—

-

BOL. SOC. BRAS. MAT., VOL. 16 N? 2 (1985), 67-92 69

BACKLUND’S THEOREM FOR SUBMANIFOLDS OF SPACE
FORMS AND A GENERALIZED WAVE EQUATION

Keti Tenenblat

Introduction

In this paper, we extend the results obtained in [5] and
[6], by proving a generalization of Backlund's theorem and
Bianchi's permutability theorem for n-dimensional submanifolds
of a (2n-1)-dimensional, simply connected, complete, space form.
Moreover, we show that the analytic interpretation of these
theorems provides a Backlund transformation and a superposition
formula for systems of partial differential equations which
generalize the homogeneous wave equation and the Sine Gordon
equation. We observe that the generalized wave equation is
nonlinear for = > 3 and the initial value problem for these
generalized equations can be solved by applying the inverse
scattering method [1].

In section 1, we review the local theory for n-dimensional
Riemannian manifolds, with constant sectional curvature %,
isometrically immersed in a (2n-1)-dimensional simply connected,
complete, space form M%n'1 of curvature %k, such that k < X.
We show that such immersions are in correspondence with the class
of orthogonal, (nxn)-matrix functions which satisfy a system of
partial differential equations (1.12). For = = 2, whenever k#0,
the system of equations reduces to the Sine-Gordon equation, and

when &k = 0 (the case of flat surfaces contained in a 3-dimensional

sphere) it reduces to the homogeneous wave equation.
In section 2, we define a pseudo-spherical geodesic
congruence between two n-dimensional submanifolds of a space

form  #2™ 1. e prove a generalization of Bdcklund's theorem
(theorem 1), which shows that the existence of such a congruence

implies that both submanifolds have constant sectional curvature ks
k < k. In theorem 2, by proving the complete integrability of

Recebido em 20/08/85.
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the differential ideal associated to the existence of a pseudo-

; ; : . Let e,.e,,...5e, 1 be a moving orthonormal frame on an
-spherical congruence, we show that given an n-dimensional = n ]
. e S0 &h o " v e open set of M, so that at points of wm, € s...5e are tangent
ni M of M s Wi constant curvature S .
subma 0 X to M. . Let w, be the dual orthonormal coframe, and consider

there exists an n-parameter family of submanifolds, which are .
@, defined by
related to ¥ by pseudo-spherical geodesic congruences. 4
In section 3, we prove the permutability property (theorem 4).
The geometric theory obtained in sections 2 and 3 is interpreted

analytically in the Tlast section. Namely, theorem 5 provides a

§ deA = g W, gep:
The structure equations of # are

Backlund transformation for the system of equations (1.12), which

| (o 005 dw, =] w_rw_,, ® + w = 0;
generates new solutions from a given one. Theorem 6 provides a : A 5 B B4 AB BA
superposition formula which generates other solutions algebraically. ‘ (a2 dw, = 1 O s DU 1 B O o
Moreover, it follows from the characterization of section 1, * ¢
that given a Riemannian manifold M", with constant sectional Restricting these forms to ¥ we have Yo T 0, hence from
curvature k, immersed in a space form Min'], these theorems ‘ (1.7) we obtain
provide the first and second fundamental forms of new such (1.8} du, =3 @ pWvpTiod ¢
submanifolds. > Wiig To

We observe that the geometric theory for = = 2, in the &) dw . = ) WL rw
non-euclidean cases was obtained by Bianchi Bﬂ. g J
In this paper, M, M', denote n-dimensional submanifolds The first of these implies via Cartan's lemma, that
of a (2n-1)-dimensional simply connected, complete, space form i ™ "
Mi”_] of curvature X. Without loss of generality we consider G ; B Al pe X b S5 brre
k=0,1, -1, i.e. ¥ 1is respectively the euclidean space, unit
sphere Szn'1 and the hyperbolic space H2n-]' For the sake of From (1.2) we obtain, Gauss GGuation
completeness, we include the euclidean case i.e. X = 0, which (1.5) i =7
y =y AW+ ) W AW - K. o~
was treated in [5] and [6]. Idtiie g% (ol ) o din 8 o 2 ot I J
We will use the following conventions on ranges of indices, and Codazzi equation
< < < = sib = i
lageIladubafsns 11 5: 43 B56:<) 2nelg (1.6) dea g 0o W0
2L Tt St n+l < a,B,Y fuln-1s T M has constant sectional curvature Ry 1i1f and enly. if
|
Moreover, we shall agree that repeated indices are summed over | (14 o™ S8 5% g o ke Tl T T
the respective ranges. ies
(1.8) g W W (K—k)wI alars

