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CLOSED PRINCIPAL LINES AND BIFURCATION

C. Gutierrez and J. Sotomayor ()

Abstract. The simplest pattern through which the closed principal
lines (cycles) of a one parameter family of immersed surfaces
bifurcate, while being apart from umbilical points, is studied in
this paper.

1. Introduction. Let ¥ be a compact connected, oriented, two
dimensional smooth manifold. An immersion o of ¥ into IR®is a
map such that Dap:TM + IR® is one to one, for every p €M,
Denote by J¥ = 3°(M, R?) the set of C'-immersions of M into IR
When endowed with the Cs-topo1ogy, s ¢<r, this set is denoted by
T8 - Py R ).

Associated to every «a € J° s defined the normal map
WM > 5%
& 0%

Na (p) = ]_l _au—T"uul

where (u,v) : (M,p) » (IB>,0) is a positive chart of ¥ around

p, ~ denotes the exterior product of vectors in R, determined
. . . 3 _ oo _ 20

by a once for a111f1xed orientation of IR , O, = 3us %y T 3

and || || =< , >7 is the Euclidean norm in IR®,

Since DN (p) has jts image contained in the image of Da(p)
the endomorphism w,:TM > TM is well defined by

Da.wa = DNu

It is well known that o, is a self adjoint endomorphism, when
rM 1is endowed with the metric < , >, induced by o from the

metric in b1 Clearly v, is well defined and of class ¢t in M.

(1) Partially supported by the J.S. Guggenheim Foundation.

Recebido em 06/12/85.
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4 At
fet "k = det(wu) and H > trace (wa) be the
Gaussian and Mean curvatures of the immersion o.

A point p €M is called an umbilical point of o if
(Ha(p))z-Ka(p) = 0. This means that the eigenvalues of w, are
equal at p. The set of umbilical points of a will be denoted
by Ua.

Outside U, the eigenvalues of wqy ari distinct. Their
opposite values given by XK, = Hu+{(Ha)2'Ka}2 and
ko = Ha-{(Ha)‘—Ku} are called respectively maximal and minimaf
principal curvatunes of o. The eigenspaces associated to the
principal curvatures define two c”* 1ine fields Ly and Ly
mutually orthogonal in TM (with the metric < , >u)’ called the
principal Line §ields of o. They are characterized by Rodrigues

equations [St].
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{v € ™M, wuv + Kav 0}
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{v €eT™; wv + kv 03 .
o a

The integral curves of Ly (resp. %y,) are called Lines of
maximal (resp. minimal) principal curvature. The family of such

o
will be denoted by F, (resp. §,) and called the maximal (resp.

curves i.e. the integral foliation of L  (resp. %a) in M—Ua

minimal) principal foliation of o.

The triple Pu = (ua,Fu,éu) will be called the paincipal
configuration of .

The global structure of principal configurations is known
only for very rare classical surfaces: surfaces of revolution
and surfaces which belong to a triply orthogonal system of
surfaces ([St], [Ch. Theorem 6.3 of Chapter 3]), "In the first
case the principal foliations are contained in the parallel and
meridian curves and the umbilical points form meridian curves,

In the case of triply orthogonal systems of surfaces, the
principal foliations of a surface of one of the systems are
obtained intersecting the surface with the elements of the other
two systems. This result can be used to visualize the principal
configuration of the ellipsoid
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(x/a)® + (y/p)" + (2/¢)® = 1, O<a<b<ec.

This is done by considering this ellipsoid E(0), as an
element of the triply orthogonal family of "confocal quadrics”

E()\), HI(A), H,(x), defined by

2 2 2
X + X + X =.l,

(a2-2)*  (B2-3)% (e-n)®

with A < a® for E(A) (ellipsoids), a® <x < b> for B ())

(hyperboloids of one sheet) and B eV ek L Eur H,(X)
(hyperboloids of two sheets).

This showsthat, except for four principal Tines which join
the four umbilical points of E(0), all other principal lines of
E(0) are closed (principal cycles).

The possible principal configurations of immersions for
which the mean curvature H = +(Kgtky) is a constant, have been
characterized by Gutierrez and Sotomayor in [6-5.4], where local
analytical models for the principal configurations around
umbilical points as well as natural transversal measures, invariant
under F, and 6u, have been found. As a consequence it was shown
that the principal cycles for these immersions always appear packed

in open cylinders.

