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- CONVEX IMMERSIONS INTO
POSITIVELY-CURVED MANIFOLDS

lvan A. Tribuzy

1. Introduction

1.1 - Let N be a Riemannian manifold. We say that X<V s
stnongly convex if for any pair of points p,q € K there exists
a unique minimal geodesic Y of N connecting p to ¢ and y is
contained in k. We say that kX =% is convex, 1if for each
point p of the closure X of K there exists a number 0<r(p)<e(p)
such that x N Br(p)(p) is strongly convex; here e(p) 1is the
convexity radius and Br(p)(p) denotes the open ball with center
in p and radius r(p). We say that X is totafly convex if
whenever p,g € X and Y is a geodesic segment from p to 4,
then vy is contained in x. If KX is convex and its interior,
int k, 1is non empty we say that X is a convex body. The
fundamental properties about convex sets can be found in [5].

1.2 - We will represent by < , > and vV the Riemannian metric
and Riemannian connexion of N, respectively. We will denote by
KN(X,Y)p _the. sectional curvature of ¥ at the point p relative
to the plane generated by the vectors X and Y of the tangent
space TPN of N. When clear from the context, we will only use
KN.

Let xz:M + N be a isometric immersion of a Riemannian
manifold M into N. We will identify a vector V of TpM with
dxp(V) of Tx(p)N, and for VL W in TpM we will identify
KN(V’W)x(p) with KN(dxp(V), dxp(w))x(p). The notation
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KM > KN will express that for every point p € ¥ and for every
pair of linearly independent vectors V,W € TpM we have that

Ky (V) > Ky(Vol) oy

1.3 - M and ¥ will indicate orientable complete and connected
c”-Riemannian manifold with dimensions = and =n+l (n > 2),
respectively.

Our main result is as follows

1.4 Theorem. Let x: M+*N be a isometrnic immension. Suppose
that N 4is noncompact and that there exist a constant K such
that K >K, > 0. Suppose further that it is possible to choose
a unit normal vector field & 4in M 40 that each eigenvalue X
0f the second fundamental form of =z with respect to &
satisfies X 2 2VK. Then =z 4is a embedding, and x(M) is the
boundary of a convex body in N. In particularn, M 4is diffeo-
morphic to a sphere.

This theorem is a result of our Doctoral Thesis ([13, p. 43],
announced in [14] as Theorem D).

1.5 Remark. Our theorem generalizes a series of results that have
appeared in the literature: [6], [12], [11] and [4]. 1t should
be specially compared with a result of S. Alexander [1] where ¥
is simply-connected and has nonpositive sectional curvature.

The proof of Theorem 1.4 will be presented in Section 3 after
some preliminary facts which will be proved in the next section.

2. Some general basic results

We will use the following property of convex bodies in a
Riemannian manifold.
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2.1 Lemma. Let A be a convex body of a Riemannian marifold L
such that its boundary S 4is a submanifold of L. T1f§ 7v(t) 4s
a geodesic of L tangent to S 4in p= y(0), <zthere exists &8>0
such that vy(t) € L-4 for akl t € (-68,8).

Proof. Let Ep be the unit normal vector of S at p, such

that for s > 0 and sufficiently small expp(SEp) € L-A. Suppose
that for all & > 0, there exists ¢t € (-8,8) such that

vy(t) € A. Since A4 1is a convex body of L, there exists a
number r = r(p) > 0 such that ¢ = Br(p) N A 1is open and
strongly convex. Let Y(t,) be a point of Y inside C. Since
¢ 1is open, there exists € > 0 such that BE(Y(to)) c C. By
continuity, there exists a vector v in the 2-plane generated

by the vectors Ep and +y'(0) such that <v,Ep> > 0, and the
geodesic o(t) = expptv has a point g¢q, = o(t,) in the ball
BE(Y(to)). By construction, o is transverse to S in p.
Therefore, there exists a neighborhood (-t,r) of 0 € R, such
that o(0,t) dis outside C, and o(-t,0) is inside C. 1In
particular if t, € (-1,0), the point ¢q, = o(t,) € C. Then o
connects q, to g, of C, but it.is not contained in C.

