f(\tau), u''(\tau)) d\tau + \int_{t_{1}}^{t} \{1 + M(|u(\tau)|, |u(\tau)|_{1}, |u(\tau)|_{2})\} (\Delta u(\tau), u''(\tau)) d\tau - \int_{t_{1}}^{t} |u''(\tau)|^{2} d\tau.$$

We observe that the right side of (2.7) is bounded by a constant $c(t^*)$, which depends on ε and m, but is independent of t and t. We then obtain:

(2.8)
$$\varepsilon \int_{t_1}^{t} F(\frac{K - |u'(\tau)|^{2}}{\varepsilon})(|u'(\tau)|^{2}) d\tau < 2\sigma(t^{*}),$$
 for all $0 \le t_1 < t \le t^{*}.$

By the change of variable

nge of variable
$$\xi(\tau) = \frac{K - |u'(\tau)|_2^2}{\varepsilon \cos x}$$

in the integral (2.8), choosing t, such that $\xi(t) \leq \delta$ (δ as in the (1.3) of the definition of $F(\xi)$) and using (1.3) we obtain:

$$\alpha \varepsilon^2 \int_{\xi(t)}^{\xi(t_1) \log 2} \xi^{-\beta} d\xi \leq \varepsilon^2 \int_{\xi(t)}^{\xi(t_1) \log 2} F(\xi) d\xi \leq 2c(t^*)$$

for all $0 < t, < t < t^*$. It follows that we get a contradiction, because by (2.6) $\xi(t) \rightarrow 0$ when $t \rightarrow t^*$, which implies the

divergence of the integral of $\xi^{-\beta}$ on $(\xi(t),\xi(t_1))$, and it cannot be bounded by $c(t^*)$. This contradiction proves the Lemma 1.

It follows from the Lemma 1 that $u_{\varepsilon m}(t)$ is defined on all the semi line $[0,\infty)$. By the Lemma 1 and the fundamental theorem of the calculus it follows that:

$$|u_{\varepsilon m}(t)|_{2} \leq c(T)$$

for all $t \in [0,T]$, $\varepsilon > 0$ and $m \ge 1$.

Lemma 2. We have

$$|u_{\varepsilon m}^{1}(t)|_{4}^{2} + |u_{\varepsilon m}(t)|_{5}^{2} \leq C(T)$$

for all t in [0,T], $\varepsilon > 0$ and $m \ge m_0$.

Proof. Omitting ε , m in $u_{\varepsilon m}$ and doing $v = 2(-\Delta)^4 u^4$ in the approximated equation (2.3), we obtain:

$$(|u'(t)|_{4}^{2} + |u(t)|_{5}^{2} + M(|u(t)|, |u(t)|_{1}, |u(t)|_{2})|u(t)|_{5}^{2})' \le$$

$$\leq |f(t)|_{4}^{2} + |u'(t)|_{4}^{2} + \left[\frac{d}{dt} M(|u(t)|, |u(t)|_{1}, |u(t)|_{2})\right] |u(t)|_{5}^{2}.$$

It follows from Lemma 1 and (2.9), that

$$\left|\frac{d}{dt} \, M(|u(t)|, |u(t)|_1, |u(t)|_2)\right| \leq C(T).$$

By the Gronwall inequality the proof of the Lemma 2 follows.

Lemma 3. We have

$$|u_{\varepsilon_m}^{"}(t)| \leq c(T)$$

for all t in [0,T], $\varepsilon > 0$ and $m \ge m_0$.

Proof. In order to obtain an estimate for u'', we first find an estimate for $u''_{\epsilon m}(0)$. In fact, taking t=0 in the approximated equation (2.3) and doing v=u''(0), applying Cauchy-Schwarz inequality, we obtain:

$$|u''(0)| \leq \{1+M(|u(0)|,|u(0)|_{1},|u(0)|_{2})\} |\Delta u(0)| + \varepsilon F(\frac{K-|u'(0)|_{2}^{2}}{\varepsilon}) |\Delta^{2}u'(0)| + |f(0)|.$$

By the conditions (2.4), (2.5) on the initial data, it follows that the right side of (2.10) is bounded by a constant C independent of ϵ and $m \geq m_0$. We then have:

(2.11)
$$|u_{\varepsilon m}^{"}(0)| \leq C$$
 for all $\varepsilon > 0$ and $m \geq m_0$.