1. Local theory for submanifolds of space form
From (1.2) we have

Let M be an wn-dimensional riemannian manifold of constant
curvature k, isometrically immersed in a space form Min'], &
such that % < x.
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where

is the normal curvature of M.
2

We denote by I = Y (wI)
M and 0O =) Haea, wherg H* is the second fundamental form
with respectato eq. Since “k'< X, there‘exists ([3] [8))'a
local orthonormal frame tangent to M, v

the first fundamental form on

1oV s called

principal directions which diagonalizes the quadratic forms B

simultaneously. Lines of curvature are curves of M which are
tangent at each point to principal directions. A tangent vector
7 'is 'calTed asymptotic™if %) ‘=0, v o, . dditan and
J.D. Moore proved the following.

Theorem A ([3] [4]) - Let M be a Riemannian n-dimensional
manifold with constant sectional curvature k, isometrically
immensed in a (2n-1)-dimensional space §orm M;n'], such that
k < K. Then Locally there exists coordinates (u1""’u )

n
parametrized by Lines o0f curvature such that

I = §ldd?,
T Ln L
" a
T =) bra duce’s
I,0

where ap> 0 fon alf I and Z-a} = 1. Moreover, the vecton
P s t Vi .

V=1 av;r s The unique unit asymptotic vector such that

ClI >IO, ik

It follows from this theorem that the normal bundle of
in ¥ has zero curvature. Hence, without loss of generality,
we will assume that ey have been chosen so that g * 0.

Consider the moving frame Vyseeas? oy €, let ¢I be
the dual forms to v, and qﬁB the connection forms. Then,

¢, = aIduI, 9, = b%arduI and (1.8). takes the simpler form

M
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o0
(1m9) ngbI: k-X, T T,
Since ) s%' =7 arvr is a unit asymptotic vector, we get
7 i
o292 2
(1.10) ;bIaI—O, _ZTaI-L

From (1+ 99 and {9 100584t Follows that for eaehné.I

(1.1 b

o 2 2
L bI = (K-k)(1-a )/aI.

T

N Q

Therefore there is a matrix function A associated to M,
with respect to e,

ay dy a

n
= n+1 n+1 b+l
A= XeRe R
alb1 azb2 anbn
Zn—1 2n~1 2n -1
alb1 azb2 anbn

satisfying (1.9)-(1.11). It follows from these properties, that
if we consider

where In_] is the (n-1)%(n-1) unit matrix, we obtain an
onthogonal matrix function A, defined on an open set U,
assocdated to M, with respect to ey

Moreover if we denote 4 = (aIJ), it follows from (1.4)

that
da da
| 1g 1 g
q)IJ F a; 5uI duJ- a;; EuJ dug.

Therefore, from (1.6) and (1.7) we conclude that 4 satisfies the
following system of partial differential equations
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da Ja da da
3 ] 17 a1 ir 1 = O Y Its
—(— —3—) (e ) + ) i 3 T T
Vikp ey Wi e e T R T aﬁL 4r % r
%a da, . da,
(1:12) JBL(L 9 ) = a ] 3uL BuJ LATH s
: Ur 4y iy 17857® ST W
ar A 3"11
LSRR, - Vi T,03 T
e g &Y
where 1 $I,J, L <n, = 2<% <mn,

Conversely, given an orthogonal matrix function 4 satisfying
the above system, it follows from the fundamental theorem for
submanifolds of a space form, that for a fixed X, such that
k < K, the matrix

P 0

R:
0 JVEEk A

.

determines the existence of an n-dimensional manifold M, with
constant sectional curvature %k, isometrically immersed in a
space form Mé”'].

We observe, that for »n = 2, whenever k # 0 the above
system of equations reduces to the Sine-Gordon equation, and
when %k =0 it reduces to the homogeneous wave equation. In fact,
consider

Cos *f sin f

~sin f cos f

where f s a differentiable function of U, ou,
reduces to

Then (1.12)

(1.13) P - f =, <KL IS4l nt 6P foiaist iy

1 2 2

which is the homogeneous wave quation when % = 0. For k # O,
we define

b

e
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zf[_z_lt, ,_ﬁ} Ty
i /K SR
w(u},uz) =
111 ;2
Zf{——n —]-‘H, if & >0
K k-

Then (1.13) is equivalent to

wulu] - wuzuz = sin vy,

which is the Sine-Gordon equation.

2. Generalization of Backlund's theorem

In this section, we define a pseudo-spherical geodesic
congruence between. two n-dimensional submanifolds y and M' of
a space form @2"’1 with constant sectional curvature x. We
prove a generalization of Backlund's theorem, for such submanifolds
and the complete integrability of the differential ideal associated
to the existence of a pseudo-spherical congruence.

