BÄCKLUND'S THEOREM FOR SUBMANIFOLDS OF SPACE FORMS AND A GENERALIZED WAVE EQUATION

Keti Tenenblat

Introduction of a manager denoted by the control of the control of

In this paper, we extend the results obtained in [5] and [6], by proving a generalization of Bäcklund's theorem and Bianchi's permutability theorem for n-dimensional submanifolds of a (2n-1)-dimensional, simply connected, complete, space form. Moreover, we show that the analytic interpretation of these theorems provides a Bäcklund transformation and a superposition formula for systems of partial differential equations which generalize the homogeneous wave equation and the Sine Gordon equation. We observe that the generalized wave equation is nonlinear for $n \geq 3$ and the initial value problem for these generalized equations can be solved by applying the inverse scattering method [1].

In section 1, we review the local theory for n-dimensional Riemannian manifolds, with constant sectional curvature k, isometrically immersed in a (2n-1)-dimensional simply connected, complete, space form \overline{M}_k^{2n-1} of curvature k, such that k < K. We show that such immersions are in correspondence with the class of orthogonal, $(n \times n)$ -matrix functions which satisfy a system of partial differential equations (1.12). For n=2, whenever $k \neq 0$, the system of equations reduces to the Sine-Gordon equation, and when k=0 (the case of flat surfaces contained in a 3-dimensional sphere) it reduces to the homogeneous wave equation.

In section 2, we define a pseudo-spherical geodesic congruence between two n-dimensional submanifolds of a space form \bar{M}_{k}^{2n-1} . We prove a generalization of Bäcklund's theorem (theorem 1), which shows that the existence of such a congruence implies that both submanifolds have constant sectional curvature k, k < K. In theorem 2, by proving the complete integrability of

Recebido em 20/08/85.

the differential ideal associated to the existence of a pseudo-spherical congruence, we show that given an n-dimensional' submanifold M of M_K^{-2n-1} , with constant curvature k, k < K, there exists an n-parameter family of submanifolds, which are related to M by pseudo-spherical geodesic congruences.

In section 3, we prove the permutability property (theorem 4). The geometric theory obtained in sections 2 and 3 is interpreted analytically in the last section. Namely, theorem 5 provides a Backlund transformation for the system of equations (1.12), which generates new solutions from a given one. Theorem 6 provides a superposition formula which generates other solutions algebraically. Moreover, it follows from the characterization of section 1, that given a Riemannian manifold M^n , with constant sectional curvature k, immersed in a space form \overline{M}_K^{2n-1} , these theorems provide the first and second fundamental forms of new such submanifolds.

We observe that the geometric theory for n = 2, in the non-euclidean cases was obtained by Bianchi 2.

In this paper, M, M', denote n-dimensional submanifolds of a (2n-1)-dimensional simply connected, complete, space form \overline{M}_K^{2n-1} of curvature K. Without loss of generality we consider K=0, 1, -1, i.e. \overline{M} is respectively the euclidean space, unit sphere S^{2n-1} and the hyperbolic space H^{2n-1} . For the sake of completeness, we include the euclidean case i.e. K=0, which was treated in [5] and [6].

We will use the following conventions on ranges of indices,

$$1 \leq I, J, L \leq n$$
, which we are larger $1 \leq A, B, C \leq 2n-1$, appending to

$$2 \le i, j, k \le n,$$
 $n+1 \le \alpha, \beta, \gamma \le 2n-1.$

Moreover, we shall agree that repeated indices are summed over the respective ranges.

1. Local theory for submanifolds of space form

Let M be an n-dimensional riemannian manifold of constant curvature k, isometrically immersed in a space form $\overline{M}_K^{2\,n-1}$, such that k < K.

Let e_1,e_2,\dots,e_{2n-1} be a moving orthonormal frame on an open set of \bar{M} , so that at points of M, e_1,\dots,e_n are tangent to M. Let ω_A be the dual orthonormal coframe, and consider ω_{AB} defined by

$$de_A = \sum_B \omega_{AB} e_B$$
.

The structure equations of $ar{\mathit{M}}$ are

(1.1)
$$d\omega_A = \sum_B \omega_B \wedge \omega_{BA}, \quad \omega_{AB} + \omega_{BA} = 0;$$

$$(1.2) d\omega_{AB} = \sum_{C} \omega_{AC} \wedge \omega_{CB} - K\omega_{A} \wedge \omega_{B}.$$

Restricting these forms to $\it M$ we have $\,\omega_{\alpha}^{}=0\,,\,$ hence from (1.1) we obtain

$$d\omega_{\alpha} = \sum_{T} \omega_{I} \wedge \omega_{I\alpha} = 0$$

$$d\omega_{I} = \sum_{\tau} \omega_{J} \wedge \omega_{JI}.$$

The first of these implies via Cartan's lemma, that

$$\omega_{I\alpha} = \sum_{J} b_{IJ}^{\alpha} \omega_{J}, \quad b_{IJ}^{\alpha} = b_{JI}^{\alpha}.$$

From (1.2) we obtain, Gauss equation

(1.5)
$$d\omega_{IJ} = \sum_{L} \omega_{IL} \wedge \omega_{LJ} + \sum_{\alpha} \omega_{I\alpha} \wedge \omega_{J} - K\omega_{I} \wedge \omega_{J}$$
 and Codazzi equation

$$d\omega_{I\alpha} = \sum_{A} \omega_{IA} \wedge \omega_{A\alpha}.$$

M has constant sectional curvature k, if and only if

$$\Omega_{IJ} = d\omega_{IJ} - \sum_{L} \omega_{IL} \wedge \omega_{LJ} = -k\omega_{I} \wedge \omega_{J},$$

.e.

(1.8)
$$\sum_{\alpha} \omega_{I\alpha} \wedge \omega_{\alpha J} = (K - k) \omega_{I} \wedge \omega_{J}.$$

From (1.2) we have

 $d\omega_{\alpha\beta} = \sum_{\gamma} \omega_{\alpha\gamma} \wedge \omega_{\gamma\beta} + \Omega_{\alpha\beta},$

wher

$$\Omega_{\alpha\beta} = \sum_{T} \omega_{\alpha I} \wedge \omega_{I\beta}$$

is the normal curvature of M.

We denote by $\mathbf{I} = \sum\limits_{i=1}^{N} \left(\omega_{I} \right)^{2}$ the first fundamental form on M and $\mathbf{II} = \sum\limits_{i=1}^{N} H^{\alpha} e_{\alpha}$, where H^{α} is the second fundamental form with respect to e_{α} . Since $k \leq K$, there exists ([3] [4]) a local orthonormal frame tangent to M, v_{1}, \ldots, v_{n} , called principal directions which diagonalizes the quadratic forms H^{α} simultaneously. Lines of curvature are curves of M which are tangent at each point to principal directions. A tangent vector V is called asymptotic if $H^{\alpha}(V) = 0$, $\forall \alpha$. E. Cartan and J.D. Moore proved the following.

