SPLITTING VECTOR BUNDLES UP TO COBORDISM

Janey A. Daccach and Pedro L. Q. Pergher

1. Introduction _ Mo _ mot oppositely these to end _ (Xm)UE +

J. Milnor in his article [2] obtained a necessary and sufficient condition for a given manifold M^n to be cobordant to a product $N^n \times N^n$. Namely M is cobordant to a product $N \times N^n$ if and only if all Stiefel-Whitney numbers of M, having odd dimensional Stiefel-Whitney classes as a factor, vanish. Here we have the notion of cobordism for vector bundles over a manifold, and taking Milnor's result as a motivation we ask the following question:

Under what condition a $k \cdot m$ -dimensional vector bundle ξ^{mk} is cobordant to a Whitney sum of k copies of a m-dimensional vector bundle η^m ?

In the following, we shall obtain a necessary and sufficient condition for a given vector bundle to be cobordant to a Whitney sum.

2. Preliminaries and Statement of Results

All manifolds and maps are \mathcal{C}^{∞} . Let $\xi^{m} \to M^{n}$ and $\eta^{m} \to N^{n}$ be two vector bundles over closed manifolds M and N. We say that ξ is cobordant to η , if there exists a vector bundle $\theta^{m} \to W^{n+1}$, over a compact manifold with boundary W, such that $\partial W = M \cup N$ and θ restricted to ∂W is equal to the disjoint union $\xi \cup \eta$. This is, obviously, an equivalence relation, and the disjoint union defines a group structure in the set of equivalence classes.

SPLITTING VECTOR BUNDLES

It turns out that this group is nothing but $\eta_n\left(\mathcal{BO}\left(m\right)\right)$, the n-th dimensional bordism group of the classifying space $\mathcal{BO}(m)$. A class $\left[\xi^m \to M^n\right]$ represents the zero element in $\eta_n\left(\mathcal{BO}(m)\right)$ if and only if all Whitney numbers $<\!\!w_{i_1}\!\!\cdots\!\!w_{i_r}\!\!\bar{v}_{j_1}\!\!\bar{v}_{j_2}\!\!\cdots\!\bar{v}_{j_s}$, $\left[M\right]>$

are zero, where w_i are the Stiefel-Whitney classes of M, and \bar{v}_j are the Stiefel-Whitney classes of ξ , $i_1+\ldots+i_p+j_1+\ldots+j_s=n$.

Let $v^m \to BO(m)$ and $v^{mk} \to BO(mk)$ be the universal bundles and $f:BO(m) \to BO(mk)$ the classifying map for $v^m + v^m + \dots + v^m \to BO(m)$, the Whitney sum of k copies of v^m . We have then the induced maps

$$f_*: n_n(BO(m)) \rightarrow n_n(BO(mk)),$$

and

d
$$f^*: H^*(BO(mk); Z_2) \rightarrow H^*(BO(m); Z_2).$$

We now state our main results.

Theorem 1. Let $\xi^{mk} \to v_1^n$ be a mk-dimensional vector bundle over a closed n-dimensional manifold v_1^n . Then ξ is cobordant to a vector bundle of the form

$$\eta^m + \ldots + \eta^m \rightarrow V_2^n$$
 if and only if $[\xi \rightarrow V_1^n]$,

viewed as an element of $n_n(\mathit{BO}(\mathit{mk}))$, lies in the image of f_\star . The following result is proved in [1, pag. 58]. Let $f: X \to Y$ be a map between finite CW complexes. The necessary and sufficient condition that $[B^n, \varphi] \in n_n(Y)$ lie in the image of $f_\star: n_n(X) \to n_n(Y)$ is that every characteristic number of $[B^n, \varphi]$ associated with an element in the Kernel of $f^\star: H^\star(Y, Z_2) \to H^\star(X, Z_2)$ must vanish.

Let us denote by $\phi: V_1^n \to BO(mk)$ a classifying map for ξ^{mk} .

Corollary 1: A vector bundle $\xi^{mk} \to v_1^n$ is cobordant to a vector bundle of the form $k \cdot n^m \to v_2^n$ if and only if every Whitney number of ξ , associated to an element of $\phi^*(\text{Ker } f^*)$, is zero.