In what follows we need the notion of angles between two
k-planes in a 2k-dimensional inner product space. Let F and E
be two k-planes in a 2k-dimensional inner product space (y, <,3)
and m:vV > E, the orthogonal projection. Define a symmetric
bilinear form on £, by (vl Jo =t <mi(n1)s mv,)>. " The % angles
between E, and E, are defined to be B,5...58;,  where
coszel,...,coszek are the k-eigenvalues for the self-adjoint

operator A:E,» E, such that (2600 s <Av v, >,

Definition 1. A geodesic congruence between two n-dimensional
submanifolds ¥ and M' of a (2n-1)-dimensional space form i is
a diffeomorphism &:M -~ M', such that for P €EM and P' = g(P),
there exists a unique geodesic Y in H# joining P and pP',
whose tangent vectors at P and P' a4dre in T,M and T
respectively.

peld!

Given a geodesic congruence &:M - M', we remark that the

normal spaces vP and vP. at corresponding points P and P°'
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are (n-1) dimensional and orthogonal to the plane determined by
the position vector ¥ of M and the tangent vector of y at P.
Therefore, Vp and vP.1ie in a 2n-2 dimensional vector space,

i.e. there are (n-1) angles between v, and v,,.

P P

Definition 2. A geodesic congruence £:M > M' between two
n-dimensional submanifolds of # is called pseudo-spherical if:

(1) the distance between P and P' =38 (P) on M, is a
constant », independent of P;

(2) the (n-1) angles between Vp and v,
to a constant ¢, -independent of P;

are all equal

(3) the normal bundles v and v' are flat;

(4) the bundle map I': v>v' given by the orthogonal
projection commutes with the normal connections.

The above definition generalizes the notion of pseudo-
-spherical line congruence introduced in [5]. The following
result is a generalization of Backlund's theorem for submanifolds
for a.space form. Without loss of generality, we consider X = 0,

1or -1 i.e.. ¥ 1is respectively the (2n-1)-dimensional euclidean

HZn-] H2n-1'

or the hyperbolic space
as being in a Minkowski space <ﬁ2n.

space, unit sphere

we consider g2"°1

Theorem 1. Suppose there is8 a pseudo-spherical geodesic

conghuence f:M » M' between two n-dimensional submanifolds of

=2n-1

MK ’

constant sectional curvature k, whene
)

L5400 if

PR
r»

K

03

.2
0 b
(2.1) g Ve 1:—}%;; if K

L

sin?g

"]‘ ? 1f KE'].

sinh?p

Moreover,

with constants r and © # 0. Then, both M and M' have

—p
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Proof: i) The case X = 0 was proved in [5] by considering
2173

!
local orthonormal frames e,,...,e, . for » and e;,....c

far' ¥u™ SNy cntSthater

(2.2) 4= ,n+5-1 i 0
. s
g e singe, + cosbe ..,
(273 \ :
e N—c05 6 Qi + s1neen+i*1,
(2.4) e; Gine s

where i Fe iatiisithe unitydi rection of the line pp'. For such,

frames we show that

W, = ~w,
0sfw! = w, + 5
(2 55) c : St mu,
sindw' = row ’
wi Tantg7a?

and therefore

L2<6] ©: * el T o COtgewl,n+i'1.

Moreover, we prove that

(257) i = cotg,e(wi,yﬁj_1 - wj,n+i'1)’
and

Yys kit T 51;6 “x
(2.8)

w%,n+k'1 T Yamti-1t

Finally, it follows that the sectional curvature of um'
. ade 2
is constant equal to =-sin 8/»". By symmetry, m has the same
constant sectional curvature.
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ii) Let ¥ and M' be submanifolds of the unit sphere

52"'1 contained in the euclidean space .mzn. Consider M locally
given by X:U > M < 58n=] CLEZn, where U is an open subset of
R"™. Since there is a pseudo-spherical congruence between M and
M', there exist local orthonormal frames €15€5,...5¢,,  for M
and e;,...,e;n_l for M' such that (2.2), (2.3) are verified
and

({29 e! = sinrX - cosre,

3 1

where e, at P € M, 1is the unit vector tangent to the geodesic
from P to P' = &(P).

