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SOME REMARKS ON MINIMAL IMMERSIONS
IN HYPERBOLIC SPACES

Célia C. Goes and Plinio A. Q. Simdes

1. Introduction

Throughout the paper differentiable means ¢%, u is an
m-dimensional connected and oriented manifold, and @ is the
set  {(x,t) € B* |2 Eﬂ?n_], t > 0} endowed with its usual
differentiable structure. Then ﬂﬁ Lsabthespaiin 1(@is 3 & i)
where < , > is the usual flat riemannian metric of w* . :and g*
is the pair (g, (,)), where (,) 1is the riemannian metric on
9 given by (?)( P z%~<,>. It is well known that #" is a
model for the n-dimensional hyperbolic space having constant
sectional curvature and equal to -1. Given an immersion of M
into @, the metrics <, > and (,) induce on M metrics that
are conformal with each other. Comparing the geometric entities
induced on M by these two metrics we establish formulas that
allow us to get properties that an isometric minimal immersion of
M into E" has to have.

Let ¢ and & be the above immersion accordingly we
consider it as an isometric immersion into IRZ or #™. Then
assuming that ¢ = (x,t) 1is minimal we show that ¢ has to be a
superharmonic function with respect to 5*(,) and 6% <,>. As
a consequence there is no isometric minimal immersion of ¥ into
g if either M is compact without boundary or if m=2 and it is
complete and parabolic. Under the hypothesis that the asymptotic

boundary of 5(M) in Hm+] omits a point of the ideal boundary

of Hm+], we show that there is no complete isometric minimal

immersion of »™ having either at all points at least one sectional
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curvature less than - % (m+4), or having at all points scalar

curvature less than-2.

2. Basic facts - If v is an open set of @ we indicate by X(v)
the set of differentiable tangent vector fields defined on V.
Let U, be the tangent vector field of @ given by

Un(x,t) = (0,0,...,0,1) (¥ (z,t) € Q).

Proposition 1. - If V and V are the Levi-Civita connections
with respect to <, > and (,) and if v is an open subset of
Q@ we have

cal & 2a0). 7 13 1
(2,130 8 ra iy 7 KUY = = <UU K + 2<XY>0, (¥ X,1 €X(V))

Proof - Let (eA), 4 =1,2,...,n, be a local orthonormal

referential of .EZ. Then (EA), given by eA(

a local orthonormal referential of #". Let (6 and (B s
4 =1,2,...,n, be respectively the dual referentials of (eA)
and (¢,). If (8%4) and (§2), 4,8 =1,....n, are the i
connection 1-forms of (eA) and (5A) with respect to V and V,
from the first structural equations we obtain

25t =teA(x,t) is
A) A)

~A A 1 A B _
g [eB ~ 78] 2% E'<Un’eB>e ] ~8" = 0.
Thus the Cartan's lemma [W] implies
~A A ] 40 A e i A A
b5 - 65 + e U ,ep>8" = g az 67, with Op, = O o (¥ 4,B,¢).
The antisymmetry of eé and eg implies
A . A 1
aBC=0, Wfsoc ot B, 2iand Uppg = ¢ <U,se,> (¥ 4,B).
Then
2 23 A 1 B A
eB = eB + T {<U71 ” eA>e <Un,eB>e i
Therefore from
Ve =XeBe and Ve =ZeBe
A 3 A B A 3 A A

we have (2.1).

s SE—
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IEw. k3 1. B and B are respectively the Weingarten
operators and the second fundamental forms of ¢ and ¢ we have

(X)) = -(T5 (5)9) s M) = =T, (V)

v are respectively sections of the normal
N

o+ —

where Vv and v =
bundle of 5 and ¢, and where X,Y € xX(M), and where ( )
and ( )T indicate respectively the orthogonal projections into

the normal and tangent bundles of vector fields along ¢ and ¢.

Then if (Ei) and (ei) are respectively local orthonormal
sections of the tangent bundles of 5 and ¢, and H and H
are their respective mean curvature vectors, we have

2 1 e 1
o= ; B(e;,e;) and H = = ; B(e;,e;).