This contradicts the fact that ¢ is strongly convex, and completes
the proof.

2.2 Proposition. Assume that M is submanifold of N and that
M  separates N in two connected components. Assume furthen
that the eigenvaltues of the second fundamental. form of M do not
change sign. Then M (s the boundary of a convex body in V.

Proof: Let 4 and B be the connected components of ~N-M. We can
choose an unit normal vector field in ¥ such that the second
fundamental form is semidefinite positive. By (2], ¥ is locally
convex. This means that for every P € M there exists a
neighborhood Vp of the origin in TpN such that expp(Vpn TpM)
is contained in the closure of one of the two connected components
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of N-M, (here exp, denotes the exponential map of N). Let
us assume that this connected component is B. In this case, we
will show that 4 dis a convex body of ¥. In fact, it is enough
to show that 4 is convex.

The argument to be used is an adaptation of the method used
by E. Schmidt to show that the simple locally convex curves of
the plane are boundaries of convex bodies.

If A is not convex, then there exists a point P € 4 such
that, for every >0 an B.(p) 1is not strontly convex. It
is clean that, such; p;, must,be: in - M., Let: € > 0- be such: that
Beo(p) is strongly convex and that ¢ = 4N Beo(p) is connected.
Then there are points p and ¢ 1in C that cannot be connected
by a minimal geodesic contained in (. Since int C # ¢, there
existis’ didtinet potale ' ?p "B BN 000 & @10 ings 1A2 0 7 nd
there exists a unique minimal geodesic joining p; 1 which
is contained in (¢. However, there exists an index k such that
for < <k, p, can be joined to p; by a minimal geodesic
contained in int ¢ but p, cannot be joined to P, by a
minimal geodesic contained in 1int C. Let g(t) be the minimal
geodesic joining ph = g(0) to P = g{L)% sand Net ; ¥y (B)° Eibe
the minimal geodesic joining p, to g(%t). Set I ={t6[04 | v,(s)
is contained in int C}. Since L 1is bounded and nonempty,
there exists t; such that %, = sup L. The geodesic Y, = A

connecting p, to g(t,) 1is contained in ¢, because WIRVT's
1imit of geodesics contained in int C. Furthermore, Y3
tangent to M. In fact, since %, = sup L, Y, has a point in
common with the boundary 3C of (€. Since Beo(p) is strongly

convex and vy, has points in int Beﬁp), by Lemma 2.1,

cannot be tangent to aBao(p). Therefore Yy, 1is tangent to X.
Let q = Yo(sl) be the first point of M where Y, issuing
from P is tangent M. Then the geodesic o{(s) = Yo(sx‘s) that
starts at ¢ and passes through p. 1is contained in A4, for

1

0 <s < 8 . This contradicts the fact that M is locally convex.
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Therefore A 1is a convex body. This completes the proof of
Proposition 2.2.

2.3 - Let v be an open ball of the origin of 7 y such that

: 2
the restriction expp is a diffeomorphism. We will call the

14
set expp(V) a noamal neighborhood of p.

2.4 Proposition. Let 4 be a convex body in N. Suppose that
the boundany M = 94 0f A 48 a compact and connected submani-
§otd of m. 1§ M 4is contained in a normal neighborhood of an
intenion point of A, then y 4is difgeomorphic Zo a sphene.

Proof. Let «u be a normal neighborhood of a point P € int 4,
such that M cu. Then, any geodesic that issues from p Tleaves
w, hence 4. Since M is the boundary of a convex body, by
Lemma 2.1, the geodesics that issue from p must meet M trans-
versely. On the other hand, since u 1is a normal neighborhood
of the point p, the geodesics that issue from p do not meet
in 4. Thus, we can define a map

b: M > S" < TN

by L
exp ,(q)
L4 B

Iexpp @]

Clearly ¢ is a diffeomorphism, and this concludes the proof.