Let x' denote the position vector for M'. Then locally
X' = cosrx + sinre,.
We remark that since dx = wy ey t+owe; and <Xye,»rehBgendt
follows that <de1,X> SHG O Hence,
dx' = cosrdX+ sinrde,

= cosr e srw.e. + Si e,
w, e, + co wse, sinr wose. +

sinr w T ., - sinr i
1,n+z-len+z sin wIX

On the other hand

dx' = w'e' + w'le! =
| 1 1

= w, (sinr X - cosre) + wé(cose e, +singe )

n+i-1

Comparing coefficients of X, €15-0.5€, . we get

(2.10) cos8® @' = cosr w. + sinr w .
7 7 17
$ine ‘w. = sinr LR.A
SRR L T e
Therefore we obtain

2.11 COSyr W, #isinri@ls = sinp
( ) ; i nrocotgl w, .. ..
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Since w =0, it follows that

'
ntr =1 nt7 =1

2 2 .
= = 0 G ;
0 sin” 9 W, ; sin® cos (wi,n+g-1 ab’n+1_l)
il
(2512 W, = C°t96(“’i,n+j-1"”j,n+—;-1)'

Now we want ‘to compute Q;i and Qéj. From'(2.3) " and" (2.9 =(2%12)
we get

(2:13) w;,n+k-1 = -sinr sinemk+ cosr(sinewdk - cosb wl,n+k—1)
_ _sing
= siam ¥x
and
' . =
(2.14) Wemtke1 o Pk maie1e

Therefore by (1.7) and (2.13) we get

1 1 1 ! .
'_‘—.—w Am‘ —w ’\w =
84 1,ntk-1 Zsntk-1 1
sing ! !
= AW i = W AW,
sinr "k ksnts-a 4 7
T
- _[] LS e]w; .
o %
sin‘p

where last equality follows from (1.3) and (2.10). Similarly,

1 1 ] P
L. = -w, A - Wy A whi=
QlJ 7 antk=1 Jamtk=1 7 d
-w . AW ; - wh oA wl o=
Kontz=2 ksnti-1 % J
= W ; AW ; - wh oAt
1.k =1 agntg =1 7 J

R
-[1 - Elﬂ3ﬁ]wﬂ bas it
sin“p) * J

where the Tast equality follows from (2.10).
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Therefore M' has constant sectional curvature

% 2
e ol B By symmetry M also has the same constant sectional
sin’y
curvature.
i . 2n-1 ~2n
iii) Let ¥ and M be submanifolds of &H c R
where ®7e" is a Minkowski space (cf [7], p. 66). Consider M

2n-1 c_ﬁzn where U 1is an open

g2 1 and x| = -1.

locally given by X:U-McH
subset of R®'. Then X 1is normal to

Since there is a pseudo-spherical congruence between ¥
and M', there exist local orthonormal frames I PTE RRRT AN
for M and e;,...,e;n_] fomis ML nesuehsgthatin(2.2), (2.3) sane
verified and

(12251:51) e U=iisiinhni X s licoshn e
where e; at P € ¥ 1is the unit vector tangent to the geodesic
from P to P' = o(P). Let X' be the position vector for M'

then Tocally
X' = coshr X+ sinhr e .

With arguments analogue to the previous case we get

wy; < 'wl

(2.16) cosew% = coshr w; + sinhr w, -

s1newi = sinhr whn+i—1'
Therefore, we obtain
2217 coshr w, * sinhr @ g sinhr cotge B o
(2.418) Wy = (:otg:je(mi,n_m._1 = wj,n+7l-1)'
Moreover

" _ _ sing

1,mt k=1 sinhr 'k

(2:19)

u)I

famtk-1 Yk g4 g-1t

e
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Finally, we obtain that the sectional curvature of M',
and therefore of m, 1is constant equal to -1 =~ sinze/sinhzr.

g+ . de

The following theorem shows that, given an n-dimensional
submanifold M of a space form Mﬁ”—], with constant curvature
k < K, there exists an n-parameter family of submanifolds m',

which are related to ¥ by pseudo-spherical geodesic congruences.

Theorem 2. Let M be an n-dimensional submanifold of a

&Zn-]

space form , WAth constant sectional curvature k given

by (2.1), where » >0 (and r < m, whenever Xk = 1) and
8 # 0 are constants. Let vf,...,vz be an ornthonoamal basis
04 the tangent space to M at P,
dinections. Given a unit vector v, =y;=iCIv;, c,#0  forn alk
1 < I <n, there exists an n-dimensional submanifold M' of §

and a pseudo-sphenical geodesic congruence &:M + M' such that

given by principal

the geodesdic joining P, %o Py = &(P,) 44 tangent to v, at
P , the distance in M between P, and P, is r and 0 is

the angle between v and v_,.
PO PO

0

Proof: i) The case x = 0 was proved in [5] by showing
the complete integrability of the differential ideal generated
bya¥(e2 .20, 1% 2.6) “and (2.7).