The study of isolated principal cycles seems to have been
considered for the first time by Gutierrez and Sotomayor in [6-s.1]
and [6-5.2], where the structural stability and genericity
properties of principal configurations were established. These
properties will be reviewed below because they constitute the
starting point for the present work, whose main concern will be
the study of the simplest patterns through which isolated principal
cycles approach each other, loose their structural stability and
bifurcate as the immersion changes along one parameter families of
immersions «a,. The present study is restricted to the bifurcations

t
that occur away from umbilical points. Other patterns of the

bifurcations of lines of principal curvature and umbilical points
have been studied in [6-5.3], [6-5.5], [G-S.6].
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2. Formulation of the main results

2.1. Umbilical points

Let (u,v):(M,p) - (3?2,0) be a chart on M with p € U, and
I be an isometry of R with T(a(p)) = 0, such that Tooa(u,v) =
(w,v,h(u,w)), with 3-jet at 0 given by

Fn(u,0) = (k/2)(u2+p2) + (afs)u’ + (B/7)uv? + (e/s)v?.

Below are defined three different types of umbilical points
and their local principal configurations are illustrated. These
three points, denoted D,, D, and D,, are called Daxrbouxian or
of type D [G-S.T1].

RS
qg@%p
--‘-g'-.
]

RS
‘0’0}0 :
D,: b(b-a)#0, D,: b(b-a)#0, D,: b(b-a)#0,
a/b>(e/2b)%+2 1<a/b<(e/2b)* +2 1>a/b
Fig. 2.1

The*index *2=152%3. % of Di denotes the number of umbilfical
separatrices of p. These awe principal lines which approach the
umbilical point p and which separate regions of different
patterns of approach to p.

2.2, Principal cycles

A,compact, line .e. ofifjilresp. 6a) is called maximal (resp.
minimal) principal cycle of «a.

Call: m= m, the Poincare first return map (holonomy) defined

by the lines of the foliation to which ¢ belongs, defined on a
segment of a line of the orthogonal foliation through 0 in ec.
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A cycle is called of type H or hyperbolic if my #1 and

of type SH or semi-hypenbolic if m =1 and = # 0,

‘ The bifurcation of a semi-hyperbolic cycle is illustrated
‘ in Figure 2.2.

Two H cycles an SH cycle appears no cycles

Fig. 2.2

Is is proved that hyperbolicity of ¢ 1is equivalent to
[6-S.1, Proposition 4.1]

dk dx
a 5 [ a 40
bim oo £ O

a o ‘e o o

A more complex integral formula, envolving the geodesic curvature
of ¢ and the derivative, in the normal direction to ¢, of X4
and Ky s will be found to characterize the semi-hyperbolicity

of ¢. See Proposition 3,1, formula 2.

2.3. The main results

Let C be a subset of J”. An element o belonging to C is
said to be ¢°-structurakly stable nelative o C, (resp.
c®-structurally stable along C) if there is a neighborhood V of
a in J¥°% such that for every B € V¥ N C (resp. B in the
connected component of o in V N C), there is a homeomorphism
h = hg of M which maps U, onto Ug and the lines of F, and
fo respectively onto those of F8 and fg- When C is the whole

J¥, o s called simply C°-structurally stable.
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A principal line 2z which is a separatriz of two different
umbilical points p, q of a or twice a separatrix of the same
uymbidldcali .poinit, {ips o f ‘o is called an umbilfical connection of o
in the second case z is also called an umbilical Loop.

Call Sr(j), j=a,b,e,d, respectively, the set of o€ i il ‘
r > 4 such that for J = a, all the umbilical points of a are |
of type#D; _for. .d ='b, all the-principal .cycles~of Tw~are, of
type H; for 4 = e, a has no umbilical connection and for g =ody |
the 1imit set of every principal line of o is the union of ‘
umbilical points and principal cycles,

Theorem ([6-5.1], [6-5.2])

Pr,3
i and |

S = nS (1), deab,e,d;SnYU, is opew in J
Every o € SRS Ca-structura]]y stable. !

dense in 7172,

: Call 8 (b)Y, the set of € 8 (a) N& (¢) NS (d)sr > &,
such that all of its principal cycles are of type E except one,
which is of ‘type SH.