Theorem A ([3] [4]) - Let M be a Riemannian n-dimensional manifold with constant sectional curvature k, isometrically immersed in a (2n-1)-dimensional space form $\overline{\mathbb{M}}_K^{2n-1}$, such that k < K. Then locally there exists coordinates (u_1, \ldots, u_n) parametrized by lines of curvature such that

$$I = \sum_{I} \alpha_{I}^{2} du_{I}^{2},$$

$$II = \sum_{I,\alpha} b_{I}^{\alpha} \alpha_{I} du_{I}^{2} e_{\alpha},$$

where $a_I > 0$ for all I and $\sum a_I^2 = 1$. Moreover, the vector $V = \sum a_I v_I$ is the unique unit asymptotic vector such that $a_I > {}^I 0$, \forall I.

It follows from this theorem that the normal bundle of M in \bar{M} has zero curvature. Hence, without loss of generality, we will assume that e_{α} have been chosen so that $\omega_{\alpha\beta}=0$.

Consider the moving frame $v_1,\ldots,v_n,\,e_\alpha,\,$ let ϕ_I be the dual forms to v_I and ϕ_{AB} the connection forms. Then, $\phi_I=\alpha_I du_I,\,\,\phi_I=b_I^\alpha a_I du_I$ and (1.8) takes the simpler form

(1.9) $\sum_{\alpha} b_{J}^{\alpha} b_{I}^{\alpha} = k - K, \qquad I \neq J.$

Since $\sum_{I} \frac{\partial}{\partial u_{I}} = \sum_{I} a_{I} v_{I}$ is a unit asymptotic vector, we get

(1.10)
$$\sum_{I} b_{I}^{\alpha} a_{I}^{2} = 0, \quad \sum_{I} a_{I}^{2} = 1.$$

From (1.9) and (1.10), it follows that for each I

$$(1.11) \qquad \qquad \sum_{\alpha} b_{I}^{\alpha} b_{I}^{\alpha} = (K-k)(1-\alpha_{I}^{2})/\alpha_{I}^{2}.$$

Therefore there is a matrix function $\vec{\mathbf{A}}$ associated to $\mathbf{M},$ with respect to $\mathbf{e}_{\alpha},$

$$\bar{A} = \begin{bmatrix} a_1 & a_2 & a_n \\ a_1 b_1^{n+1} & a_2 b_2^{n+1} & \dots & a_n b_n^{n+1} \\ a_1 b_1^{2n-1} & a_2 b_2^{2n-1} & a_n b_n^{2n-1} \end{bmatrix}$$

satisfying (1.9)-(1.11). It follows from these properties, that if we consider

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{K-k}} & I_{n-1} \end{bmatrix} \bar{A},$$

where I_{n-1} is the $(n-1)\times(n-1)$ unit matrix, we obtain an orthogonal matrix function A, defined on an open set U, associated to M, with respect to e_{α} .

Moreover if we denote $A = (\alpha_{IJ})$, it follows from (1.4) that

$$\phi_{IJ} = \frac{1}{\alpha_{1I}} \frac{\partial \alpha_{1J}}{\partial u_I} du_J - \frac{1}{\alpha_{1J}} \frac{\partial \alpha_{1I}}{\partial u_J} du_I.$$

Therefore, from (1.6) and (1.7) we conclude that A satisfies the following system of partial differential equations

$$\begin{cases} \frac{\partial}{\partial u_{I}} (\frac{1}{\alpha_{1I}} \frac{\partial \alpha_{1J}}{\partial u_{I}}) + \frac{\partial}{\partial u_{J}} (\frac{1}{\alpha_{1J}} \frac{\partial \alpha_{1I}}{\partial u_{J}}) + \sum_{L \neq I, L \neq J} \frac{1}{\alpha_{1L}^{2}} \frac{\partial \alpha_{1I}}{\partial u_{L}} \frac{\partial \alpha_{1J}}{\partial u_{L}} = -k\alpha_{1I}\alpha_{1J}, I \neq J \\ \frac{\partial}{\partial u_{L}} (\frac{1}{\alpha_{1I}} \frac{\partial \alpha_{1J}}{\partial u_{I}}) = \frac{1}{\alpha_{1I}\alpha_{1L}} \frac{\partial \alpha_{1L}}{\partial u_{I}} \frac{\partial \alpha_{1J}}{\partial u_{L}} \quad L \neq I \neq J, \\ \frac{\alpha_{iI}}{u_{J}} = \frac{\alpha_{iJ}}{\alpha_{1J}} \frac{\partial \alpha_{1I}}{\partial u_{J}} \quad \forall i, I, J; I \neq J \end{cases}$$

where $1 \le I, J, L \le n$, 2 < i < n.

Conversely, given an orthogonal matrix function A satisfying the above system, it follows from the fundamental theorem for submanifolds of a space form, that for a fixed K, such that k < K, the matrix

$$\bar{A} = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{K-K} & I_{n-1} \end{bmatrix} A$$

determines the existence of an n-dimensional manifold M, with constant sectional curvature k, isometrically immersed in a space form \bar{M}_{χ}^{2n-1} .

We observe, that for n=2, whenever $k\neq 0$ the above system of equations reduces to the Sine-Gordon equation, and when k=0 it reduces to the homogeneous wave equation. In fact, consider

$$A = \begin{bmatrix} \cos f & \sin f \\ -\sin f & \cos f \end{bmatrix}, \text{ and } \text{ an$$

where f is a differentiable function of u_1 , u_2 . Then (1.12) reduces to

(1.13)
$$f_{u_1 u_1} - f_{u_2 u_2} = -k \sin f \cos f,$$

which is the homogeneous wave quation when k=0. For $k\neq 0$, we define

$$\psi(\bar{u}_1, \bar{u}_2) = \begin{cases} 2f\left(\frac{\bar{u}_1}{\sqrt{-k}}, \frac{\bar{u}_2}{\sqrt{-k}}\right), & \text{if } k < 0; \\ \\ 2f\left(\frac{\bar{u}_1}{\sqrt{k}}, \frac{\bar{u}_2}{\sqrt{k}}\right) - \pi, & \text{if } k > 0. \end{cases}$$

Then (1.13) is equivalent to space ababase A.S. not smiled

$$\psi \bar{u}_1 \bar{u}_1 - \psi \bar{u}_2 \bar{u}_2 = \sin \psi,$$

which is the Sine-Gordon equation.

2. Generalization of Backlund's theorem

In this section, we define a pseudo-spherical geodesic congruence between two n-dimensional submanifolds M and M' of a space form \bar{M}_{K}^{2n-1} with constant sectional curvature K. We prove a generalization of Backlund's theorem, for such submanifolds and the complete integrability of the differential ideal associated to the existence of a pseudo-spherical congruence.