' ii) When' 'k = 1 we consider (2.2), (2.11) andsn{i2 .12
More precisely, let J be the ideal generated by the forms

058 COSTL W, + siny .. - sine cotgd w ,
1 7 17 1 o P~
s prewlla. 42 sCIOTE : s ;s .

B7,,7 wﬂ,,j & 9@ (w’L,VH‘J-] wg,n+ﬂ,-1)

Y. =

ELY. e
) n+L-1 ,n+J-1

We first prove that J is a closed differential ideal
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. = A~ . Wy AWy o i w St
dai cosr w w .+ cosruw, kg *osinrowg, T

+ sinr w

AW 5 inrw;, ~w,
1,m+k-1 n+k-1,%7 Sl 2 <

- si 0 w. w & - sinr 0 w L i
sinr cotg 1" b sinr cotg ¥ = Wrp
cos’r

S - W, AW, + r 6 w, ~w X
Sinip 'L 7 GOpF. ¢otd 1 1,n+t=1
. 2

+ r 0 w ~ tw § - w,

gln r ooty 1,m+k=-1 ( k,n+i-1 t,n+k-1)

+ sinr w - NP Wyt oW,

) g
1,n+k-1 n+k-1,7 7

+ cotg © (cosr w, - cotgl sinr w1,n+k-1) s RO B

sinr

=i D w S ) el SRR A D) SR
sinr 1 % sin20 1,n+k-1 7, ,n+k-1
1 sin2 sin
:..__,_(] ___r)w Am,+1—£_Q .
T . 1 : 17"
sin sin2o Z sinZe 7
sin?6
By hypothesis @ . = -(1 - >——)w, ~ w,, therefore
& sin?y &

da, =0 (mod J) i.e. dai € J.
A similar computation will show that dBij € J. Finally,
we remark that

inj & Qn+i-1,n+j=1 (mod J).

1l

Since M has flat normal curvature we get inj 0 (mod J).
Therefore, it follows from Frobenius theorem, that there exists
an orthonormal frame €11e000€,, . ON A neighborhood of P,
on M, such that e,(P,) = v, and (2.2), (2.11) and (2.12) are
satisfied.

Let x:0 » M g2 1 c g27
We define

be the position vector of X.

X' = cosr X + sinr e

b
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Then x'(v) = M' is contained in Szn_]. We want to prove that
' is n-dimensional and g:m - y' defined by 2 (x) = x' is a

pseudo-spherical geodesic congruence. Consider

dx' = cosr dX + sinr de

sinr
inp

=W - si + J 6e.+ sinbe .
l(cos re, - sinrX) wl’n+l_1(cos g, + sinb n+£-1)

(%]

where 1ast‘equa1ity follows from (2.11). Since wl,u)"nn._1 ar
linearly independent it follows that x' defines an n-dimension
submanifold of s2771,
cos® e + sin® e 4;-; are tangent vectors to M'. The geodesic

joining P to P' s given by

Moreover, cosr e; - sinr X, and

cost X + sint e t ¢ [0,r]

which is tangent to e; and cosr e; - sinr X at P and P
respectively. The distance between P and P' is » and the
(n-1) angles between Vp and Vp: are all equal to 6.

: ; :
Fetimail] yitlatt) iRaililiows chirom (2. 2)vand .(2.112):sthat wn+i—1,n+j-1
hence v and v' are flat and T commutes with the normal

= (

connection. This completes the proof for the case XK = 1.

iii) Similar arguments prove the theorem for M c Hzn'],
by considering the differential ideal generated by (2.2), (2.17)
and (2.18).

Remark 1. We observe that the pairs of equations (2.6),
2 47)% (2 KK) & u(2.02) and o(21a17), w(2.18 ) can.be wriitten (in
matrix notation as

(2.20) w = WD - DW?,

where the matrices w, W and D are defined by

T - g Mpp S W g
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(2.21) p3=
0 cotgg I
1/r if K= 0,
fK(P) ={cotg r, Atz Ki= 1Y
cotah . r,  .if _K.= =]

and w® denotes the transpose of .

We conclude this section obtaining a result that will be

used later. Suppose there is a pseudo-spherical geodesic
congruence f&:M > M', with constants r and 6 # 0. Let
Dy smas sty
Choose an orthonormal frame e, normal to M such that

- 1 1 1 1
By 41 wian it o 0 and define €, 1€;58) 588
Let 4' be the orthogonal matrix function given by

Fe, 1
eI = AIJUJ'

Then we obtain:

Theorem 3. A' s the orthogonal matrix function associated

to M' with nrespect to e&.

be the local frame given by principal directions on u.

as in theorem 1.

