TOTALLY GEODESIC FOLIATIONS WITH INTEGRABLE NORMAL BUNDLES

with a pair of orthogonal foliations of complementary dimensions

Fabiano G. B. Brito* and Pawel G. Walczak

1. Introduction Theorem 129bose viliatot at 1 test doug 1 bes 3

In this paper we give a characterization of geodesic flows and foliations on complete Riemannian manifolds satisfying some conditions of positiveness for the curvature tensor, Precisely, we prove the following:

Theorem. "Let F and F^{\perp} be two orthogonal foliations of complementary dimensions over a complete Riemannian manifold M.

If the following three conditions hold:

- 1) F^{\perp} is totally geodesic bus decreased as the second solution of the second sec
- 2) $\sum_{i} R(h, e_{i}, e_{i}, h) \ge 0$ where h is the mean curvature vector of F, $\{e_{1}, e_{2}, \dots, e_{n}\}$ is any orthonormal frame tangent to F, $1 \le i \le n$, and R is the curvature tensor of M.
- 3) If $p \in M$ and h(p) = 0 then the matrices (K_{ij}^{α}) have non negative trace for every α , the matrices (K_{ij}^{α}) being defined by:

 $K_{ij}^{\alpha}=R(e_{\alpha},e_{i},e_{i},e_{\alpha})$ where $1\leq i$, $j\leq n$ and e_{α} is a unit vector tangent to F^{\perp} .

^{*} During the preparation of this manuscript the first author was supported by the University of Lodz / Poland, the Polish Academy of Sciences and C.A.P.E.S/

43

Then F is totally geodesic. Consequently, M is locally a Riemannian product of leaves of F and F^{\perp} "

FABIANO G. B. BRITO AND PAWEL G. WALCZAK

We get then the following:

Corollary 1. "Let M be a complete Riemannian manifold equipped with a pair of orthogonal foliations of complementary dimensions F and F^{\perp} such that F^{\perp} is totally geodesic.

Assume that the matrix $({^x}_{ij}^\alpha)$ has non negative trace for each direction e_α tangent to F at each point of M . Then Fis also totally geodesic and M is locally a Riemannian product of leaves of F and F^{\perp} ."

Corollary 2. "Let M be a complete Riemannian manifold of non negative Ricci curvature. If F is a codimension-one foliation over M and the normal flow of F, say F^{\perp} , is geodesic, then F is totally geodesic, F^{\perp} is parallel and M is locally a Riemannian product of leaves of F and F^{\perp} .

Remarks. 1) K. Abe [1] had already proved the same result stated in corollary I using the additional hypothesis of local symmetry of the ambient space M. We removed it.

- 2) G. Oshikiri $\lceil 3 \rceil$ proved that if M is a closed Riemannian manifold with non-negative Ricci tensor and F is a minimal codimension-one foliation over M, then the normal flow of F is parallel and F is totally geodesic. Corollary 2 gives a converse of this result in the sense that we suppose the normal flow to be geodesic and get geodesibility (hence minimality) of F.
- 3) One of the authors [2] proved the following:

Let M be a closed Riemannian manifold with non-negative sectional curvature. Let F and F^{\perp} be a pair of orthogonal foliations of complementary dimensions over M. If F is minimal, codim F = 2 and the Euler class of F^{\perp} vanishes then M is locally a Riemannian product of the leaves of F and F.

Corollary 1 is another version of that: there are no assumptions on the topology or on the codimension of the foliation. weaker assumptions on the curvature and on the topology of M, but we assume F to be totally geodesic.

2. Proof of the Theorem

Let $x \in M$ and $\{e_1, \dots, e_n, e_{n+1}, \dots, e_{n+n}\}$ be a normal orthonormal adapted frame, (i.e. e_1, \ldots, e_n are tangent to F and e_{n+1}, \dots, e_{n+p} are tangent to F^{\perp}) in a neighborhood of x.

Let us take $\alpha \geq n+1$ and suppose e_1, \ldots, e_n to diagonalize the second fundamental form H_{r}^{α} of F in the direction of e_{α} at a point x.