Proposition 2 - If v is a section of the normal bundle of %,
1

e V, X,¥Y € X(M) we have
(2.2) A9(x) = tAV(X) + <U_,v> ¢,(%);
(2.3) B(X,¥) = B(X,7) + L <o, (X),04(1)>(v )5

=2l v,
(2.4) = t8+ t(U)";

3. " 20 ) 1 K

(2.5 ¢ is minimal if, and only if, # = - ?(Un)
Proof: - It is an easy consequence from (2.1) and of the
definitions.
Proposition 3 - Let grad-, divﬂ, Ay and gradM, divM, Dy be

respectively the gradient, the divergent and the Laplace-Beltrami
operators of ¥ with respect to the riemannian metrics ¢*( , )
and ¢*<,>. If f e c®(M) and X € x(M) we have
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(246, grdﬁf = tzgrade;

(2.7) divg¥= divyx - §<Un,¢*(x)>

(2.8) Auf = tzAMf' - (m-2)t <vu,,9, (grad,f)>
Proof: - The formulas are consequence of

(0,(grad,f), 6,(X)) = df(X) = <¢,(grad,f).¢,(X)>.

Corollary: = JIf o U = 6,070,000, sl b im0 6(.05,05 o000 and
- 1 n-1
(1) = (.’13 3000 53X 9t),

(2.9) A.zd=t*maty

P TR L L W U S P G T
(2.10) Agt = 2m<d,U >~ (m-2)t <(0)7, (v)>
‘ M n unt. 2 n &
Proof: - It is a consequence of the well known formula
(215 Ayd = mH
Proposition 4: - Let (¢;), 1< 7?2 <m be a local orthonormal
referential of M with respect to @*( , ), and assume that
$=(2) and e, =&, If 744, let K(5;,5,) be the

i
sectional curvature of (¥,3*( , )) determined by (8;483) ‘and
Tet K(ei’ej) be the sectional curvature of (M,¢*<,>)

determined by (ei,ej). Then
s e 2 =
(F2=11:2%) K(ei,ej) =it K(ei,ej) + <H,B(e ,e.) + B(ej,ej)> “
2 1 ~ = 2 =~
-t <H,B(e7:,e7/) + B(ej,ej)> +— <H B>+ T<HH>-2<H H>-1,

t

Proof: - Let (ZA), 1 24 <n, be a local orthonormal referential
of #" such that u (¢(p)) = ¢*p(5$P)) i el s B e e e el
Let ~§ be the differential 2-forms of curvature of (e;) and

-
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LB Ean (C Lo
suppose that B(e.,e.) = ) A..u_ . The Gauss equation implies,
Wyag il o AR S
n Z%’L' ~(7),'Lj
36,2 = B, ey »5b % det
i J R FT LY a=m+1 o -0
Bl R
o Jt I
Thel. 55 #ur® wi iy and Ble S yr=raiiy )
= e .9 . e o o t]
o t O ] a=p+1 %I @
i ay 8 < < >
(2.1) implies idoi S ui,uj> U sug>.
Therefore
SERL S g v
K(ei,eJ) = ¢ K(ei,eJ) + t <B(e.,e,) + B(e.,ej),Un>-<(Un) ,(Un) >

we have (2.12).

Corollary - Let K and X be respectively the scalar curvatures

of (M,6%(,)) and (M,*<,>). Then

(2.13) £ = t°Kin _%.<ﬁ,§> S T e )
t
In particular, F= 0 implies
(2.14) EE2D Uk g -]y
(2¢db3) K1 sn0uod £ pEdic =21

Proof. Given p € M,

i ] Bt B & z
E(p) = —ru : ;__1 B(2,,2;) and  K(p) = - ) ]K(%’%)’
8.8 Tsd =
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where (ei)
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and

(e;)

are respectively orthonormal basis of

T (M) with respect to ¢*(,) and ¢*<,>. Then (2.13) follows
from (2.12). The inequalities follow from (2.13) and from

1

<H,H> 2 —5,
t

which is a consequence of (2.5).