Call §f(b) the subset of immersions in Sf(b) for which
the SH principal cycle is not the limit simultaneously, from both
sides, of a pair umbilical separatrices or of any single principal
line. ;

Let J¥% (resp. J') be the subspace (resp. the subset) J'-8”
of I e sip T |

Theorem 1. (Stability and smooth structure). Let » > 4.

a) S¥(p) (resp. ST(p)) is a one to one immersed Banach
submanifold (resp. embedded submanifold) of codimension one and
ctasis @5 oo Il .

b) §f(b) is an open subset of Jf’“.

c) Every o € Sf(b) (resp. o € §f(b)) is C*-structurally stable
along S¥(b) (resp. relative to JI).
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Theorem 2 (Density). The set §f(b) is dense in the subspace
3%(b,+) of JY°%, where J7(b,*x) denotes the subset in g of
immersions o having some non-hyperbolic principal cycle on which
kd, if minimal, or Ka’ if maximal, is not constant.

The genericity of this condition was proved in 3,2.2 of
[6-5.2]. The proof of these theorems will be given in sections 3
to 6. The bifurcation illustrated in Fig, 2.2 will be established

in section 4.

3. An integral expression for SH cycles

A characterization of semi-hyperbolic principal cycles
involving the geometric invariants of the immersion is found in
Proposition 3.1 below.

Given o € J¥ and (u,v)-coordinates, in what follows (3/3u)a,
(az/auav)a, will be denoted by Qs Qe
Moreover the following notation will be used:

.. respectively,

= < > ey Lsel o >
g F A u v’ uu

= < o> N <o s T o
F &0 % f w Tv?Tuv

= <0 ,0 > = Qg AaN0 P
G % g u v?vv

Here E, F, G and e/HauAaUH, Fillo~all, g/llo ~all  are
respectively the coefficients of the firstand second fundamental
forms of o, expressed in the coordinates (u,v).

3.1. Proposition

Let ¢ be a minimal non-hyperbolic principal cycle of o € 15,
Give (u,v)-coordinates defined around ¢ which satisfy (Cf.

lE2s1 )
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Ea) a(u,v) = acc(u) + vNaoc(u)A Ta(u) +

K _ocC
+ 02T 2 (u) + A(u,v)]Wgoe(u),

where c¢:R »M is the minimal principal cycle s-periodic on u

and parametrized by arc length, T (u) = (acc)'(u), v, 1is the

positive normal of o and X is the maximal principal curvature.

Then, the return map m of c¢ satisfies

(2) (0} = (s [(exp[fz Eg%ds]] [ZRQ(K-k)HuZZk'H{]]du'

0 (k-k)

Where K = Kyoc s the minimal principal curvature, # =H oc
is the mean curvature and kg is the geodesic curvature of ¢ in
a(M).

Proof. The differential equation of lines of principal curvature
is given by [St]:

(3) (dv)z(Fg"Gf) + (du)(dv) (Eg-Ge) + (du)z(Ef-eF) = 0.

Call » = v(u,v;) the solution of (3) with v(0,v,) = v,.
Clearly the return map ® of c¢ 1is given by w(v,) = v(s,v,).

2
BRI indu) = Ui}, v = 22000,
0

2
vy

By substituting v = v(u,v;) into (3) and differentiating
twice, follows that n' and v' satisfy the following system of
linear differential equations:

(4) n'[Eg-Ge] + \J[Ef—Fe:]v =0,
(5) v'[Eg-Ge] + v[Ef-Fe]  + 2(n')?[Fg-cf] +
+ 2n'n[Eg-ce] , + nzl:Ef-Fe]vv =40,

It will be seen in (23) that [Fg-Gf](u,0) = 0, Therefore,
integrating, follows

(6)

(7)

v(s),

(8)

(10)

(11)

(12)

n(

v(
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u)

exp

&) = li=ni(

u [Ef-Fe]
[, T

,s)Js nia) .

0

[-2 [er-rel , [Eg-cel , + [Eg-Ge] [E’f—Fe]vv]d
[Fg-Ge] :

To find a more explicit expression for ='(0) = n(s), m"(0)

write

A= A(u

V) s

N = Ngoc, T = T(J,-

Therefore, (1) adopts the following simplified form

a(u,v) = ace(u) + vV (u)~T(u) + vzti%;l + A(u )N (u).