Proposition 2.4 has the following consequence which is
interesting in its own right.

2.5 Corollary. Suppvose that N 44 simpLy connected and KN <02
14 M 4is a compact hypernsurface of N such that By~ Ky then,
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thene exists a point p € M and orthonormal vectors V and W
in TpM such that KM(V,W)p >0

Proof: Since Ky > Ky the eigenvalues of the second fundamental
form do not change sign. Since & is simply connected and ¥

is a compact hypersurface of N, M separates N in two
connected components. (An argument to show this fact can be

found in e.g. [8 p. 72] .) By Proposition 2.2, M is the boundary
of a convex body and by Proposition 2.4, M is diffeomorphic to

a sphere. If x <0, there M is covered by IR*, which is a

contradiction.

2.6 - Let L be an orientable (n+1)-dimensional Riemannian mani-
fold and let f: L > IR be a differentiable functions without
critical points. We will denote by 5, = f-l(t) the level
hypersurface of f at ¢. We will denote by n, a unit normal
vector field of 5., and by ut(p) the greatest eigenvalue of
the second fundamental form of St at p along n,. Let H be
an orientable n-dimensional Riemannian manifold, and let z: # + L
be an isometric immersion. We will denote by & a unit normal
vector field of H, and by Ap the smallest eigenvalue of the
second fundamental form of x« at p along &.

2.7 Proposition. With the above notation, assume that at each
cnitical point p  of fex

Ap > Mz(p)

Then, fex 4is8 a Mornse function that has no saddle points.

Proof. We denote by % = fex the restriction of f to z(H).
If & has no critical points the result is trivial. Assume that

Do LT 15 @ critical Dointiofis ngilet 5, be the level hyper-
0
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surface of % which passes through 2z (p,). We must show that
p, 1is a nondegenerate critical point of % and that p, is
not a saddle point of ~&.

By Nash's Theorem [10], we may assume that I is iso-
metrically embedded in IR®, for »r Tlarge. We consider the
orthogonal decomposition of IR” given by

RY = Toip,)" @ Ta(p,))

and let P: IR” » Tx(po)L be the corresponding orthogonal
projection., Because the result is local, we can restrict ourselves
to a neighborhood V of =z(p,) in L where the restriction P
is a diffeomorphism onto P(v). To simplify the notation, we

14

will assume that =z 1is an embedding and we will identify #

with z(Z). We will also denote H = HNV and St = ston V.
0

By projecting orthogonally V onto Tp L \by/ P, %we wil7
0

obtain submanifolds # = P(u)s and Eto =P (W) i Tp L, where
0

u and W are, respectively, neighborhoods of p, in E and

s with the property that the restrictions P|,  and P|, are

e

embeddings. Since p, 1is a critical point of o Tp H=T St !
0

Pio “o
Thus is clear that Z and 5, are contained in T He{t%,I t 6IR}.
0 po 0

Denote by ipo the smallest eigenvalue of the second fun-
damental form of # at p, along €y

greatest eigenvalue of éto at, py,. with respect to Eye Goldnce
5 have that A_ >u_ .
APD . Yx(p,) P Po Py

Consider the function F = feP™': P(V) » IR, It is clear

and by upo the

that F 4is differentiable. Moreover, the level hypersurfaces of

F are manifolds S, = P(V N S,).

2 2
i i g, d XaX)e=1d -Fo LXPX).
Claim 1. 1§ X € T, then fpo( ) LRSS
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In fact, by the definition of F,

ar. Xy = d vdp
B f}'%po) g

and

a’r (X X) i dzf‘ 1
P, p~

at -1
(de (X),de (x)) +dfP_1(

(p,) 0

p,)
Wk ik

= =0 t € 7 Hyg .. BU%
dfx(po)dxpo(v) for every vector v A u
p-

Since P, is a“criticallpoint of 9a% dh

0
1(po) ="p. . Then dfp (w) = 0 for every w €
0

x(p,) =

Therefore,

2 Al
d FPO(X,X) = d fpo(X,X).

Claim 2. p, = P(p,) 44 a nondegenerate critical point
which is not saddle point.