Proof: Let ¢I be the dual forms to vy and ¢AB the
connection forms with respect to the frame Vo, € it
_ . o
¢I = aIduI and ¢Iq = bIaIduI.
It follows from (2.5) for k=0, f2rvey),. fomt Kt=iws e X2 M6)
for & = -1 and theorem 1, that the first fundamental form on M°

is given by
2

1 = |2 -
S U TRl 4 g
= i % 1

BACKLUND'S THEOREM

Therefore ! J
1 n+i-1 n+z-1)¢

Ith=say 44 (1 g7 by L ¢

Talol

Hence, from (1.9) and (1.11) we obtain

(2.22) 3 - ; Lal ) i |

85

In order to obtain the second fundamental form on M', we

consider its normal componentes. Using (2.5), (2.8) for K =
(S 10N SRR S E S fonees =2 15 3(2.16), (2.19) for X <
and theorem 1 we have

1 1 = 1 1
5 Cutg1 T Crmei1Yr

1
I JTT wj,n+i-1w1,n+i-1

= JK-k ij
1 n+i-1,n+i-1

= 1 ! = L :

= AjIAlJ (VE-%k + e bI bJ )¢I¢J

Hence, it fo l'lllows from (1.9) and (T.T11) that

) T 2
(2423) Tt e;+j-1 = VK-k ; AjIAlIduI'

From (2.22) and (2.23) we conclude that

1 0
il = Al

is the matrix function associated with ', satisfying (1.9)-

-(1.11). Therefore, 4' s the orthogonal matrix function
associated to M' with respect to e

1
o

3. Permutability property

In this section, we prove the permutatility property of

pseudo-spherical geodesic congruences. More precisely:

.e.
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Theorem 4. Let M, M', M"
-2n ~1

be n-dimensional submanifofds

04 a space foam My . Suppose there exist pseudo-sphernical
geodesdc congruences LM > M and  R,:M >M"  with constanits
r o, 8 and r,, 6, respectively, 6, # 0,. Then therne exisis

%’;:M" > M
nespectively, such that

M* © i and pseudo-spherical congruences 85:M'>M*,
with constants r,, 6, and r , 8,

Proof: Let Vyosee sty be a Tocal frame given by principal

directions on M. Choose an orthonormal frame L T normal
Eo M such that e ng et iajeipE 0. Consider frames e, e, and
1 1 1 1 n " " n
ey0e;, for M, ejlelie; ., for M' and ef,ep,e; . for M
as in theorem 1, i.e.
U .+ si . M e. i ,
e; COSGl e; S‘Ine1 en+7,-1 e,L cos 6, e; + sinb, € il
.= -si .+ ; e = ks e, ;
@ i =, sing, e; coselen_m_r1 @ i sinb, e, + cosg. e, ;>
(311
“e;s if K=0; J—él, if K=0;
e} = sinr X - cosrye,, if x=1; e = sinr, X-cosr, e, , i Kl
sinhr X - coshr e , if k=-1; sinhr,X-coshr,e,, if K =-1;
where X denotes the position vector for ¥ and e;, 2; are the

unit vectors, tangent to the geodesic from P to P' = 2,(P) and
PY =9, (P) respectively.’

We denote by

X +re, 1F. % =0;

X' = {cosr X + sinre;, Arf k=

(3.2) coshrIX + Sinhrlel’ if. K =i
Jx+r251 if k=0,

I8 # 3¢08r, X + sinr,e,, df K =13

coshr X + sinhr,e , if Kx=-1,
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the position vectors of »' and u"

We consider the following matrix notation

1
VE& P
Tl 5

(330 A

n=t

Moreover, we denote by Di

the constants ros 0 where <z = ]1,2.

1

VK -k

Let ¢ be the orthogonal matrix defined by

(B.4) e;r =Crsess
and consider the matrix B such that
(3.5) BI =,
where <
s Ml o)
E = A(D1C-D3).
We remark that since
(3.6) A*(p?-D%) = (cotg?e, - cotg®6,)I
" T v
it follows thatu ¥ BiE.= F'Fs = hente: B
We define tangent frames 5} on
b, 1 s LA
(63.471) e;r = B e gl =

We claim that the maps

y .
b z e
RE(XF) = 10085, X4 +* oiinpu 21
coshr,X' + sinhr,e!,
(3.8) N
' (x* + voy,
2% (x"). = qcosz, X" + sinr ey,

n : ool |
coshy, X" + sinhe el

M' and
n

B ey,
if &«
it K
if X
if K
if K
if K

1)

{1

s

respectively.

o n
€1

n=1

on

is an orthogonal matrix.