In what follows we need the notion of angles between two k-planes in a 2k-dimensional inner product space. Let E and E be two k-planes in a 2k-dimensional inner product space (v, <, >) and $\pi: V \to E_1$ the orthogonal projection. Define a symmetric bilinear form on E_2 by $(v_1, v_2) = \langle \pi(v_1), \pi(v_2) \rangle$. The k angles between E_1 and E_2 are defined to be $\theta_1, \ldots, \theta_k$ where $\cos^2\theta_1, \ldots, \cos^2\theta_k$ are the k-eigenvalues for the self-adjoint operator $A: E_2 \to E_2$ such that $(v_1, v_2) = \langle Av_1, v_2 \rangle$.

Definition 1. A geodesic congruence between two n-dimensional submanifolds M and M' of a (2n-1)-dimensional space form \bar{M} is a diffeomorphism $\ell:M\to M'$, such that for $P\in M$ and $P'=\ell(P)$, there exists a unique geodesic γ in \bar{M} joining P and P', whose tangent vectors at P and P' are in T_PM and $T_{P'}M'$ respectively.

Given a geodesic congruence $\ell:M\to M'$, we remark that the normal spaces v_p and v_p , at corresponding points P and P'

are (n-1) dimensional and orthogonal to the plane determined by the position vector X of M and the tangent vector of Y at P. Therefore, $v_{\mathcal{D}}$ and $v_{\mathcal{D}}$ lie in a 2n-2 dimensional vector space, i.e. there are (n-1) angles between v_p and v_p .

Definition 2. A geodesic congruence $l:M \to M'$ between two n-dimensional submanifolds of \bar{M} is called pseudo-spherical if:

- (1) the distance between P and $P' = \mathcal{L}(P)$ on \bar{M} , is a constant r, independent of P;
- (2) the (n-1) angles between $\nu_{\mathcal{D}}$ and $\nu_{\mathcal{D}}$, are all equal to a constant θ , independent of P:
- (3) the normal bundles v and v' are flat;
- (4) the bundle map $\Gamma: \nu \rightarrow \nu'$ given by the orthogonal projection commutes with the normal connections.

The above definition generalizes the notion of pseudo--spherical line congruence introduced in [5]. The following result is a generalization of Bäcklund's theorem for submanifolds for a space form. Without loss of generality, we consider $K \equiv 0$, 1 or -1 i.e. \bar{M} is respectively the (2n-1)-dimensional euclidean space, unit sphere H^{2n-1} or the hyperbolic space H^{2n-1} . Moreover, we consider \mathbb{H}^{2n-1} as being in a Minkowski space $\widetilde{\mathbb{R}}^{2n}$.

Theorem 1. Suppose there is a pseudo-spherical geodesic congruence $l:M \rightarrow M'$ between two n-dimensional submanifolds of \bar{M}_{κ}^{2n-1} , with constants r and $\theta \neq 0$. Then, both M and M' have constant sectional curvature k. where the south state of

(2.1)
$$k = \begin{cases} -\frac{\sin^2 \theta}{r^2}, & \text{if } K \equiv 0; \\ 1 - \frac{\sin^2 \theta}{\sin^2 r}, & \text{if } K \equiv 1; \\ -1 - \frac{\sin^2 \theta}{\sinh^2 r}, & \text{if } K \equiv -1. \end{cases}$$

Proof: i) The case $K \equiv 0$ was proved in [5] by considering local orthonormal frames e_1, \ldots, e_{2n-1} for M and e_1', \ldots, e_{2n-1}' for M' such that.

$$(2.2) \qquad \omega_{n+i-1},_{n+j-1} = 0, \qquad \omega_{n+i-1},_{n+j-1} = 0,$$

(2.3)
$$e_{i}^{\dagger} = -\sin\theta e_{i}^{\dagger} + \cos\theta e_{n+i-1}^{\dagger},$$

$$e_{i}^{\dagger} = \cos\theta e_{i}^{\dagger} + \sin\theta e_{n+i-1}^{\dagger},$$

$$e_{1}^{\dagger} = -e_{1}^{\dagger},$$

$$(2.4) e_1' = -e_1,$$

where e_1 is the unit direction of the line PP'. For such, frames we show that

We remark that since
$$dx = u_1 = u_2 = u_3$$

(2.5)
$$\cos \theta \omega_{i}^{!} = \omega_{i} + p_{\omega_{1}i}$$

$$\sin\theta\omega_{i}^{\prime} = \nu\omega_{1,n+i-1}^{\prime},$$

and therefore

(2.6)
$$\omega_i + p\omega_{1i} = p \cot g \theta \omega_{1,n+i-1}.$$

Moreover, we prove that

(2.7)
$$\omega_{ij} = \cot \theta \left(\omega_{i,n+j-1} - \omega_{j,n+i-1}\right),$$

$$\omega_1, n+k-1 = -\frac{\sin\theta}{2} \omega_k$$

(2.8)

$$\omega_{i,n+k-1}^{i} = \omega_{k,n+i-1}.$$
(01.8)

Finally, it follows that the sectional curvature of M'is constant equal to $-\sin^2\theta/r^2$. By symmetry, M has the same constant sectional curvature.

ii) Let M and M' be submanifolds of the unit sphere s^{2n-1} contained in the euclidean space \mathbb{R}^{2n} . Consider M locally given by $X:U \to M \subset S^{2n-1} \subset \mathbb{R}^{2n}$, where U is an open subset of \mathbb{R}^n . Since there is a pseudo-spherical congruence between M and M', there exist local orthonormal frames $e_1, e_2, \ldots, e_{2n-1}$ for M and e_1', \ldots, e_{2n-1}' for M' such that (2.2), (2.3) are verified and

(2.9)
$$e_1' = \sin rX - \cos r e_1,$$

where e_1 at $P\in M$, is the unit vector tangent to the geodesic from P to $P^*=\mathcal{L}(P)$.

Let X' denote the position vector for M'. Then locally

$$X' = \cos r X + \sin r e_1$$
.

We remark that since $dX = \omega_1 e_1 + \omega_i e_i$ and $\langle X, e_1 \rangle = 0$, it follows that $\langle de_1, X \rangle = -\omega_1$. Hence,

$$dX' = \cos r \, dX + \sin r \, de_1$$

$$= \cos r \, \omega_1 e_1 + \cos r \, \omega_i e_i + \sin r \, \omega_{1i} e_i + \cos r$$

On the other hand

$$dX' = \omega_{1}' e_{1}' + \omega_{2}' e_{2}' =$$

$$= \omega_{1}' (\sin x - \cos r e_{1}) + \omega_{2}' (\cos \theta e_{2} + \sin \theta e_{n+2-1}).$$

Comparing coefficients of X, e_1, \ldots, e_{2n-1} we get

(2.10)
$$\cos\theta \ \omega_{i}^{!} = \cos r \ \omega_{i} + \sin r \ \omega_{1i}$$

$$\sin\theta \ \omega_{i}^{!} = \sin r \ \omega_{1,n+i-1} .$$

Therefore we obtain

(2.11)
$$\cos r \omega_{i} + \sin r \omega_{1i} = \sin r \cot \theta \omega_{i, n+i-1}.$$

Since $\omega_{n+i-1,n+j-1}^{\prime}=0$, it follows that

$$0 = \sin^2 \theta \, \omega_{ij} - \sin \theta \cos \theta \, (\omega_{i,n+j-1} - \omega_{j,n+i-1})$$

i.e.