Sinceripganisiajeritical pointaof 2k, Tpoﬁ = TPOE

may assume that A and St are graphs of functions a

defined in Tpﬁ, respectively. Thus,

H = {(xl""’mn’xn+}) l m‘ﬂ+1 T @(xl s---)xn)}

0
"

g Gl ooy @ gf o) | B = Bl . g )T,

Now, we will express the second derivative of F
2

2

point p,, by computing %—E with respect to H and gt
X

Along H, we obtain:

But . at =2, 5%%»= 0% = Therefore
7

oo 1
wépBs [ x0x)s
po

S o
Py

08 a &

to'
and

at the

0

We
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2 2
) OmE O0F 9 o
< Fle. & Sana(e. s wheae )T 2 =
3’ y s : 4 Ja® ¢ Wiy By
2 7 1
Similarly, along 5, , we have
2 2
z 9 3
3_ F(xl""’xn’B(xl""’xn)) o —_Fz + axaF _E.
3z 2 dax nt1 dx
7 1
Since F(S, ) is constant, because 5
2 4
of. F, é%— F(xl,...,xn,ﬁ(x ,...,xn)) = 0. Thus, (2) becomes
)

2
S e S R
2 dx 2 :
G n¥l Bz
& z

It follows from (1) and (3), that, at the point p,,

2
5 °F, oF k)
LA e (2% (asB)) .

amm+1 LES

2
X .
37, 7

29

(1)

(2)

is a level hypersurface

Since” ¥ “has ‘noeriticad ypoint' in'"¥," ' F*" has''ndo critical

potnt iR BLVY, Bince. miped sul, fob. 1= 12,07,
7

have that ggﬂl_ (py) # 0.

‘n+1

Now, observe that

2
2 a 1 3 ]
A gl
ox z T P,
and S
38 _ 2 (2 3 )
3z ! P WY,
1 9 9 2 9 9
where B (352, 3EZ)P0 (resp. B (ax', 5 i at)

200
4 Po

value for the pair (33—, 33—) of the second fundamental form of
L 2 L 7
H (resp. Sto) at p,, along Epo (resp. npo).
Since Apo >up0, L
< (a=8) > O,
sz

This completes the proof of Proposition 2.7.

denotes the
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3. The proof of the Theorem 1.4
Suppose that M and N are as Theorem 1.4.

3.1 Lemma. KM > K~

Proof: Let p be a point of M, and X, Y a pair of ortho-
normal vectors of TpM. Then, by the Gauss equation,

TS il <\ 2
KM(X,Y)p - KN(X,Y)p = <VX5,X>p<VXg,Y>p - <VXg,Y>p_ @)

It p is an umbilical point, or if X and Y are eigenvectors
of the second fundamental form at p, it is clear that

-

Ky(X,7), - Ky(X,¥), > 4K,
Ifesp, s not umbilical,: let E E,,...,E be eigenvectors
of the second fundamental form at p, with eigenvalue Al,xf...Jn

respectively. We can write X = 2 x{Ei anae ¥ = E yiEi’ where
Y2 =3y, =1 and Jora, =0
i i G i

By using the above values of X and Y 1in (1) we obtain

Ky (X,Y)-Ky(X,Y)

2 2 2
N( (g xixi)(é ijj)‘(z xiyiki) =
J z
242
Nl S R e YN
Bed ) T4 o Ml iR

n
&~
8
S 5
<
NN
>
+
~1

2l P 2
WLy TroEysARA . =
; 7 <7 ( tyg in) T

2m 249
(% eLysA: o+ iéj 22,209 ;Y g 5) o

2 2 8ol o
iZj (xiyj+xjyi—2xixjyiyj)Aixj_

Since A, > 2/k
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. bR o) 2
KM(X,Y)-KN(X,Y)p > 4k izj (xiyj+xjyi inxjyiyj)' (2)