Proof: Let us take p big enough such that the inclusions

 $i: G_m(\mathbb{R}^p) \to BO(m)$ and the object of the same o

 $j: G_{mk}(\mathbb{R}^p) \rightarrow BO(mk)$ induce isomorphisms:

 i_{\star} : $\eta_n(G_m(R^p)) \rightarrow \eta_n(BO(m))$

 $j_*: n_n(G_{mk}(R^p)) \rightarrow n_n(BO(mk))$

 $i^*: H^r(BO(m), Z_2) \rightarrow H^r(G_m(R^D); Z_2)$ $j^*: H^r(BO(mk), Z_2) \rightarrow H^r(G_{mk}(R^D); Z_2)$ $r \leq n$

Let $f \colon BO(m) \to BO(mk)$ be a cellular classifying map for $v^m + \ldots + v^m$ (k times). Since $f(G_m(R^p)) \subset G_{mk}(R^p)$, the composition $G_m(R^p) \xrightarrow{\cdot} BO(m) \xrightarrow{\cdot} BO(mk)$ defines a map $h \colon G_m(R^p) \to G_{mk}(R^p)$ in such way that the following diagrams are commutative:

$$\eta_{n}(BO(m)) \xrightarrow{f_{*}} \eta_{n}(BO(mk))$$

$$\uparrow_{i_{*}} \qquad \qquad \downarrow_{j_{*}}$$

$$\eta_{n}(G_{m}(R^{p})) \xrightarrow{h_{*}} \eta_{n}(G_{mk}(R^{p}))$$

$$H^{r}(BO(m)) = \int_{-\infty}^{+\infty} H^{r}(BO(mk))$$

$$\approx \int_{-\infty}^{+\infty} i^{*} \qquad \approx \int_{-\infty}^{+\infty} j^{*} \qquad r \leq n$$

$$H^{r}(G_{m}(R^{p})) = \int_{-\infty}^{+\infty} H^{r}(G_{mk}(R^{p}))$$

Since $G_m(\mathbb{R}^p)$ and $G_{mk}(\mathbb{R}^p)$ are finite C-W complexes, the theorem proved in [1, pag. 58] holds for the map h. So it follows that it also holds for f,

Then this fact and Theorem 1 proves the corollary 1,

We would like to have a computable splitting condition in terms of Whitney numbers. But in general, it is not easy to compute $\ker f^*$. We were able to do this in some cases and, before we state the other results let us introduce some terminology.

Let $\xi^k \to V^n$ be a k-dimensional vector bundle over V^n , w_i the Stiefel-Shitney classes of V, v_i the Stiefel-Whitney classes of ξ and $\binom{k}{e}$ the combinatorial number. We denote by

 $A = \{v_e \mid {k \choose e} \text{ is odd}\}$ $B_1 = \{V_1^r + V_2^r, \text{ where } V_i^r \text{ is a monomial}$ of degree r in the classes $v_i \in A\}.$

 $B_2 = \{v_i \mid {i \choose i} \text{ is even}\}.$

Theorem 2: Let $\xi^k \to v^n$ be a k-dimensional vector bundle over a closed manifold V. There exists a closed manifold W^n and a one-dimensional vector bundle $\mathbf{n}^1 \to W^n$ such that $(k \cdot \mathbf{n}^1) \to W^n$ is cobordant to ξ if and only if every Whitney number $\langle w_{i_1} \cdots w_{i_p} v_{j_1} \cdots v_{j_s} \bar{v}^k, [v^n] \rangle$ such that $i_1 + \cdots + i_p + j_1 + \cdots + j_s + k = n$, $\bar{v}^k \in B_1 \cup B_2$, vanishes. Finally, we have

3 - Proofs of The Theorems

Proof of Theorem 1:

Suppose there exists a m-vector bundle $\eta^m \to V_2^n$ such that $\left[\xi^{mk} \to V_1\right] = f_*\left[k\eta^m \to V_2\right]$. If $\Phi: V_1 \to BO(mk)$ and $\psi: V_2 \to BO(m)$ are the classifying maps for ξ and η , respectively, we have $\left[V_1, \Phi\right] = f_*\left[V_2, \psi\right] = \left[V_2, f \circ \psi\right]$. It follows that $\left[\xi \to V_1\right] = \left[\left(f \circ \psi\right)^*\left(\gamma^{mk}\right) \to V_2\right] = \left[\psi^*\left(f^*\left(\gamma^{mk}\right) \to BO(m)\right)\right] = \left[\psi^*\left(\gamma^m \oplus \ldots \oplus \gamma^m \to BO(m)\right)\right] = \left[\psi^*\left(\gamma^m \oplus \ldots \oplus \gamma^m \to BO(m)\right)\right]$. Conversely, suppose that