The Frenet equations for

7 (u)
(1)

v'(u)

aoce in a(M) can be written as

= k N~T + kN
g

"(u) = -kgT

= ~kT,

Differentiating (8) and using (9), it is obtained:

e = (1 - kgv
a =
v
= 1 -
By, LB {kg v
+ [k - kkgv -

+ (kg - kgzv £

LRk
2

k'sz
2

2
k sz X
kKk

ol

K'v?

5 k~va]T(u) + (T 5 'Auuz]N(u)
NAT + {Avv2 + Kv + 24v}N(u)

T LT ZkAuvz]T(u)

25 o KIS o >
k™ AvT + 7?” + Auuv ]N(u)

- kik AVP|N-T
g
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2
up = Lkg - kEv' = 2kdv - kA v°}T (u) +

+{K' + 240 + A 02N (u)
u uv

(14) a

+
{(15) a
From (10)

(16) o ~o

Also, the

(11} rlw.el
F(u,v)

Glu,v)

Moreover,

i - - 2 a 2
atr kg kKv - 2kAv - kA v°}T(u)

{vauv + K'v + ZUAM}N(M)

= {dvd + 924  + K + 2430 ().

Vv vV

and {(11); it "results

£ KK 2 2 K'v? 2
= (1 - kgv - 770 - kv A]N - [——§- + Auv ]T

- (1 - kgv - %?mz = kva](Avvz 1 Ko o ZAv]NAT
coefficients of the first fundamental form are

2

2
1.2
= (1 - kgv - %glﬁ - kuzAJ + [g_g— + Auvz]

i

K'Uz 2 2
o b {Avv + Kv + 24v}

2
=it {Avuz + Kv + 24v} .

(18) e(us,v) = k - 2kk v - k Kv - o 4 Rk v 4
g g g
K" > 2 2 2 3
o & 2kg Kv - kgv 4. = ZkgvA + 0(v")
: ek i :
Flup) = Ky = Vo v AL 2vAu + 0(v7)

g

(usv) = K - Kk v + 24 + 4v4_ - 40°% A4 4+
g v g v

2
27 RET 2 3
¥ RE e e 2ukgA o il

(19)

(20)

(21)

(22)

(23)
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Therefore, it follows that

E(u,O) = 1, Ev(u,O) = —Zkg, Eu(»u,O) =10
Euv(uao) = "Zkgl’ Euv(“ ,0) = Z(kgz -kK)
F(u,0) = Fv(u,O) = Fu(u,O) = Fuv(u,O) = Fuv(u,O) =

G(u,0)

I
n

Ts Gv(u,O) G w00 = Gu(u,O) =0

uv

el(u,0) = fk, eu(u,O) =kt
e, (u,0) = --2kkg - kgK’

At 32 2 K 2l
eypl#:0) = 2(-K7K + Rk + B4 2k Pk - 3k 4),

FluB) = 0, 2 (w0} = X'
Padldl
Fop(4s0) = 2(- L + 34 ),
g(u,0) = &, g,(u,0) = &'
g'l)(u’o) 3 (_Kkg + GAU)! guv(u)o) = '(Kkg)' + 64

Also, from (19)-(22) follows that

[Fg-Gf](u,0) = 0

EEg—Ge]v(u,O) = -2kg k) & B4
[Eg-Ge] (u,0) = K-k

[Ef-Fe] ,(u,0) = k'

[Ef-Fe] ,,(u,0) = —SkgK‘ +,64 ..

Substituing (23) into (7) leads to

uv’

(k-k)?

U Sl TS R L

s “2K"] [-2k (K-k) + 64 ]+[-5k K' + 64 7(k-k)
n(s)j n(%) ([ 1E% o wv] ]du
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Integration by parts gives

(25)

du,

Js 6n(u)4,, fs 6n(u)a (2K'-k")

sl WL
g o Ak 0 (K-k)?

Therefore, (24) can be written as

s k K'(k-k) + 6k'4
(26) m"(0) = -n(s) jo alaed il v

du .
(k-k )

2
From H = K%E, differentiating 2H(EG-F?)® = eG-2fF+gE,
follows from (19) that
27 2H. = 6HE = 64 = - = - -
(27) u H o 5 Zkkg 4kgK GAD 4kgH ZkgK

24, = -kg(K—k) + 6Av

I

64, = 2H, + k_(K-k).