We have the following lemma:

Lemma. "
$$e_{\alpha} < h$$
, $e_{\alpha} > - |H_{\mathcal{F}}^{\alpha}| - \sum_{i=1}^{n} R(e_{\alpha}, e_{i}, e_{i}, e_{\alpha}) = \langle h, \nabla_{e_{\alpha}} e_{\alpha} \rangle$

where ∇ , < , > and R denote respectively the Riemannian connexion, the scalar product and the curvature tensor of M."

Proof.
$$e_{\alpha} < \sum_{i=1}^{n} \nabla_{e_{i}} e_{i}, e_{\alpha} > - |H_{F}^{\alpha}|^{2} - \sum_{i=1}^{n} R(e_{\alpha}, e_{i}, e_{i}, e_{\alpha}) =$$

$$(1) = \sum_{i=1}^{n} \left(\langle \nabla_{e_{\alpha}} \nabla_{e_{i}} e_{i}, e_{\alpha} \rangle + \langle \nabla_{e_{i}} e_{i}, \nabla_{e_{\alpha}} e_{\alpha} \rangle \right) - \left| H_{F}^{\alpha} \right|^{2}$$

$$+ \sum_{i=1}^{n} (\langle \nabla_{[e_{\alpha},e_{i}]} e_{i}, e_{\alpha} \rangle + \langle \nabla_{e_{i}} \nabla_{e_{\alpha}} e_{i}, e_{\alpha} \rangle - \langle \nabla_{e_{\alpha}} \nabla_{e_{i}} e_{i}, e_{\alpha} \rangle).$$

Here, ∇ , < , > and R denote respectively the Riemannian connection, the scalar product and the curvature tensor of M.

Since \mathbf{F}^{\perp} is totally geodesic, then $\nabla_{e_{\alpha}}^{e_{\alpha}}$ is orthogonal to \mathbf{F} and

(2)
$$\sum_{i} \langle \nabla_{e_{i}} e_{i}, \nabla_{e_{\alpha}} e_{\alpha} \rangle = \langle h, \nabla_{e_{\alpha}} e_{\alpha} \rangle,$$

where h is the mean curvature vector of F.

Also

$$\langle \nabla_{e_{\alpha}} e_{i}, e_{\alpha} \rangle = -\langle e_{i}, \nabla_{e_{\alpha}} e_{\alpha} \rangle = 0.$$

Since

$$\nabla_{e_{\alpha}i}\Big|_{x} = \sum_{j=1}^{n} b_{ij}e_{j}\Big|_{x}$$
 (total geodesibility of F^{\perp}),

$$\nabla_{e_{i}} e_{\alpha} \Big|_{x} = \lambda_{i}^{\alpha} e_{i} + \sum_{\beta=n+1}^{n+p} c_{\beta} e_{\beta} \Big|_{x}$$

and $b_{ii} = 0$, then

$$(4) \qquad \langle \nabla_{e_{i}} \nabla_{e_{\alpha}} e_{i}, e_{\alpha} \rangle = -\langle \nabla_{e_{\alpha}} e_{i}, \nabla_{e_{i}} e_{\alpha} \rangle = -\lambda_{i}^{\alpha} b_{ii} \langle \nabla_{e_{\alpha}} e_{i}, e_{i} \rangle = 0.$$

On the other hand,

$$(5) \qquad \langle \nabla_{[e_{\alpha},e_{i}]} e_{i}, e_{\alpha} \rangle = \langle \nabla_{e_{\alpha}} e_{i}, e_{\alpha} \rangle - \langle \nabla_{e_{i}} e_{\alpha} e_{i}, e_{\alpha} \rangle.$$

But, according to the notation used till now,

$$\langle \nabla_{\nabla_{e_{i}}} e_{\alpha}^{e_{i}}, e_{\alpha} \rangle \Big|_{x} = \lambda_{i}^{\alpha} \langle \nabla_{e_{i}} e_{i}, e_{\alpha} \rangle +$$
(6)

$$+ \sum_{\beta=n+1}^{n+p} c_{\beta} < \nabla_{e_{\beta}} e_{i}, e_{\beta} \Big|_{x} = -(\lambda_{i}^{\alpha})^{2}$$

and

$$\langle \nabla_{e_{\alpha}} e_{i} e_{i}, e_{\alpha} \rangle_{x} = \sum_{j=1}^{n} b_{ij} \langle \nabla_{e_{j}} e_{i}, e_{\alpha} \rangle_{x} =$$

$$= -\sum_{j=1}^{n} b_{ij} \langle e_i, \nabla_{e_j} e_\alpha \rangle \Big|_{x} = -b_{ii} \lambda_i^{\alpha}.$$

But $b_{ii} = \langle \nabla_{e_{\alpha}} e_i, e_i \rangle = 0$, so by (5), (6) and (7), it follows that

(8)
$$\langle \nabla [e_{\alpha}, e_{i}] e_{i}, e_{\alpha} \rangle = (\lambda_{i}^{\alpha})^{2}$$
.