S L - . - n
3. Minimal immersions in ¥

They formudas) (2:5)5 ) (2.9)4502.1094 and# (2. 11)5imply: the

following res

Proposition 6

(3.1 ' e
(3.2)  az"
(3.3) 4y
(3.4) Ayt

Therefo

E]
the riemannian metrics ¢*(,

ult.

ot %0 T

re, i

f

f

mt >y 2
Tk

¢ = (xls- an-]!t)
i
47
(Un)N,UA>, when 4
T T
2 <(0,)75(0,)7]
v v
(Un) s (Un) >

is minimal we have

t is superharmonic with respect to
) and  ofs.on

Now let us collect some geometric consequences of the
superharmonicity of

Theorem 7 - L

t in the following

result.

et M be an m-dimensional connected and oriented

riemannian manifold.

1) if M is compact without boundary, there is no minimal

Then

isometric immersion of M into

2) if

m. =

2

and M is parabolic

isometric immersion of ¥ into

3) if

m. =

2

curvature,

M

into

n

Hn;

there is no minimal

Hn;

and M is complete and has finite total

there is no minimal

H% S

isometric immersion of

IMME RSIONS IN HYPERBOLIC SPACES 63

Proof.

1) Assume that ¢ is minimal. Then the diVergence theorem
and (3.4) imply ’

'f B (g ), (v MWsam = 0. -This . (v )¥ = 0.
'Mt n n

Therefore (2.5) implies that ¢ 4s a minimal immersion dme Sy
This is a cohtradiction, because there is no isometric miniﬁ;]
immersion of a compact, without boundary, riemannian manifold in
bisd

2) Consider the conformal structure induced by ¢*(,) on M.

Going to the universal covering space, we may suppose ‘that'
M is globally parametrized by isothermal parameters z = w¥iv;
Then

1 52 A 3¢
A== (F— + L where 2\ = <
AR (Buz sz) R0 du L

2 2
Therefore (3.4) implies that "%'(§‘§ + é—%) < 0. So ¢ is

4 : g A u’ v ’
a positive superharmonic function globally defined.on M. -Since
on a connected Riemann surface of parabolic type, there is no
non-constant superharmonic function bounded below, weé have that
t s constant [4-5]. Thus ¢(M) s contained in a hyperplane

3 = IV f -

orthogonal to U, and so ik (Un) and <bybs U > =0. But

(2.1) and (2.5) imply that & ¢ = - 2 (y )7

i Then we have a
contradiction.

3) As a consequence of theorem 15 of M, o Af M is a
complete 2-dimensional riemannian manifold having finite total
curvature it has to be parabolic.

Remark. The assertion 1 of the above theorem was first proved by

[0'¥]. See also [M]. The proof above was included due to its
simplicity.
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Proposition 8 - Suppose that 5 is minimal and Tet s(p) =
<¢(P),Uy>, P € M. If q is a local maximum of s, (e,),
=1,...,m, s an orthonormal basis of Tq(M) with respect to

$*<,> and &, = te, for all %, we have

(3.5) k(e, 00) < 1 T7(5,),8

2% ) % = 417+ mlec for @11 44 4.

In particular, if »n = m+1 we have

(3.6) E{egieydd > wodaBe 4
(gt 2wl
(3.7) R(2;.8;) 2 - % (m+4).

Moreover, if % = m+1 and (e;) diagonalizes the second
fundamental form of ¢, we have

(3.8) K(ei,ej) 210,

(3.9) R(5.,3,

& J) e

v

Proof - Since the result is local, we may identify ¢(p) with p
ifidalneighborhood! ' Vief ¥ g2 " "Thus 1f X ¢ X(V) we have

(x[s] ) (a) = <x(a),0,> = 0. Then U, (q) = (v,)"(a)
and

(¥Lxlell) () = <y 0 X00,> = <B(X(q),X(q)),U,> < 0.