Since sz = }yf S

2 2y A3 S
(in)(zyg) _zxiyi + 'Z' (xiy.j"'ny,L) i (3)
1<y
Since zxiyi =0,
2070 2enn o
(z.r%yz) -inyi + 2 Z 1 xixjyiyj— 0. (4)
t<d
Subtracting (4) from (3) we obtain
y 2y24mly et .2y y.) o= 1. 5
5 (o3y 54454 5 =28, 859 Y 4 ) (5)
Substituting (5) in (2), we have
KM(X,_Y)p i KM(X9Y)p 2 4xK. (6)

Finally, since (6) is true for every point p € M and every pair

of orthonormal vectors of TpM, Ky > 4K, thus proving Lemma 3.1.

3.2 - We denote by <(¥) the injectivity radius of ~, that is
to say, Z(¥N) 1dis the Targest number P > 0 such that, for all

p € N, the exponential map, exp_, 1is an embedding in the open
ball of radius p in T N. In [9], M. Maeda proved that, under
the hypothesis of Theorem 1.4, <(w) > A

VK

Let D be a compact totally convex set of ¥, such that

p > U 8_(2(p)).
pEM T
/K
(The proof of existence of such sets can be found in [i5:%%p. T 1371
Set

&= inf{KN(X,Y)p | 'p € Darks¥s6 TpN and <x,y> = 0}.
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Since X, > 0 and D iss compact,. a+> 0.

Now, we will make use of the following fact, whose proof
can be found in [7, p. 397].

3.3 Lemma. Let vy(t) a geodesdic in int D with |Y‘(t)| = 1, and
Let Y(t) be a Jacobi fiefd akong Y, such that y(0) = 0 and
<Y (t),Y'(t)> = 0. Then, for all 0 < t < = ope has:

VK

b cosvat . Edtils TR EEE!EE,
dindat T ERELE v U gaafTy

3.4 - We will denote by B(p) the open ball of N with center
at p and'radius equal to ‘. "‘and by S(z) the geodesic
2/k

sphere which is the boundary of B(p).

3.5 Lemma. We can choose a unit normal vector fiefLd n 4in S{p),
such that each eigenvalues 1 o4 the second fundamental form of
S(p) with nespect to n satisfies

/Z>u20.

Proof: We can consider D sufficiently large, so that S(p)c
cint D, Let X be a differentiable unit tangent vector field
in S(p) defined in a neighborhood of a point g¢q. Let
o: (-e,e) +.8(p) ybesthe_solution "of;.X.,isuch that’ c(0)s= q

] = X
and a'(0) q°
Let o: (-e,e) x[0,——] = ¥ be the variation defined by

2/ L)

exp, (a(s))
e
ex
lexp_ “(oa(s)) |

Since B(p) 1is contained in a normal neighborhood, a is
well-defined and o is differentiable.

o(s,t) = exp, ta(s) where a(s) =
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30 (0, d t”'(%) the Jacobi
= 3¢ = - o ] acobi
Denote by J() = 25 (0.%) = (4 exp, ;50
field along the geodesic o(0,t). It is clear that J(0) =0

90 =
and J(E%§) = X,. Denote by 2(t) = 57 (0,¢) = (d expp)t&(o)a(O)

the velocity vector of the geodesic o(0,t).

Choose a unit_norma1 vector field n such that

™
Ry = md{e=s) .
k. 2VE
Then
ulg), = sV Han3g = =<Vm B 2 <Vu(=0),B =
) 3o . F 3o Qg >

= T I 5?(0 i, Tt s 8_s>(0,__ﬂ__)
Y3 2VK

=41 d.:.36 ¢ 35 a4i 41
=5 = G 55 b W =3 <J(t),J(t)>_L
2vVk 2/

(where D is the covariant derivative of ¥).

Observe that

JEt P JUE o1 Fe)J(E)>"
}J t)| 1 :j(i),J t Z> T3 <J§t5,J$t5> .