M

87

the matrix introduced in (2.21) for

by
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define u* and pseudo-spherical geodesic congruences which
satisfy the theorem.

First we prove that £7e2) =2feg,." In fact, using (3.1),
(3.2), (3.4) and (3.7), we obtain &¥o2 (x) and Q:‘ogz(x). The
equality follows from (3.5) and Theorem 1. Next, we prove that
the frame o', ;;, € ;-1 ON M' satisfy (2.16) with constants
T, B, We denote by ®w and #¥ the matrices of 1-forms introduced
in (2.21) associated to the frame By € e Lo, On M. Similarly,
we denote by ¢, w and ', W' the matrices associated to the

frames %,e,, ol

1 3 1
L3y €y ses e un 5 lirespectivelyton M, and o M'.

Since &, s a pseudo-spherical geodesic congruence it
follows from Remark 1 that

(3.9) w

WD1 s UDIE

From (3.4) we get

w = (dc)ct + cuct

W o= CW.

Therefore, it follows from the fact that %, is a pseudo-spherical
congruence that

(3.10) (ac)c? + cuc® = cwp, -p,wtct.

We have to prove that

(dB)B® + Bw'B® = W'D -p W'tBt
which is equivalent to proving
(3.11} (dB)F + Bw'F = BW'D,E - D,W'’F.
From (3.5), we get
(3502 (wﬁ=(ﬂm+A%Ma

It follows from (3.10) and (3.9) that

dc = -CW(D,-D,C) + (CDy-Ds)Wt.
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Replacing this expression in (3.12) and considering from (3.5)

that

BAD, + AD, = (BK02 + AD_)C

we obtain
% i 0 Lo
(3139 (dB)F = -(BADI+AD2)W(DI-DZC)+BA(D1-D2)W g
=403 -(2.10)=
sdavand nl3al)

We remark that from (2.5) - (2.8) for
= (20l o R K= W s nd (20069 - (2. 19) - fony K
it follows that

m =
il

(3.14) w' = Dlﬁwﬁ'l “ R'lwtﬂpl
and
(3,158 pt sok-dgta

We conclude the proof of (3.11) by considering (3.13)-(3.15)
and (356"

It follows from the proof of theorem 2, that 2:(X') as
defined in (3.8) is a pseudo-spherical geodesic congruence with

constants »,, 0,.

Similarly, if we denote by ", w" the matrices of 1-forms

(2.21) associated to the frame efdvel

" n
£€p4g-1 ON M", we prove
that

(dB)Bt B E® & BW"D, - DIW"tBt
and therefore that Rr(X“) is a pseudo-spherical congruence with
constants r,, 6,. We conclude the proof of the theorem
considering
X* = e (X) = 2% 02, (X)

which defines the position vector of M*. g.e.d

Remark 2. The normal frames obtained on M* considering
the orthogonal projections of e and; .2 A

1
n+i-1 P L ¢
coincide, i.e.
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and r < m whenever X = 1. With the notation (3.3) and (2.21)
n+ti-1

introduced before, the next theorem gives the analytic version

-sing e + cosB,e = -sing ¢" + cosp e
2o 1 7

1 n+g-1"

This follows easily from (3.1)-(3.5) and (3.7). of the 'geometrical results of section 2.

Theorem 5. Let A:R" = 0(n) be a sokution of (1.12),

Y. Aaglytic Thkerpretation where the neaf number k < K. Then the following finst onden

In the first section, we have seen that n-dimensional completely integhable system of equations for X:IR' ~ 0(n),
31emann1a? manifolds with Eg;f¥ant curvature k, isometrically | (320r,0)) (dx)xt + xoxt = V=% (x8hatp-pansx?)
immersed in a space form MK » k< K, are in correspondence

with the class of orthogonal, mnxn matrix functions, which gives a new solution for (1.12).
satisfy the system of partial differential equations (L.12)

The geometric theory presented in sections 2 and 3 can be Proof: Let 4 be a solution of (1.12), then A = Hohd

interpreted in terms of solution for this system of equations, deteviines ¢ ninitold #° = Mzn-l with eohstont sactional
namely theorems 5 and 6 below provide new solutions from a given ciirvatiind 2 }
M = i g . n 5 S : :
one toreover, ?1ven adRTemann1an m:n1fo1d_zz_i with constant Fet o' LA be a locally defined orthonormal frame
curvature immers i spa m iR
ks i R e YA . . BGuly  bhEse oftprincipal® vectors on M, and € 4127 2€,,  normal to XM
theorems provide the first and second fundamental forms of new

i such that the normal connection w_ . . ; =0 ¥ 2<4 g <n..
such submanifolds of  m. : ‘ n+i-1 ,n+g -1 - -

We denote by ¢I’ ¢IJ’ 0 > the T-forms associated to the
above frame.