Differentiating the approximated equation (2.3) and taking $v=2u^{\prime\prime}$, we have:

$$(2.12) \qquad (|u''|^2)' + 2\left[\frac{d}{dt}M(|u|,|u|_1,|u|_2)\right](-\Delta u,u'') + \\ + 2(1+M(|u|,|u|_1,|u|_2))(-\Delta u',u'') - 2(f',u'') + \\ - 4F'(\frac{K-|u'|^2}{\varepsilon})\left[(u',u'')_2\right]^2 + 2\varepsilon F(\frac{K-|u'|^2}{\varepsilon})|u''|_2^2 = 0.$$

Noting that the last two terms of (2.12) are non negative, by Lemma 1 and the estimate (2.9) we obtain:

$$(|u''(t)|^2)' \leq C_1(T) + C_2|f'(t)|^2 + |u''(t)|^2,$$

whence by the estimate (2.11) and Gronwall inequality the proof of the Lemma 3 follows.

$$|u_{\varepsilon m}^{\dagger}(t_1) - u_{\varepsilon m}^{\dagger}(t_2)|_2 \le C(T) |t_1 - t_2|$$

for all $0 \le t$, < t, $\le T$, $\varepsilon > 0$ and $m \ge m_0$. Since s_0

Proof: We have $\{(1/(0)a], (0/a), (0/a),$

$$|u'(t_1)-u'(t_2)|_2^2 = \int_{t_1}^{t_2} (u''(\tau), u'(t_1)-u'(t_2))_2 d\tau \le \int_{t_1}^{t_2} |u''(\tau)| |u'(t_1)-u'_1(t_2)|_4 d\tau.$$

By the Lemmas 2 and 3, the proof is done.

Lemma 5. The following estimate holds:

$$\varepsilon F(\frac{K-\left|u_{\varepsilon m}^{1}(t)\right|_{2}^{2}}{\varepsilon}) \leq C(T)$$

for all t in [0,T], $\varepsilon > 0$ and m > m.

Proof. Taking v = u' in (2.3) we have:

(2.13)
$$F(\frac{K-|u'|^{2}}{\varepsilon})|u'|^{2}_{2} = (f+\{1+M(|u|,|u|_{1},|u|_{2})\}\Delta u-u'',u').$$

If $|u'(t_0)|^2 \le K/2$, then by the properties (1.4), (1.5) of $F(\xi)$, we have for sufficiently small $\varepsilon > 0$:

$$\varepsilon_F(\frac{K - |u'(t_0)|^2}{\varepsilon}) = \varepsilon.$$

If $|u'(t_0)|_2^2 > K/2$, then by (2.13), the Lemma 1, (2.9) and Lemma 3, we have:

$$\varepsilon F\left(\frac{K-|u'(t_0)|_2^2}{\varepsilon}\right) \leq \varepsilon F(\frac{K-|u'(t_0)|_2^2}{\varepsilon})$$

 $\leq \frac{2}{K} \left[|f| |u'| + \{1+M(|u|,|u|_{1},|u|_{2})\}^{||u|_{2}} |u'| + |u''| |u'| \right]_{t=t_{0}} \leq C(T).$

Thus, Lemma 5 is proved.