Substituing 6Av into (26); it fiollows

s 2k (K-k)H, +2k'H
n(s)f ) [~ P,
(k% )* !

Substituing (23) into (6) and then into (28), results that

(29) " (0) = (exp[-r; KiZ:K?]J UZ EXPUZ YK_%ds] 5

. [Zkg (K=K, +2 K'H s du]
R

For non-hyperbolic principal cycles,

(30) m'(0) = n(s) = exp[}f; éﬁi =1,

Therefore,
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(31) n"(0) = JZ ([eXpU: K_I%ds]]fkgu{'t:{_:): Zk‘HU} 1)

This proves the proposition.

3.2. Remark

If *=e-is~ma~maximal principal cycle of o € Jr, Proposition 3.1
implies that:

o [ (ol ) [

(k-k)*

4. Smoothness of Sf(b) and bifurcations

It is clear now how to define Sf(b) implicitly near

-1

a, €ST(b). In fact, ST(b) = B” (0), where B is the differentiable
function

(1) B(a) = m (x(a)) - (o).
The point =z = x(o) is defined implicitly by the condition
wa‘(x(a)) = 1.

Clearly, the derivative of B at o, on the direction & is

(2) DB, (a) = D (7, (0))(8)

0

To show that DB, # 0, the following lemma will be nedded.
0

4.1. Lemma [G-S.2, Lemma 4.3]

s

let o €J ,«>6 >3, and p € ¥ be such that dk )# 0.

%, (P
Let (u,v):M + 2IX2I be coordinates such that
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(u(p), v(p)) = (0,0), &, = IR(9/du) and L, = R(3/3v), where
7 = [-1,1]. Then given any € > 0 and any sequence of C”-norms
Il Hr, =23 on J°, s > r+l, there are numbers

8 = 8fe, {1 I, and 1 = e IS 3 T0 sl EhAL Tor any

b€ 0,6] and SV R 6 B

S -

((1-28)I) it is possible
family {au}, T T
immersions which satisfy the following conditions:

to constructia™c

i) The support of o -a is contained in D = (u e SRR

x{v(p,) + 20I}) and oy = a.
o e e s n%-ull2 ee

iii) The minimal principal arc of which passes through

%lp
p, meets the segment u'l(l) in a point denoted by Eu(po). The
range of the map u -+ v(& (p,)), n € [0,1], contains the interval
[v(po),v(po)+p1]. See fig 4.1. Moreover g%(gu(po))

iy). .There axists, E .5 p, (9} 3-0 suchvthat Hau ~ o 45"
0

and v(g, (,)) > ¥(p,).

Under the conditions of Lemma 4.1 applied to o, and the point

x(a,) = p (appropiately chosen), denote by = the Poincare

return map induced by the minimal foliation of o Write m =mog ,

where m:u (1) > w”'(-1). By iii) of Lemma 4.1, ai(Tr £,(0)] #0.

Therefore DB_ (B8 0, where o 2 u=0
ao( ) # B au(“u)|u=0'
Now take a C* family fogtn of ¢” immersions which is ¢°
cliose tol {g i and satisfies o, 8= o

It follows thatlﬁh (B)#0,
0

0 0

where g = é%(&u)|u=0'

This proves the differentiability of the manifold S,P(b). It
follows from the analysis of zeroes of B that, by crossing Sf'(b)
transversally, the SH principal cycle splits into two H cycles
or dissappear as illustrated in Figure 2.2.
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v(py )+
—— v(po)+pT
v(p,) £ U(PU)
v(p,)-p

Fig. 4.1 ETgr =5

The conclusion that Sf(b) (resp. §f(b)) is a one-to-one
immersed (resp. embedded) submanifold of J¥ can be obtained by
projecting the embedded submanifold Sf of IR+XJr which
consists of pairsf?{850) "  “such®that "'a € ST(p) and s is the
lenght of the SH principal cycle of a. The proof that 37(p)
is embedded submanifold is similar to that of the case of vector
fields ([So] ,[A-L])

5. Proof of the main theorems

5.1. Proof of Theorem 1

a) This has been done in section 4.

b) The proof of this part is similar to that of the case of vector
fields ([So],[A-L]). In fact when the SH closed principal cycle
is destroyed by a small perturbation of a € §f(b), the resulting
immersion belongs to S”. This is not the case for a€S%(b)-S5(b).
Actually, there are arbitrarily small perturbations for which the
SE principal cycle disappears and have other SH principal cycles
or umbilical connections with arbitrarily large lenghts,

e ¢Ase i [G—S.l, Section 5], the method of cannonical regions

applies to this case.
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To prove Theorem 2, the following lemma will be needed.