(2.12)
$$\omega_{ij} = \cot \theta \, (\omega_{i,n+j-1} - \omega_{j,n+i-1}).$$

Now we want to compute Ω^1_{ii} and Ω^1_{ij} . From (2.3) and (2.9)-(2.12) we get

(2.13)
$$\omega_{1,n+k-1}' = -\sin r \sin \theta \omega_{k} + \cos r (\sin \theta \omega_{1k} - \cos \theta \omega_{1,n+k-1})$$
$$= -\frac{\sin \theta}{\sin r} \omega_{k}$$

and

(2.14)
$$\omega_{i,n+k-1} = \omega_{k,n+i-1}$$

Therefore by (1.7) and (2.13) we get

$$\Omega_{1i}^{\dagger} = -\omega_{1,n+k-1}^{\dagger} \wedge \omega_{i,n+k-1}^{\dagger} - \omega_{1}^{\dagger} \wedge \omega_{i}^{\dagger} =$$

$$= \frac{\sin \theta}{\sin n} \omega_{k} \wedge \omega_{k,n+i-1}^{\dagger} - \omega_{1}^{\dagger} \wedge \omega_{i}^{\dagger}$$

$$= -\left(1 - \frac{\sin^{2} \theta}{\sin^{2} n}\right) \omega_{1}^{\dagger} \wedge \omega_{i}^{\dagger},$$

where last equality follows from (1.3) and (2.10). Similarly,

$$\Omega_{ij}^{1} = -\omega_{i,n+k-1}^{1} \wedge \omega_{j,n+k-1}^{1} - \omega_{i}^{1} \wedge \omega_{j}^{1} =$$

$$= -\omega_{k,n+i-1}^{1} \wedge \omega_{k,n+j-1}^{1} - \omega_{i}^{1} \wedge \omega_{j}^{1} =$$

$$= \omega_{1,n+i-1}^{1} \wedge \omega_{1,n+j-1}^{1} - \omega_{i}^{1} \wedge \omega_{j}^{1}$$

$$= -\left(1 - \frac{\sin^{2}\theta}{\sin^{2}n}\right)\omega_{i}^{1} \wedge \omega_{j}^{1}$$

where the last equality follows from (2.10).

Therefore M' has constant sectional curvature $1-\frac{\sin^2\theta}{\sin^2r}.$ By symmetry M also has the same constant sectional curvature.

iii) Let M and M' be submanifolds of $H^{2n-1} \subset \widetilde{\mathbb{R}}^{2n}$ where $\widetilde{\mathbb{R}}^{2n}$ is a Minkowski space (cf [7], p. 66). Consider M locally given by $X: U \to M \subset H^{2n-1} \subset \widetilde{\mathbb{R}}^{2n}$ where U is an open subset of \mathbb{R}^n . Then X is normal to H^{2n-1} and $\|X\| = -1$.

Since there is a pseudo-spherical congruence between M and M', there exist local orthonormal frames $e_1, e_2, \ldots, e_{2n-1}$ for M and e_1', \ldots, e_{2n-1}' for M' such that (2.2), (2.3) are verified and

$$(2.15) e_1' = \sinh x - \cosh r e_1,$$

where e_1 at $P \in M$ is the unit vector tangent to the geodesic from P to $P' = \mathcal{L}(P)$. Let X' be the position vector for M', then locally

$$X' = \cosh r X + \sinh r e_1$$
.

With arguments analogue to the previous case we get

(2.16)
$$\omega_{i}' = -\omega_{1}$$

$$\cos\theta \omega_{i}' = \cosh r \omega_{i} + \sinh r \omega_{1i}$$

$$\sin\theta \omega_{i}' = \sinh r \omega_{1,n+i-1}.$$

Therefore, we obtain

(2.17)
$$\cosh r \omega_i + \sinh r \omega_{i} = \sinh r \cot \theta \omega_{in+i}$$

(2.18)
$$\omega_{ij} = \cot \theta (\omega_{i,n+j-1} - \omega_{j,n+i-1}).$$

Moreover

(2.19)
$$\omega'_{i,n+k-1} = -\frac{\sin \theta}{\sinh x} \omega_{k}$$

$$\omega'_{i,n+k-1} = \omega_{k,n+i-1}.$$

Finally, we obtain that the sectional curvature of M', and therefore of M, is constant equal to $-1 - \sin^2\theta/\sinh^2 r$.

q.e.d.

The following theorem shows that, given an n-dimensional submanifold M of a space form \bar{M}_K^{2n-1} , with constant curvature k < K, there exists an n-parameter family of submanifolds M', which are related to M by pseudo-spherical geodesic congruences.

Theorem 2. Let M be an n-dimensional submanifold of a space form \bar{N}_K^{2n-1} , with constant sectional curvature k given by (2.1), where r>0 (and $r<\pi$, whenever $K\equiv 1$) and $\theta\neq 0$ are constants. Let v_1^0,\ldots,v_n^0 be an orthonormal basis of the tangent space to M at P_0 , given by principal directions. Given a unit vector $v_0=\sum_{I=1}^n C_I v_I^0$, $C_I\neq 0$ for all $1\leq I\leq n$, there exists an n-dimensional submanifold M' of M and a pseudo-spherical geodesic congruence $\ell:M\to M'$ such that the geodesic joining P_0 to $P_0'=\ell(P_0)$ is tangent to v_0 at P_0 , the distance in M between P_0 and P_0' is r and θ is the angle between v_{P_0} and $v_{P_0'}$.