From Lemmas 2, 3 and 5 we can extract a subsequence of $(u_{_{\it EM}})$, still denoted by $(u_{_{\it EM}})$, and a function u(x,t) satisfying the conditions:

(2.14)
$$u_{\varepsilon m} \rightarrow u$$
 weak star in $L^{\infty}(0,T;V_5)$,

(2.15)
$$u'_{\varepsilon m} \rightarrow u'$$
 weak star in $L^{\infty}(0,T;V_{+})$,

(2.16)
$$u_{\varepsilon m}^{"} \rightarrow u^{"}$$
 weak star in $L^{\infty}(0,T;L^{2}(\Omega))$

(2.16)
$$u_{\varepsilon m}^{"} \rightarrow u^{"}$$
 weak star in $L^{\infty}(0,T;L^{2}(\Omega)),$

$$(2.17) \qquad \varepsilon F(\frac{K - |u_{\varepsilon m}^{"}|^{2}}{\varepsilon}) \rightarrow X \text{ weak star in } L^{\infty}(0,T).$$

As the embedding of V_5 in V_2 is compact, it follows from (2.14), (2.15) and Aubin-Lions Theorem that

$$u_{\varepsilon_m} \rightarrow u$$
 strongly in $L^2(0,T;V_2)$,

whence

(2.18) $M(|u_{sm}|, |u_{sm}|_{1}, |u_{sm}|_{2}) \rightarrow M(|u|, |u|_{1}, |u|_{2})$ strongly in L²(0,T).

As the embedding of V_4 in V_2 is compact, by (2.15). (2.16) we obtain:

(2.19)
$$u_{\varepsilon_m}^{\dagger} \rightarrow u^{\dagger} \text{ strongly in } L^2(0,T;V_2).$$

By the compactness of the embedding of V_4 in V_2 and Lemma 2, we have that

 $u_{arepsilon m}^{+}(t)$ is relatively compact in V_{2} for each t in $\left[0\,,T\right],$ and by the Lemma 4,

 $u_{\varepsilon m}^{1}$ is equicontinuous on $\left[0\,, \mathcal{I}\right]$ with values in $V_{2}\,.$

Therefore, by Arzela-Ascoli theorem,

$$(2.20) u'_{\varepsilon m} \rightarrow u' \text{ in } C^{0}([0,T];V_{2}).$$

By (2.14) - (2.19) it is permissible to pass to the limits in the approximated equation (2.3), obtaining that

$$(2.21) u'' - \{1+M(|u|,|u|,|u|_2)\}\Delta u + \chi \Delta^2 u' - f = 0$$

in the distributional sense on $Q \equiv (0,T) \times \Omega$, and by (2.14), (2.16) we have that

(2.22)
$$u(0) = u_0, \quad u'(0) = u_1.$$

Lemma 6. If $|u(t_0)|_2^2 < K$, $t_0 \in]0,T[$, there exists some interval $]t_0-\rho$, $t_0+\rho[$ where X(t)=0 almost everywhere.

Proof: We use the following notation,

$$a = \frac{K + |u'(t_0)|_2^2}{2}, \qquad b = \frac{K - |u'(t_0)|_2^2}{4} > 0.$$

Then there exists some interval $I(t_0) =]t_0 - \rho$, $t_0 + \rho[$ such that

$$|u'(t)|_2^2 < a$$
 for all $t \in I(t_0)$.

By (2.20) it follows that $|u_{\epsilon m}^{1^*}|_2^2$ converges to $|u^*|_2^2$ uniformly in [0,T], therefore,

$$|u_{\varepsilon m}^{\dagger}(t)|_{2}^{2} - |u^{\dagger}(t)|_{2}^{2}| \le b$$

for all $t\in I(t_0)$ and $\varepsilon<\varepsilon_0$, $m\geq m_0$. Thus, for $t\in I(t_0)$, we have that

$$|u_{\in m}^{\prime}(t)|_{2}^{2} \leq |u^{\prime}(t)|_{2}^{2} + b < a+b < K-b$$

or

$$K - \left|u_{\in m}'(t)\right|_{2}^{2} > b > 0$$
 for all $t \in V(t_{0})$,

and $\varepsilon < \varepsilon_0$, $m \ge m_0$. Therefore, for ε small enough, we have that

$$\frac{K - |u_{\epsilon m}|^2}{\varepsilon F(\frac{K - |u_{\epsilon m}|^2}{\varepsilon})} = \varepsilon \quad \text{in} \quad I(t_0),$$

which implies the proof of the Lemma 6.