1. It follows from Lemma 3.3

"

and that in & = =X, () JlE)3

that 2/K
VE cotVd —= 3 <WZ 3, 3 B, B <a<k.
2/ q
1 Ja w
By takin u = — =, one has
Yy 9 % 3
2 - ki
—%g y cot ¥ 2 <VXX,n>q Sl 0 < u < 3

Now, set Ff(u) = u cot u, 0 < u < %. Observe that

i) 1 = lim £(u)
u>0

ii). i)

. EiN BU=BY g i W B

2 sinfu
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Hence, 1 > u cot u, and therefore,

2% > <§XX,n> =0
= 2 2

q
We finally conclude that

VK > % A > . > 0

and this completes the proof of Lemma 3.5.

3.6 Lemma. For alf p € N the open balf B(p) 4is strongly convex.

Proof: Since < (W) S(p) is contained in a normal neigh-

ALk
T
borhood u« of p. Furthermore, if g, and g¢q, are points of
B(p) there exists a unique minimal geodesic connecting ¢, to
q,. Since u is simply connected, S(p) separates u into two
connected components ([8, pis 72]). By Lemma 3.5, the eigenvalues
of the second fundamental form of S(p) do not change sign. By

Proposition 2.2, S(p) is then a boundary of a convex body of W.

It is enough to show that the minimal geodesic that joins
two points of B(p) 1is contained in B(p). This follows by
using the same adaptation of the E. Schmidt's method used in the
proof of Proposition 2.2. This concludes the proof of Lemma 3.6.

Assertion 1. Thenre exists a Monse function defined in M that
has only two crnitical points, one maximum and one minimum.

Let p, be a point of N, and let y(t) be a geodesic of

¥ passing through p,. Reparametrize vy so that |y'(t)]| =1
and y() = B,
/1? [}

We will denote by TY(t) the parallel translation of W
along vy from vy(0) to +y(t). Consider the set:
v |

5 = 1 o ™
ZY(O) = {v ¢ Ty(O) <v,v'(0)> > 0 and |v|= 37%}.
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= T.(Z (0 is a hemisphere of the geodesic
Thus, ZY(t) eXpy(t) t( Y( )) p 9
N ™
here with center in y(t) and radius —.
g 2R

3.7 Lemma. For 0 < T <
of B(p,)-

I, the family {3Z_(t)} 4is a folkiation
/K A

Proof. First, we claim that if 0 < ¢, < ¢, < J%, then

XY(tl) n ZY(tz) n B(po) - ¢. In fact, suppose there exists

q €3 (¢,)N ZY(tz) B Blagdas o Then dlespltcd) v dlaaxity)) i3
2

15 =
3

and’ dle.p 1T
24P 2/k

Consider the open ball B(g) with center in ¢ and radius
St By Lemma 3.6, B(gq) 1is strongly convex. It is clear that

ZR . . . . .

pyte B(g).nilLet Oi(s) (7=1,2) be the minimal geodesic connect-
ing y(t;) (%=1,2) to q. By definition of zY(t),
<0;(0),y'(t;)> > 0, hence, y s transverse at vy(¢;) to the
geodesic sphere S(q), boundary of B(q), (%=1,2). This implies
that there exist disjoint neighborhoods Vv, amd Vv, of ¢, and

T respectively, such that Y(Vi) has points inside B(q) and

2,
outside 'B(q) near v(%.) (¢=1,2). Now, let y(t,) be a point

ofi-glive il Blq) ., Then ,ovl) e & et < , 1is a segment of a

° xl=

minimal geodesic connecting Y(%,) to p inside B(gq), and
v(t) leaves B(gq). This contradicts the fact that Blig)y e is
strongly convex, and proves our claim.

Now, let g be any point of B(p,). Consider the geodesic
sphere S(q). Since p, 1is inside B(q), the geodesic v(?)
has points hinside "B(a).’¥By (5. p. 152I)," "y goes to infinite,
hence it leaves the closure B(q) of B(q).