As in the previous sections, without 1loss of generality, Lyntd=n

wetc?ns;der oo By 0,1, 00 -1. If 4= {a ). 15 an orthogonal Let x be a solution of (BT(»,8)). We consider the
ma X P A i = y
gt it otk Al ¢ “y we eling it (¢IJ) a3 tangent frame defined by e, = XIJvJ, and denote by Wry Wory
1 day, P aar 1 wI,n+j-1 the 1-forms associated to €rs e, ...+ Then,
=V du = —— = du i
IJ a du J a ou T
17, T 1J J w= (dx)x? + xox?
and the diagonal matrix ; =T ok
du 1
\ Since x satisfies Br(r)0)s Wit folllows ithat
g \=
) ‘ T
du [ w = WD - DW
n

i.e. the frame ers e . 1 satisfies (2.3) (2.4) and
Moreover, for any real number % < kX, we consider constants 6, r e

= 0 hence from the proof of theorem 2, there exists

o ;
SUCh n¥habi 30 < By< mo Banils 'an;;;?%gTi-lM' c ﬁén_] and a pseudo-spherical geodesic
sing/r, g R =0 congruence %:y > M' with constants », 6. Moreover, if we
K-k = {sinb/sinr, 5 o consider e;, e;+i-1 defined on M' as in theorem 1, it follows
sing/sinhy, - 9f &k = =1, ‘ from Theorem 3 that X is the orthogonal matrix function associated

to M with respect to e; Therefore, X satisfies (1.12).

+7-1 "

q.e.d.
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The following theorem is the analytic interpretation of
section 3, and it says that given a solution 4 of (1.12) and
4,5 A, new solutions obtained by solving (BT (r;,6;)) for
constants T8 =152, 6, # 6,, then a fourth solution can be
obtained algebraically. With the same notation as before, we
denote by D, the matrix D defined by (2.21), for the constants
Ty 0.

Theorem 6. Let 4 be a s0fution of (1.12) and A, =] X9

s0Lutions of the same system obtained from A by sofving BT(r;,8;)).

7
Then a founth solution 4% can be obtained by s0kving

t t ty=-1--1
A*A" = N(D,A,A -D, ) (D, -D,A,A7)"'3"".
2 n =2n-1 7 .
Proof:i‘let" MTic MK be the manifold with constant

curvature k, associated to 4. Let Gt LRI AR AR . L L

be as in the proof of theorem 5. We consider the frames
e e, = (4,)77v; on M. Since 4, satisfies

il G Y 7 i
(BT(r;,0;)), there exist ¥' and M" submanifolds of Mot o o o>
and pseudo-spherical geodesic congruences LysM O 0T aintd

2,:M > M", with constants r,, © and r 8, respectively.

1 2,
3 1 1 1 " " n
We consider frames CT S -3, BNy MY NG el el A B e oS A o s
in (3.1). Then A and 4, are the orthogonal matrix functions,
1 1 n 3 1 "
associated to ¥' and M", with respect to Cpstny N 10 s

We denote by

¢
¢ = a,4°
1@ %
a1 3% “autn

We consider
E = A(D,C-D,),

F = A(D,-D,C),

and B defined by BF = E. It follows from the hypothesis, that 4*
satisfies

(4.7) A*A" = B,
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We have to prove that 4" s a solution of (deali2li STt folilows
from theorem 4, that there exists »* Mzn-l and pseudo-
-spherical congruences L3 :M M*, QT:M" > u* with constants
, 6, and r,, 6, respectively. We consider tangent frames
= B e}, é} = Brye; on M' and M" respectively as in
S0

et A R® > 0(n) be the matrix function associated
to M* with respect to e;+i-1’ obtained by normal projection
B O STIORING N O s e (508 RamaArk 21, then 4% .15 &
solution of (i.12).

We conclude the proof observing that for the pair of

pseudo-spherical geodesic congruences &,, £,, we have
¢ = AzAf, e; = Crges» therefore, if we consider the pairs L
¥y and [ 2?, we obtain by analogy that

—~ QR
[RENERN

1
L}

B = 2%a%,
Hence, it follows from (4.1) that A% = 2* and therefore 4%
Tsialsolutcion of ((1.12).
q.e.d.
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