Proof: i) The case $K \equiv 0$ was proved in [5] by showing the complete integrability of the differential ideal generated by (2.2), (2.6) and (2.7).

ii) When $K \equiv 1$ we consider (2.2), (2.11) and (2.12). More precisely, let J be the ideal generated by the forms

$$\alpha_{i} = \cos^{r} \omega_{i} + \sin^{r} \omega_{1i} - \sin^{r} \cot \theta \omega_{1,n+i-1}$$

$$\beta_{ij} = \omega_{ij} - \cot \theta (\omega_{i,n+j-1} - \omega_{j,n+i-1})$$

$$\gamma_{ij} = \omega_{n+i-1,n+j-1}.$$

We first prove that J is a closed differential ideal

$$\begin{split} d\alpha_{i} &= \cos r \, \omega_{1} \, \wedge \, \omega_{1i} \, + \, \cos r \, \omega_{k} \, \wedge \, \omega_{ki} \, + \, \sin r \, \omega_{1k} \, \wedge \, \omega_{ki} \, + \\ &+ \, \sin r \, \omega_{1,n+k-1} \, \wedge \, \omega_{n+k-1,i} \, - \, \sin r \, \omega_{1} \, \wedge \, \omega_{i} \\ &- \, \sin r \, \cot g \theta \, \, \omega_{1k} \, \wedge \, \omega_{k,n+i-1} \, - \, \sin r \, \cot g \theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{ki} \\ &= \, - \, \frac{\cos^{2}r}{\sin r} \, \omega_{1} \, \wedge \, \omega_{i} \, + \, \cos r \, \cot g \theta \, \, \omega_{1} \, \wedge \, \omega_{1,n+i-1} \\ &+ \, \sin r \, \cot g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \left(\omega_{k,n+i-1} \, - \, \omega_{i,n+k-1} \right) \\ &+ \, \sin r \, \cot g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \left(\omega_{k,n+i-1} \, - \, \omega_{i,n+k-1} \right) \\ &+ \, \sin r \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \left(\omega_{n+k-1,i} \, - \, \sin r \, \omega_{1,n+k-1} \right) \\ &+ \, \sin r \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \left(\omega_{n+k-1,i} \, - \, \sin r \, \omega_{1,n+k-1} \right) \\ &+ \, \sin r \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \left(\omega_{n+k-1,i} \, - \, \sin r \, \omega_{n+k-1} \right) \\ &+ \, \sin r \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \sin r \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \sin r \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \sin r \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \sin r \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \sin r \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \sin r \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \sin r \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \sin r \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g^{2}\theta \, \, \omega_{1,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g^{2}\theta \, \, \omega_{i,n+k-1} \, \wedge \, \omega_{i,n+k-1} \\ &+ \, \cos g$$

By hypothesis $\Omega_{1i} = -(1 - \frac{\sin^2 \theta}{\sin^2 r})\omega_1 \wedge \omega_i$, therefore $d\alpha_i \equiv 0 \pmod{J}$ i.e. $d\alpha_i \in J$.

A similar computation will show that $d\beta_{ij} \in J$. Finally, we remark that

$$d\gamma_{ij} \equiv \Omega_{n+i-1}, n+j-1 \pmod{J}.$$

Since M has flat normal curvature we get $d\gamma_{ij} \equiv 0 \pmod{J}$. Therefore, it follows from Frobenius theorem, that there exists an orthonormal frame e_1,\ldots,e_{2n-1} on a neighborhood of P_0 on M, such that $e_1(P_0) = v_0$ and (2.2), (2.11) and (2.12) are satisfied.

Let $X:U\to M\subset S^{2n-1}\subset \mathbb{R}^{2n}$ be the position vector of M. We define

$$X' = \cos r X + \sin r e_1$$
.

Then X'(U)=M' is contained in S^{2n-1} . We want to prove that M' is n-dimensional and $\mathfrak{L}:M\to M'$ defined by $\mathfrak{L}(X)=X'$ is a pseudo-spherical geodesic congruence. Consider

$$dX' = \cos r \, dX + \sin r \, de_1$$

$$= \omega_1(\cos r \, e_1 - \sin r \, X) + \frac{\sin r}{\sin \theta} \, \omega_{1, n+i-1}(\cos \theta \, e_i + \sin \theta \, e_{n+i-1})$$

where last equality follows from (2.11). Since ω_1 , ω_1 , n+i-1 ar linearly independent it follows that X' defines an n-dimension submanifold of S^{2n-1} . Moreover, $\cos r \ e_1 - \sin r \ X$, and $\cos \theta \ e_i + \sin \theta \ e_{n+i-1}$ are tangent vectors to M'. The geodesic joining P to P' is given by

$$cost X + sint e_1$$
 t & [0,r]

which is tangent to e_1 and $\cos r\ e_1$ - $\sin r\ X$ at P and P' respectively. The distance between P and P' is r and the (n-1) angles between v_P and v_P , are all equal to θ . Finally, it follows from (2.2) and (2.12) that ω_{n+i-1} , n+j-1 = 0 hence v and v' are flat and Γ commutes with the normal connection. This completes the proof for the case $K \equiv 1$.

iii) Similar arguments prove the theorem for $M \subset \mathbb{H}^{2n-1}$, by considering the differential ideal generated by (2.2), (2.17) and (2.18).

Remark 1. We observe that the pairs of equations (2.6), (2.7); (2.11), (2.12) and (2.17), (2.18) can be written in matrix notation as

$$(2.20) \qquad \omega = WD - DW^{t},$$

where the matrices ω , W and D are defined by

$$\omega = (\omega);$$
 $W_{IJ} = \omega_{I}, \quad W_{IJ} = \omega_{I,n+j-1};$

BÄCKLUND'S THEOREM

(2.21)
$$D = \begin{bmatrix} f_K(r) & 0 & 0 \\ 0 & \cot \theta & I_{n-1} \end{bmatrix};$$

$$f_K(r) = egin{cases} 1/r & ext{if } K \equiv 0; \\ ext{cotg } r, & ext{if } K \equiv 1; \\ ext{cotgh } r, & ext{if } K \equiv -1; \end{cases}$$

and \mathbf{W}^t denotes the transpose of \mathbf{W} .

We conclude this section obtaining a result that will be used later. Suppose there is a pseudo-spherical geodesic congruence $\&: M \to M'$, with constants p and $\theta \neq 0$. Let v_1, \ldots, v_n be the local frame given by principal directions on M. Choose an orthonormal frame e_{α} normal to M such that $w_{n+i-1}, v_{n+j-1} = 0$ and define $e_1, e_i, e_1', e_i', e_\alpha'$ as in theorem 1. Let A' be the orthogonal matrix function given by

$$e_I = A_{IJ}^{\dagger} v_J$$

Then we obtain:

Theorem 3. A' is the orthogonal matrix function associated to M' with respect to e_{α}^{\prime} .

Proof: Let ϕ_I be the dual forms to v_I and ϕ_{AB} the connection forms with respect to the frame v_I , e_{α} , i.e.

$$\phi_I = \alpha_I du_I$$
 and $\phi_{I\alpha} = b_I^{\alpha} a_I du_I$.

It follows from (2.5) for $K\equiv 0$, (2.10) for $K\equiv 1$, (2.16) for $K\equiv -1$ and theorem 1, that the first fundamental form on M^3 is given by

$$I' = \sum_{I} \omega_{I}^{2} = \omega_{1}^{2} + \frac{1}{K-K} \sum_{i} \omega_{1,n+i-1}^{2}.$$

Therefore

e I' =
$$A_{1}^{i} A_{1}^{i} (1 + \frac{1}{K-K} b_{I}^{n+i-1} b_{J}^{n+i-1}) \phi_{I} \phi_{J}$$
.