As a consequence of the Lemma 6, we obtain that if U is an open set of points $t\in \left]0,T\right[$ where $\left|u'(t)\right|_{2}^{2}< K$, then

(2.23)
$$X(t) = 0$$
 a.e. for $t \in U$.

Lemma 7. If we choose K > 0 large enough such that

$$K > \max\{\sup_{v \in D} |v|_{2}^{2}, |u_{1}|_{2}^{2}\},$$

then the function u(t) constructed above satisfies the inequality (1.11).

Proof: We have from (2.21):

$$\int_{0}^{T} (u'' - \{1+M(|u|, |u_{1}|, |u_{2}|)\} \Delta u - f, v - u') dt$$

$$= \int_{0}^{T} \chi(u', u' - v)_{2} dt$$

$$\stackrel{\geq}{=} \int_{0}^{T} \chi\{|u'|_{2}^{2} - |u'|_{2}|v|_{2}\} dt$$

NONLINEAR OPERATOR OF HYPERBOLIC TYPE

53

for every $v \in \bar{D}_{\nu} \equiv \{v \in V_2; |v|_2^2 \le K\}$. We observe that $(2.24) \quad \text{if } \left| u'(t_0) \right|^2 = K \quad \text{then } \left| u'(t_0) \right|^2 - \left| u'(t_0) \right|^2 \left| v \right|^2 \ge 0.$

Thus, from (2.23) and (2.24), it follows that the last integral is nonnegative, and then (1.11) holds for $v \in D \subset \overline{D}_v$. Therefore the part of existence of Theorem 1 is proved.

We finally have the uniqueness:

Lemma 8. The function u(t) is a unique solution of (1.11) in this class in which u(t) belongs.

Proof: If we have another function $\bar{u}(t)$ which satisfies (1.11) and belongs to the same class of u(t), setting for each 0 < t < T

$$v_1(s) = \begin{cases} \bar{u}'(s) & 0 < s < t \le T \\ u'(s) & t < s < T, \end{cases}$$

$$\begin{cases} u'(s) & 0 < s < t \le T \end{cases}$$

$$v_{2}(s) = \begin{cases} u'(s) & 0 < s < t \le T \\ 0 & 0 < s < t \le T \end{cases}$$

we know that $v_1(s) \in \bar{D}_{\nu}$, $v_2(s) \in \bar{D}_{\nu}$, where $\bar{D}_{\nu} = \{v \in V_2; |v|_2 \leq K\}$. therefore we have supremoded about the function u(t) constructed above variety events on the function u(t)

$$\int_{0}^{t} (u'' - \{1+M(|u|,|u|_{1},|u|_{2})\} \Delta u - f, \bar{u}' - u') ds \ge 0,$$

$$\int_{0}^{t} (\bar{u}" - \{1+M(|\bar{u}|,|\bar{u}|_{1},|\bar{u}|_{2})\}\Delta \bar{u} - f, u' - \bar{u}') ds \ge 0.$$

Then, $w(t) \equiv u(t) - \bar{u}(t)$ satisfies w(0) = 0, w'(0) = 0 and

$$\int_{0}^{t} (w'' - \Delta w - M(|u|, |u|, |u|_{1}, |u|_{2}) \Delta u + M(|\overline{u}|, |\overline{u}|_{1}, |\overline{u}|_{2}) \Delta \overline{u}, w') ds \leq 0.$$