Let y(t,) be the point where Yy enters Billg)ii foni fiipsit
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time before passing through po. Then, g € ZY(tl)' In fact, ‘ that the minimum eigenvalue of the second fundamental form of =
by construction, d(q,y(tl)) = 535, Furthermore, since vy is ‘ with respect to & according to Lemma 3.5. By Proposition 2,7,
transverse to S(q) at Y(£,), :f o) s the minimal geo- By is a Morse function without saddie points, Since M s

compact, & has only two critical points, one maximum and one
desicujouniing” sy (6, ) 160" "ok wthen) <ol0) ,¥2(£, > 5> 00 20 3Thits 7 minimum ([3, p. 174]). This completes the proof of the Lemma 3.8
fact completes the proof of Lemma 3.7. and of the Assertion 1.

Let j}: B(po) - IR be the function defined by
Assertion 2. gz 4s a embedding.

fY(q) =S 95F Sonly Pt g € ZY(t).
Proof of Assertion 2: Suppose, by contradiction, that x is not
By Lemma 3.7, fY is well-defined and by definition of the

family {XY(t)} fY is differentiable.

an embedding. Then, there exists distinct points p and g of
My suchkthatd zlqg) = zip):

Since X, > 4K > 0, by Bonnet-Myers' Theorem, ¥ is com-

Consider the geodesic Yy(t) that passes through x(p) = Y(—=)

=Xl=

. m™ . -
pact and diamy < —— (diam ¥ denotes the diameter of M). \ and that Y'(JL) g 1% ‘the ‘unit neriial 'vector .field “E of
2vVK /R D

Since TS I ¢

" y» No curve of x(M) can be a geodesic in w, at p.

and so Now, consider the function %A, = f ex, By Lemma 3,8 *7 is
diam x(M) < diam ¥ < —— ‘ A : i)
2 sz’ ; a Morse function that has only two critical points, one maximum
and one minimum.
then, for every point p € ¥, x(M) < B(xz(p)). Now, by fixing
P € ¥ and a geodesic Y in n passing through =(p); we can
construct a function fY as above, Therefore, we can define the

i i i =
unction hY TR ®by hY fyex:

By construction of hY’ p is a critical point of hY’
which we assume to be a point of minimum, with hY(p) = ty,. (The
case where p is a point of maximum can be treated similarly).

Let «u and v be disjoint neighborhoods of p and gq,

respectively, such that =z vrestricted to u or to v is an

3.8 Lemma. hY 45 a Monrse function that has two crnitical poinits,

one maximum and one minimum.

embedding. We will consider two cases:

ISt'case. z(w) 1is not transverse to =z(v) at x(p). In this
Proof: It is clear that hY is well-defined and is different- CAS€une by da+ 454 a 150y cbi ti.catldpoimts Of hY and so, is a point of
iable. Observe now, that fY has no critical poeints in Blx(p)). ‘ maximum. Further, hY(q) = hY(p) = tg, Since g is a point of
On the other hand, the maximum eigenvalues M, of the second 1 maximum of hY’ there exists a neighborhood v; of ¢ in XM
fundamental form of each level surface ZY(t), with respect to ! such that if r € v, and r # q, then % (») < t,, This implies
the unit normal vector field as in Lemma 3,5, is strictly less that there exists a point of minimum if hY in M distinct of p.

This contradicts Lemma 3,8.
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there exist points of (V) contained in the level below x(p).
This implies that there exists another point of minimum distinct
from p. This contradicts Lemma 3.8.

Then, x 1is embedding, thereby proving Assertion 2,
3,11 - Now, since B(xz(p)) is simply connected and =z is an
embedding, (M) separates B(x(p)) in two connected components
(st 72]). Since the eigenvalues of the second fundamental
form do not change sign, by Proposition 2.2, (M) is the boundary
of a convex body of ~N. Since (M) is contained in a normal
neighborhood of p, , by Proposition 2.4, =z(M) is diffeomorphic
to a sphere. Therefore ¥ 1is diffeomorphic to a sphere, This
completes the proof of Theorem 1.4.
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