Hence, from (1.9) and (1.11) we obtain

$$I' = \sum_{T} (A_{1T})^2 du_T^2.$$

In order to obtain the second fundamental form on M', we consider its normal componentes. Using (2.5), (2.8) for $K\equiv 0$; (2.10), (2.13), (2.14) for $K\equiv 1$; (2.16), (2.19) for $K\equiv -1$ and theorem 1 we have

$$\begin{split} & \Pi^{\,\prime} \cdot \, e_{n+j-1}^{\,\prime} \, = \, \omega_{I\,,n+j-1}^{\,\prime} \, \omega_{I}^{\,\prime} \, = \\ & = \, \sqrt{K-k} \, \, \omega_{j} \, \omega_{1} \, + \, \frac{1}{\sqrt{K-k}} \, \omega_{j\,,n+i-1} \, \omega_{1\,,n+i-1} \, = \\ & = \, A_{j\,I}^{\,\prime} A_{1\,J}^{\,\prime} \, \left(\sqrt{K-k} \, + \, \frac{1}{\sqrt{K-k}} \, b_{I}^{\,n+i-1} b_{J}^{\,n+i-1} \right) \phi_{I} \phi_{J}. \end{split}$$

Hence, it follows from (1.9) and (1.11) that

(2.23) II'
$$e_{n+j-1}^{\dagger} = \sqrt{K-k} \sum_{I} A_{jI}^{\dagger} A_{1I}^{\dagger} du_{I}^{2}.$$

From (2.22) and (2.23) we conclude that

$$\bar{A}' = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{K-k} & I_{n-1} \end{bmatrix} A'$$

is the matrix function associated with M' , satisfying (1.9)--(1.11). Therefore, A' is the orthogonal matrix function associated to M' with respect to e'_{α} .

q.e.d.

3. Permutability property

In this section, we prove the permutatility property of pseudo-spherical geodesic congruences. More precisely:

Theorem 4. Let M, M', M'' be n-dimensional submanifolds of a space form \overline{M}_K^{2n-1} . Suppose there exist pseudo-spherical geodesic congruences $\ell_1:M\to M'$ and $\ell_2:M\to M''$ with constants r_1 , θ_1 and r_2 , θ_2 respectively, $\theta_1\neq\theta_2$. Then there exists $M^*\subset \overline{M}$ and pseudo-spherical congruences $\ell_2^*:M'\to M^*$, $\ell_1^*:M''\to M^*$ with constants r_2 , θ_2 and r_1 , θ_1 respectively, such that

$$\ell_2^* \circ \ell_1 = \ell_1^* \circ \ell_2.$$

Proof: Let v_1 ,..., v_n be a local frame given by principal directions on M. Choose an orthonormal frame e_{n+i-1} normal to M, such that ω_{n+i-1} ,n+j-1 = 0. Consider frames e_1 , e_i and e_1 , e_i for M, e_1 , e_i , e_1 , e_1 , e_1 , e_1 for M and e_1 , e_1 , e_1 , e_1 , e_1 , e_1 for M as in theorem 1, i.e.

$$\begin{aligned} e_{i}^{!} &= \cos\theta_{1} e_{i}^{!} + \sin\theta_{1} e_{n+i-1}^{!} & e_{i}^{"} &= \cos\theta_{2} \bar{e}_{i}^{!} + \sin\theta_{2} e_{n+i-1}^{!} \\ e_{n+i-1}^{!} &= -\sin\theta_{1} e_{i}^{!} + \cos\theta_{1} e_{n+i-1}^{!} & e_{n+i-1}^{"} &= -\sin\theta_{2} \bar{e}_{i}^{!} + \cos\theta_{2} e_{n+i-1}^{!}, \end{aligned}$$

$$(3.1)$$

$$e_{1}^{"} = \begin{cases} -e_{1}, & \text{if } K \equiv 0; \\ \sin r_{1}X - \cos r_{1}e_{1}, & \text{if } K \equiv 1; \\ \sinh r_{1}X - \cosh r_{1}e_{1}, & \text{if } K \equiv -1; \end{cases} e_{1}^{"} = \begin{cases} -\bar{e}_{1}, & \text{if } K \equiv 0; \\ \sin r_{2}X - \cos r_{2}\bar{e}_{1}, & \text{if } K \equiv 1; \\ \sinh r_{2}X - \cosh r_{2}\bar{e}_{1}, & \text{if } K \equiv -1; \end{cases}$$

where X denotes the position vector for M and e_1 , \overline{e}_1 are the unit vectors, tangent to the geodesic from P to $P' = \ell_1(P)$ and $P'' = \ell_2(P)$ respectively.

We denote by an important a

$$X' = \begin{cases} X + r_1 e_1, & \text{if } K \equiv 0; \\ \cos r_1 X + \sin r_1 e_1, & \text{if } K \equiv 1; \\ \cosh r_1 X + \sinh r_1 e_1, & \text{if } K \equiv -1. \end{cases}$$

$$X'' = \begin{cases} X + r_2 \bar{e}_1 & \text{if } K \equiv 0; \\ \cos r_2 X + \sin r_2 \bar{e}_1, & \text{if } K \equiv 1; \\ \cosh r_2 X + \sinh r_2 \bar{e}_1, & \text{if } K \equiv -1, \end{cases}$$

the position vectors of M' and M" respectively. We consider the following matrix notation

(3.3)
$$\Lambda = \begin{bmatrix} \frac{1}{\sqrt{K-k}} & 0 \\ 0 & I_{n-1} \end{bmatrix} \qquad \bar{\Lambda} = \begin{bmatrix} -\frac{1}{\sqrt{K-k}} & 0 & 0 & 0 \\ -\frac{1}{\sqrt{K-k}} & 0 & 0 & 0 \\ 0 & I_{n-1} & 0 & 0 \end{bmatrix}$$
 with supposition $\bar{\Lambda} = \begin{bmatrix} -\frac{1}{\sqrt{K-k}} & 0 & 0 & 0 \\ 0 & I_{n-1} & 0 & 0 \\ 0 & I$

Moreover, we denote by D_i the matrix introduced in (2.21) for the constants r_i , θ_i , where i = 1,2.

Let $\mathcal C$ be the orthogonal matrix defined by

(3.4)
$$\bar{e}_T = C_{TJ}e_J$$
, sads L wrampA more swolfer

and consider the matrix B such that

$$(3.5) BF = E,$$

where

$$F = \overline{\Lambda} (D_2 - D_2 C)$$

$$E = \Lambda (D_1 C - D_2). \text{ most aways as } A$$

We remark that since

$$(3.6) \qquad \qquad \Lambda^2 \left(D_1^2 - D_2^2 \right) = \left(\cot g^2 \theta_1 - \cot g^2 \theta_2 \right) I_n$$

it follows that $E^tE = F^tF$, hence B is an orthogonal matrix.