Now, by (1), (2), (4) and (8), it follows that

(9)
$$e_{\alpha} < h, e_{\alpha} > - |H_{\mathsf{F}}^{\alpha}|^2 - \sum_{i=1}^{n} R(e_{\alpha}, e_i, e_i, e_{\alpha}) = < h, \nabla_{e_{\alpha}} e_{\alpha} > .$$

Now, we are going to prove that F is minimal, i.e. that h vanishes identically.

Suppose by absurd that it does not. Then there exists a point x of M such that $h(x) \neq 0$. Let us take an adapted frame $\{e_1,\ldots,e_{n+p}\}$ in a neighbourhood of x such that $e_{n+1}=\frac{h}{|h|}$ is parallel to h and $\{e_1,\ldots,e_n\}$ diagonalizes the second fundamental form of F in the direction of e_{n+1} at x. By (9) we get

(10)
$$e_{n+1} < h, e_{n+1} > - |H_{\sharp}^{n+1}|^2 - \sum_{i=1}^{n} R(e_{n+1}, e_i, e_i, e_{n+1}) = 0.$$

The sum

$$\sum_{i=1}^{n} R(e_{n+1}, e_i, e_i, e_{n+1}) = \frac{1}{|h|^2} \sum_{i=1}^{n} R(h, e_i, e_i, h)$$

on the part $\{e_1,\ldots,e_n\}$ of the frame, tangent to F and is non-negative because of hypothesis 2) of the theorem.

Suppose that γ : [0,b[is a maximal integral curve of h such that $\gamma(0)=x$, $\gamma'(0)\neq 0$.

Let's reparametrize γ by the arc length parameter s so that γ '(s) = 1, \forall s. By equation (10) we see that |h| increases along the orbit γ so γ has infinite length and s is defined on $[0, +\infty.]$

Now, set $|h|(s) = |h|(\gamma(s))$. From equation (10),

we get:

$$|h|'(s) - |H_F^{n+1}(\gamma(s))|^2 - \sum_{i=1}^n R(e_{n+1}, e_i, e_i, e_{n+1})(\gamma(s)) = 0 \quad \forall s > 0.$$

On the other hand, the inequality $\left(\sum_{i=1}^{n} \lambda_{i}\right)^{2} \leq n^{2} \sum_{i=1}^{n} \lambda^{2}$

implies:

$$\left|H_{\mathsf{F}}^{n+1}(\gamma(s))\right|^2 \geq \frac{\left|h\right|^2(s)}{n^2}.$$

So

implies:
$$|H_{\mathsf{F}}^{n+1}(\gamma(s))|^{2} \geq \frac{|h|^{2}(s)}{n^{2}}.$$
 So
$$|h|^{1}(s) - \frac{|h|^{2}(s)}{n^{2}} \geq 0.$$

Equation (11) implies that |h| is not defined for every s > 0. This is a contradiction because |h| is globally defined

Therefore $h \equiv 0$ on M. Finally equation (9) shows that

$$- |H_{\mathsf{F}}^{\alpha}|^2 - \sum_{i=1}^n K(e_i, e_{\alpha}) = 0 \quad \text{for every } \alpha \ge n$$

Thus $H \equiv 0$ on M and F is totally geodesic.

q.e.d.

References

- Abe, K., Applications of a Riccati type differential equation to Riemannian manifolds with totally geodesic distributions, Tohoku Math. J. 25 (1973), 425-444.
- Brito, F., Minimal foliations of codimension two, Tohoku Math. J., 36 (1984).
- Oshikiri, G., A remark on minimal foliations, Tohoku Math. J. 33 (1981), 133-137.

Universidade Federal de Pernambuco Departamento de Matemática 50.000 Recife-PE

University of Lodz Institute of Mathematics PL 90238, Lodz, Poland