Therefore,
$$|w'|^2 + |w|_1^2 + \int_0^t M(|u|, |u|_1, |u|_2) (|w|_1^2) ds$$

$$+ 2 \int_0^t \{M(|u|, |u|_1, |u|_2) - M(|\bar{u}|, |\bar{u}|_1, |\bar{u}|_2)\} (-\Delta \bar{u}, w') ds \leq 0;$$

then
$$|w'|^2 + |w|_1^2 + M(|u|, |u|_1, |u|_2) |w|_1^2 = \text{Impose}$$

$$\leq \int_0^t \left| \frac{d}{ds} M(|u|,|u|_1,|u|_2) ||w|_1^2 ds$$

$$+ 2 \int_{0}^{t} |M(|u|, |u|_{1}, |u|_{2}) - M(|\bar{u}|, |\bar{u}|_{1}, |\bar{u}|_{2}) ||\bar{u}|_{2} |w'| ds.$$

Here we know from our assumptions that

$$\max_{t \in [0,T]} \left| \frac{d}{dt} M(|u|,|u|_1,|u|_2) \right| \leq C(T),$$

$$\leq C(T)\{|w| + |w|_1 + ||u_2| - |\overline{u}|_2|\},$$

$$||u|_{2} - |\bar{u}|_{2}| = \frac{||u|_{2}^{2} - |\bar{u}|_{2}^{2}|}{|u|_{2} + |\bar{u}|_{2}} = \frac{||w|_{2}^{2} + 2(w, \bar{u})_{2}|}{|u|_{2} + |\bar{u}|_{2}}$$

$$\leq \frac{|w|_{3}|w|_{1}+2|\bar{u}|_{3}|w|_{1}}{|u|_{2}+|\bar{u}|_{2}} \leq C(T) \frac{|w|_{1}}{|u|_{2}+|\bar{u}|_{2}},$$

Thus, we have

$$\begin{aligned} & \left| w^{+} \right|^{2} + \left| w \right|_{1}^{2} + M(\left| u \right|, \left| u \right|_{1}, \left| u \right|_{2}) \left| w \right|_{1}^{2} \\ & \leq C(T) \int_{0}^{t} \left| w \right|_{1}^{2} ds + C(T) \int_{0}^{t} \left\{ \left| w \right| + \left| w \right|_{1} + \frac{\left| w \right|_{1}}{\left| u \right|_{2} + \left| \bar{u} \right|_{2}} \right\} \left| \bar{u} \right|_{2} \left| w^{+} \right| ds \\ & \leq C(T) \int_{0}^{t} \left\{ \left| w^{+} \right|^{2} + \left| w \right|_{1}^{2} + M(\left| u \right|, \left| u \right|_{1}, \left| u \right|_{2}) \left| w \right|_{1}^{2} ds \,. \end{aligned}$$

This implies $w'(t) \equiv 0$, $w(t) \equiv 0$, $t \in [0,T]$. Consequently, we have completed the proof of Theorem 1.

References

- [1] F.E. Browder Nonlinear monotone operators and convex sets in Banach spaces. Bull. Am. Math. Society 71 (1965), 780-785.
- [2] H. Brezis Problèmes unilatereaux. J. Math. Pures et Appl. 51 (1972), 1-168.
- [3] Y. Ebihara Modified variational inequalities to semilinear wave equations. Nonlinear Analysis, Vol. 7, Nº 8 (1983), 821-826.
- [4] D. Kinderlehrer G. Stampacchia An introduction to variational inequalities and their applications. Acad. Press, N.Y., 1980.
- [5] J.L. Lions Quelques methodes de resolution des problèmes aux limites non lineaires. Dunod, Paris, 1968.
- [6] J.L. Lions G. Stampacchia Variational Inequalities.
 Com. Pure and Appl. Math. XX (1967), 493-519.

[7] L.A. Medeiros - M. Milla Miranda - Local solutions for a nonlinear unilateral problem (to appear).

Introduction

[8] G. Stampacchia - Formes bilineaires sur les ensembles convexes. C.R. Acad. Sc. Paris 258 (1964), 4413-4416.

Department of Applied Mathematics Faculty of Science, Fukuoka University Fukuoka 81401 Japan

Instituto de Matemática Universidade Federal do Rio de Janeiro Caixa Postal 68530 21.944 Rio de Janeiro-RJ