We define tangent frames $\bar{e}_T^{\, {\scriptscriptstyle I}}$ on $M^{\, {\scriptscriptstyle I}}$ and $\bar{e}_T^{\, {\scriptscriptstyle II}}$ on $M^{\, {\scriptscriptstyle II}}$ by

$$\bar{e}_{I}^{i} = B_{IJ}e_{J}^{i} \qquad \bar{e}_{I}^{i} = B_{IJ}e_{J}^{i}. \tag{11.8}$$

We claim that the maps

$$\ell_{2}^{*}(X') = \begin{cases} X' + r_{2}\bar{e}_{1}' & \text{if } K \equiv 0; \\ \cos r_{2}X' + \sin r_{2}\bar{e}_{1}', & \text{if } K \equiv 1; \\ \cosh r_{2}X' + \sinh r_{2}\bar{e}_{1}', & \text{if } K \equiv -1. \end{cases}$$

$$\ell_{1}^{*}(X'') = \begin{cases} X'' + r\bar{e}_{1}'', & \text{if } K \equiv 0; \\ \cos r_{1}X'' + \sin r_{1}\bar{e}_{1}'', & \text{if } K \equiv 1; \\ \cosh r_{1}X'' + \sinh r_{1}\bar{e}_{1}'', & \text{if } K \equiv -1, \end{cases}$$

BÄCKLUND'S THEOREM

define ${\it M}^{\star}$ and pseudo-spherical geodesic congruences which satisfy the theorem.

First we prove that $\ell_2^* \circ \ell_1 = \ell_1^* \circ \ell_2$. In fact, using (3.1), (3.2), (3.4) and (3.7), we obtain $\ell_2^* \circ \ell_1(X)$ and $\ell_1^* \circ \ell_2(X)$. The equality follows from (3.5) and Theorem 1. Next, we prove that the frame \bar{e}_1^* , \bar{e}_i^* , e_{n+i-1}^* on M^* satisfy (2.16) with constants r_2 , θ_2 . We denote by ω and W the matrices of 1-forms introduced in (2.21) associated to the frame e_1 , e_i^* , e_{n+i-1}^* on M. Similarly, we denote by $\bar{\omega}$, \bar{W} and $\bar{\omega}^*$, \bar{W}^* the matrices associated to the frames \bar{e}_1 , \bar{e}_i^* , \bar{e}_{n+i-1}^* , e_1^* , e_1^* , e_1^* , e_n^* , e_{n+i-1}^* respectively on M and M^* .

Since $\,\ell_{\,1}\,\,$ is a pseudo-spherical geodesic congruence it follows from Remark 1 that

$$\omega = WD_1 - D_1 W^{\dagger}.$$

From (3.4) we get

$$\bar{\omega} = (dC)C^{t} + C\omega C^{t}$$

$$\bar{W} = CW.$$

Therefore, it follows from the fact that $\,\ell_{_{2}}\,$ is a pseudo-spherical congruence that

(3.10)
$$(dc)c^{t} + c\omega c^{t} = cWD_{2} - D_{2}W^{t}c^{t}.$$

We have to prove that

extra an anomalous
$$(dB)B^t + B\omega^t B^t = BW^t D - DW^t B^t$$

which is equivalent to proving

(3.11)
$$(dB)F + B\omega'F = BW'D_2E - D_2W'^tF.$$

From (3.5), we get

$$(3.12) \qquad (dB)F = (B\overline{\Lambda}D_2 + \Lambda D_1)dC.$$

It follows from (3.10) and (3.9) that

$$dC = -CW(D_1 - D_2C) + (CD_1 - D_2)W^{t}.$$

Replacing this expression in (3.12) and considering from (3.5) that

$$B\bar{\Lambda}D_1 + \Lambda D_2 = (B\bar{\Lambda}D_2 + \Lambda D_1)C$$

we obtain

$$(3.13) (dB)F = -(B\bar{\Lambda}D_1 + \Lambda D_2)W(D_1 - D_2C) + B\bar{\Lambda}(D_1^2 - D_2^2)\dot{W}^{\dagger}.$$

We remark that from (2.5) - (2.8) for $K\equiv 0$; (2.10)--(2.14) for $K\equiv 1$; and (2.16)-(2.19) for $K\equiv -1$ and (3.1) it follows that

$$(3.14) \qquad \qquad \omega' = D_1 \bar{\Lambda} W \bar{\Lambda}^{-1} - \bar{\Lambda}^{-1} W^{\dagger} \bar{\Lambda} D_1$$

and

(3.15) with the master
$$W^! = \overline{\Lambda}^{-1} W^t \Lambda$$
. The sum of the su

We conclude the proof of (3.11) by considering (3.13)-(3.15) and (3.6).

It follows from the proof of theorem 2, that $\ell_2^*(X')$ as defined in (3.8) is a pseudo-spherical geodesic congruence with constants r_2 , θ_2 .

Similarly, if we denote by ω ", W" the matrices of 1-forms (2.21) associated to the frame e_1 ", e_i ", e_n ", e_{i-1} on M", we prove that

$$(dB)B^t + B\omega^{\mathbf{u}}B^t = BW^{\mathbf{u}}D_1 - D_1W^{\mathbf{u}}^tB^t$$

and therefore that $\ell_1^*(X")$ is a pseudo-spherical congruence with constants r_1 , θ_1 . We conclude the proof of the theorem considering

$$X^* = \mathcal{L}_2^* \circ \mathcal{L}_1(X) = \mathcal{L}_1^* \circ \mathcal{L}_2(X)$$

which defines the position vector of M^* .

Remark 2. The normal frames obtained on M^* considering the orthogonal projections of e_{n+i-1}^+ and e_{n+i-1}^+ on v^* coincide, i.e.

 $-\sin\theta_2 \bar{e}_i^! + \cos\theta_2 e_{n+i-1}^! = -\sin\theta_1 \bar{e}_i^! + \cos\theta_1 e_{n+i-1}^!.$

This follows easily from (3.1)-(3.5) and (3.7).

4. Analytic interpretation

In the first section, we have seen that n-dimensional Riemannian manifolds with constant curvature k, isometrically immersed in a space form \bar{M}_K^{2n-1} , $k \leq K$, are in correspondence with the class of orthogonal, $n \times n$ matrix functions, which satisfy the system of partial differential equations (1.12).

The geometric theory presented in sections 2 and 3 can be interpreted in terms of solution for this system of equations, namely theorems 5 and 6 below provide new solutions from a given one. Moreover, given a Riemannian manifold M^n , with constant curvature k, immersed in a space form \bar{M}^{2n-1} , k < K, these theorems provide the first and second fundamental forms of new such submanifolds of \bar{M} .