q) n n =

Now Tet (ei) be an orthonormal basis of Tq(M) with respect to
<s>ar - LHEN <B(ei,ei),Un> <0 (¥ ), and from

h! )@ () i
TN ivEMCAD T I neu (EETEENe i We have
m
g izl <B(e;,e;),U > = -m<H(q),U, (q)> = ?%%7'
From: (2.12)

E(;i’;j) £ t2(q)K(ei’ej)+t(Q)<Un’B(ei’ei) ¥ Blie s 0%,
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Then
Klogre,) = = (R(3,,5,) = t(a)<u, (e e )48l re.)>) <
t (q)
1 fepeire BEGY L S e
< 1k(e:se.) + #lg) } = 1x(e.se.) + mk:
= tz(q) 7 5] tiq tz(q) o i/

If n = m+l, we have

K(ei,ej) = <B(e7;,ei),U

Blie ae: U
m+]>< (eJ,eJ),

L R <B(e7:,ej) sU

>0 6
m+1

But bi<Billel, &ia ., el ke s,

; ; Um+1> < 0 implies

z J
= 2<B(e’5’ej)’ym+]> < =<B(egier)s U > - <B(e.,eJ),Um+]> <=_ﬂ'_”5)_
Then
m
I<B(esse) 4001”5 wray
Therefore
( ) > <B( YA >2 > m’
Klies,€:) = v - - B i
i g = 7 g ey, ] 4t2(q)
Then, from (3.5), we have
(e 3 S e > i
K(ei,ej) i o) K(ei,ej) -m 2 - o (med).

If n=m+1l and (ei) diagonalizes the second fundamental form
of ¢, we have

K(eﬁ.,e.) = <Ble.,e.), U ><B(ej,ej), U >

] T m+1 m+1

[AV4
o

and K(ei,ej) 2=

The ideal boundary of 2" is the compactification by a
point of "] {(z,t) € B"/t = 0}. 1t is well known that it
has a natural conformal structure and that conformal diffeomorphisms
of it extend to isometries of #". We indicate the ideal boundary
of #' by 3" and the added point by .



66 CELIA C. GOES AND PLINIO A. Q. SIMOES

The asymptotic boundary of a given set S < 8" 4s the
set 5N 3 4", where the closure of S is considered in &" anHn.

We now have the following results.

Theorem 9 - Let ¥ be an m-dimensional riemannian manifold,
assume that it is complete, non compact and oriented and its
scalar curvature is always less than -2. Then there is no
isometric minimal immersion of ¥ into Hm+], if the asymptotic

boundary of its image omits a point of 3me+].

Proof - Suppose that ¢: ¥ - 4% is one such immersion. Let

a € amHm+] - 3m5(M) and let F be a conformal diffeomorfism of
amHm+] that sends a into «. Llet f be the natural extension

of F to Hm+1 such that . fi restricted .to gl is an isometry.
Since <« g 3_f($(M)) we have that s(p) = <f(%(p)), U,.1> has
a maximum C > 0 at some g € M and the hyperplane ¢t = ¢ s
the tangent space to fF(¢(M)) at  f£(d(q)).

Now let ¥ be the immersion of M into 1RT+] given by

v(p) = F(9(p)) (¥ p € M). Let X be the scalar curvature of M
with respect to the riemannian metric 3*<,>. Since the tangent
space to y(M) at WU(gq) is the hyperplane ¢ = ¢, and since

s(p) = <y(p), u>zsc (¥ p € M), we have by (3.,8) that KGa) 2.0,

This gives a contradiction, because (2.15) implies that KX(q) < 0.

Theorem 10 - Let ¥ be an m-dimensional riemannian manifold.
Assume that M 1is connected, complete, non compact and oriented.
Then there is no isometric minimal immersion of M into gl
having at every point at least one sectional curvature less than

- % (m+4) if the asymptotic boundary of its image omits a point
of 3 F2t1

Proof - It is similar to the one of theorem 9 noting that the

hypothesis Z(q) < - % (m+4) is a contradiction with (Bed).

[4-5]
(]

(]

[o'n]
]
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