5.2. Lemma

Let ¢ be a minimal (resp. maximal) non-hyperbolic principal
cycle of a€ gt Suppose that kg5 (resp. Ka) is not constant
along c¢. Then o can be arbitrarily Cr"-approximated by an
o € Jlﬂ"1 which has ¢ as a semi-hyperbolic principal cycle.

Proof. Let p € ¢ such that dka|2(p) # 0 and let w be a non-
negative smooth function such that w(p) = 1, It may be assumed
that dka is non-zero on & vrestricted to the support of w,
Take coordinates (u,v), s-periodic in #, so that F(%,0) = 0
and the minimal principal cycle ¢ of lenght s is given by

v = 0, For € small define in these coordinates:

a. = o + (e/6)v3wNa.

It will be seen that, fortany € # 0 small® @ _w-hasf e “as
a semi-hyperbolic principal cycle.

Certainly

Moreover, in a small neighborhood of ¢, for some real valued

functions R, = R,(u,v) and R, = Ep(u,v), it is satisfied:
2
Ka =Ku+ €Evw + v R,
€
2
Hu = H, + (e/2)vw + v Ry,

Therefore, by (30) of Proposition 3.1 which establishes the
inctegpalicformuilagfionss mesiani2 .27, itollows sthatyen' ¢ (0= “a'(O) =1
¢}

and moreover by Proposition 3,1, =
s u 2k (K-K)H,, + 2k' [H, + (e/2)v]
T (0) = j ([epr Kﬁ_'k-ds]][ g £ in di ]]du.
e 0 0 (K-K)
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where (Ka ,ku,Hm) = M e )R S h u s

a3, 00 on = |1 (o0 [ o]

Therefore, (d/ds)ﬁa "(0ﬂ|5=0 # 0.
S

Here, kg does not depend on e since a. and a coincide
along ¢ up to second order, which makes the geodesic curvature

of ¢ the same for all immersionsof this family,

5.3. Proof of Theorem Z

Let o € Jf(b,*). Consider only the case in which o has a
minimal principal cycle on which k, 1in not constant. By Lemma 5.2.
There exists o, € J°°' which is C®-close to o and has ¢ as a
semi-hyperbolic minimal principal cycle, The same argument used in
section 4 to prove that Sf(b) is a codimension one submanifold
of J¥°T, shows that if v and V = J*7!'»*"' are small open
neighborhoods of ¢ and o,, respectively; then the set of g € V
having a semi-hyperbolic minimal principal cycle contained in V
is a codimension one submanifold of J¥7'**"', Therefore, an
immersion a € J%, c¢*-close to a,, and having a semi-hyperbolic
minimal principal cycle in Vv can be found as the transversal
intersection of this submanifold with an appropiate curve of

. . oo
immersions of J .

Now it will be seen that, by a small Cz-perturbation of @
away of its semi-hyperbolic principal cycle E,_ it may be assumed
that there is a very small open cylinder containing & and bounded
by minimal principal cycles. In fact. Let {pn} be a sequence of
consecutive intersections of a minimal principal Tine approaching
2 with a maximal principal line crossing <e. Certainly lim R, 3

q € c. Assume that dk&(q)kgjq) is not zero and consider
(u,v)-coordinates as in Lemma 4.1 such that (u(q),v(q)) = 0. As
the derivative of the first Poincare return map at ¢ (induced by

the minimal foliation of &) is 1, v(p,)/v(p,,,) goes to 1
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goes to infinity. Therefore, by Lemma 4.1, by a small

Cz-perturbation away from ¢ and for N large enough, it may be
assumed that there is a minimal principal cycle passing through
Py- See Figure 5.1.

Under these conditions, the proof that o can be arbitrarily

c*-approximated by an element B8 € 5” which has a unique semi-
hyperbolic minimal principal cycle is similar to that of [G-S.2,
Theorem 3.1].
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