As in the previous sections, without loss of generality, we consider K=0, lor -1. If $A=(\alpha_{IJ})$ is an orthogonal matrix function of u_1,\ldots,u_n , we define $\phi=(\phi_{IJ})$ as

$$\phi_{IJ} = \frac{1}{\alpha_{1I}} \frac{\partial \alpha_{1J}}{\partial u_I} \ du_J - \frac{1}{\alpha_{1J}} \frac{\partial \alpha_{1I}}{\partial u_J} \ du_I,$$

and the diagonal matrix (q2-obuseq a at ("%) % a doff enotement bas

 $\delta = \int_{0}^{\infty} \frac{du_1}{du_n}.$

Moreover, for any real number ~k < K,~ we consider constants θ , r such that, $_0$ < θ < π , r > 0,

$$\sqrt{K-k} = \begin{cases} \sin\theta/r, & \text{if } K \equiv 0; \\ \sin\theta/\sin r, & \text{if } K \equiv 1; \\ \sin\theta/\sin hr, & \text{if } K \equiv -1, \end{cases}$$

and $r < \pi$ whenever $K \equiv 1$. With the notation (3.3) and (2.21) introduced before, the next theorem gives the analytic version of the geometrical results of section 2.

Theorem 5. Let $A:\mathbb{R}^n \to O(n)$ be a solution of (1.12), where the real number k < K. Then the following first order completely integrable system of equations for $X:\mathbb{R}^n \to O(n)$,

$$(BT(r,\theta)) \qquad (dX)X^{t} + X\phi X^{t} = \sqrt{K-k}(X\delta\Lambda A^{t}D - DA\Lambda\delta X^{t})$$

gives a new solution for (1.12).

Proof: Let A be a solution of (1.12), then $\bar{A}=\sqrt{K-k}\,M$ determines a manifold $M^n\subset\bar{M}_K^{2n-1}$ with constant sectional curvature k.

Let v_1,\dots,v_n be a locally defined orthonormal frame of principal vectors on M, and e_{n+1},\dots,e_{2n-1} normal to M such that the normal connection $\omega_{n+i-1},n+j-1=0$ \forall $2\leq i,j\leq n$. We denote by ϕ_I , ϕ_{IJ} , $\phi_{I,n+j-1}$, the 1-forms associated to the above frame.

Let X be a solution of $(BT(r,\theta))$. We consider the tangent frame defined by $e_I = X_{IJ}v_J$, and denote by ω_I , ω_{IJ} , $\omega_{I,n+j-1}$ the 1-forms associated to e_I , e_{n+i-1} . Then,

$$\omega = (dX)X^{t} + X\phi X^{t}$$

$$W = X\delta \vec{A}.$$

Since X satisfies $BT(r,\theta)$ it follows that

$$\omega = WD - DW^{t}$$

i.e. the frame e_I , e_{n+i-1} , satisfies (2.3) (2.4) and $w_{n+i-1}, n+j-1 = 0$ hence from the proof of theorem 2, there exists a manifold $w' \subset \bar{w}_K^{2n-1}$ and a pseudo-spherical geodesic congruence $\ell: M \to M'$ with constants r, θ . Moreover, if we consider e_i' , e_{n+i-1}' defined on M' as in theorem 1, it follows from Theorem 3 that X is the orthogonal matrix function associated to M' with respect to e_{n+i-1}' . Therefore, X satisfies (1.12).

The following theorem is the analytic interpretation of section 3, and it says that given a solution A of (1.12) and A_1 , A_2 new solutions obtained by solving $(BT(r_i,\theta_i))$ for constants r_i , θ_i , i=1,2, $\theta_1 \neq \theta_2$, then a fourth solution can be obtained algebraically. With the same notation as before, we denote by D_i the matrix D defined by (2.21), for the constants r_i , θ_i .

Theorem 6. Let A be a solution of (1.12) and A_i , i=1,2 solutions of the same system obtained from A by solving $(BT(r_i,\theta_i))$. Then a fourth solution A^* can be obtained by solving

$$A^*A^t = \Lambda(D_1 A_2 A_1^t - D_2)(D_1 - D_2 A_2 A_1^t)^{-1} \bar{\Lambda}^{-1}.$$

 $C = A_2 A_1^t$

i.e.

$$\bar{e}_I = c_{IJ} e_J$$
.

We consider

$$E = \Lambda (D_1 C - D_2),$$

$$F = \bar{\Lambda} (D_1 - D_2 C),$$

and $\it B$ defined by $\it BF$ = $\it E$. It follows from the hypothesis, that $\it A^*$ satisfies

$$A^*A^t = B.$$

o w' with respect to e' ... Therefore, X satisfies (1.12).

We have to prove that A^* is a solution of (1.12). It follows from theorem 4, that there exists $M^* \subset \overline{M}_K^{2n-1}$ and pseudo-spherical congruences $\mathcal{L}_2^*:M' \to M^*$, $\mathcal{L}_1^*:M'' \to M^*$ with constants r_2 , θ_2 and r_1 , θ_1 respectively. We consider tangent frames $\overline{e}_I^{\perp} = B_{IJ}e_J^{\perp}$, $\overline{e}_I^{\parallel} = B_{IJ}e_J^{\parallel}$ on M' and M'' respectively as in (3.7).

Let $\tilde{A}^*:\mathbb{R}^n \to 0(n)$ be the matrix function associated to M^* with respect to e^*_{n+i-1} , obtained by normal projection of $e^!_{n+i-1}$ or e^*_{n+i-1} on v^* (see Remark 2), then \tilde{A}^* is a solution of (1.12).

We conclude the proof observing that for the pair of pseudo-spherical geodesic congruences ℓ_1 , ℓ_2 , we have $C = A_2 A_1^t$, $\bar{e}_I = C_{IJ} e_J$, therefore, if we consider the pairs ℓ_1^{-1} , ℓ_2^* and ℓ_2^{-1} , ℓ_1^* , we obtain by analogy that

$$B = \tilde{A}^* A^t.$$

Hence, it follows from (4.1) that $A^* = \tilde{A}^*$ and therefore A^* is a solution of (1.12).

q.e.d.

References

- [1] Ablowitz, M.J., Beals, R.; Tenenblat, K. On the solution of the generalized wave and generalized Sine-Gordon Equations. (to appear).
- [2] Bianchi, L. Sopra le deformazioni isogonali delle superficie a curvatura constante in geometria ellittica ed iperbolica. Annali di Matem. (3) 18 (1911) 185-243.
- [3] Cartan, E. Sur les variétes de courbure constante d'un space euclidien ou non-euclidien. Bull. Soc. Math. France 47 (1919) 125-160 and 48 (1920), 132-208.
- [4] Moore, J.D. Isometric immersions of space forms in a space form, Pac. J. of Math. 40 (1972), 157-166.
- [5] Tenenblat, K. and Terng, C.L. Bäcklund's theorem for n-dimensional submanifolds of R^{2n-1} , Annals of Math, 111 (1980), 477-490.

- Terng, C.L. A higher dimension generalization of the Sine--Gordon equation and its soliton theory, Annals of Math, (1980), 491-510.
- Wolf, J.A. Spaces of constant curvature McGraw-Hill, New York, 1967.

Universidade de Brasília Departamento de Matemática 70.910 - Brasilia-DF