 $\left[\xi^{mk} \to V_1\right] = \left[\eta^m \oplus \ldots \oplus \eta^m \to V_2\right], \text{ and}$ consider $g \colon V_1 \to BO\left(mk\right), h \colon V_2 \to BO\left(Mk\right) \text{ and } \psi \colon V_2 \to BO\left(m\right)$ classifying maps for $\xi^{mk}, \eta^m \oplus \ldots \oplus \eta^m \text{ and } \eta^m \text{ respectively.}$ By hypothesis

$$[V_1,g] = [V_2,h]$$
 in $\eta_n(BO(mk))$.

Hence

$$(f \circ \psi)^* (v^{mk}) = \psi^* (v^m \oplus \ldots \oplus v^m) = \eta^m \oplus \ldots \oplus \eta^m$$

and $f \circ \psi \colon V_2 \to BO(mk)$ also is a classifying map for $\eta^m \oplus \ldots \oplus \eta^m$. Then $f \circ \psi$ and h are homotopic maps, and this implies that

$$\begin{bmatrix} v_1^n, g \end{bmatrix} = \begin{bmatrix} v_2, h \end{bmatrix} = \begin{bmatrix} v_2, f \circ \psi \end{bmatrix} = f_* \begin{bmatrix} v_2, \psi \end{bmatrix}$$

Observation: We should mention that theorem I also gives a solution to the problem with degree of stability t; namely, to decide when $\xi^{mk} \oplus \varepsilon^t$ is cobordant to $\eta^m \oplus \ldots \oplus \eta^m \oplus \varepsilon^t$ where ε^t denotes the t-dimensional trivial bundle. In fact if $\phi \colon BO(n) \to BO(n+t)$ is the classifying map for $v^n \oplus \varepsilon^t$, then the induced map $\phi_* \colon \eta_n(BO(n)) \to \eta_n(BO(n+t))$ is a monomorphism.

SPLITTING VECTOR BUNDLES

Proof of Theorem 2

Let $\phi: V \rightarrow BO(k)$, $f: BO(1) \rightarrow BO(k)$ be the classifying maps for ξ and $k \, v^1$, respectively, U = 1 + u and $\overline{V} = 1 + \overline{v}_1 + \ldots + \overline{v}_k$ be the total Stiefel-Whitney classes of v^1 and v^k , respectively, and \overline{B}_1 , \overline{B}_2 defined in the same manner as B_1 and B_2 in the classes \overline{v}_i . Then if $V_1^P + V_2^P \in \overline{B}_1$, $\overline{V}_P \in \overline{B}_2$, we have $f^*(V_1^P + V_2^P) = u^P + u^P = 0$ and $f^*(\overline{v}^P) = {k \choose P} u^P = 0$, and so, Ker f^* are the ideal generated by $\overline{B}_1 \cup \overline{B}_2$. Now take $S \in \ker f^*$. S can be written as $S = (S_1 + \ldots + S_m) + (T_1 + \ldots + T_e)$ where S_i are monomials in the variables \overline{v}_i with ${k \choose j}$ odd and T_i monomials in the variables \overline{v}_e with at least one having ${k \choose e}$ even. It follows that

$$0 = f^{*}(S) = \sum_{i=1}^{m} f^{*}(S_{i}) + \sum_{i=1}^{e} f^{*}(T_{i}) = \sum_{i=1}^{m} f^{*}(S_{i}) = u^{n_{1}} + \dots + u^{n_{m}}.$$

The last sum must then have an even number of terms of the form:

$$(u + u) + (u + u) + \dots + (u + u),$$

$$\sum_{i=1}^{m} S_{i} = (S_{i_{1}} + S_{i_{1}}^{1}) + \dots + (S_{i_{t}} + S_{i_{t}}^{1})$$

where degree S_i = degree S_i , and so $\sum_{i=1}^m S_i$ belongs to the ideal generated by \bar{B}_1 ; since $\sum_{i=1}^p T_i$ belongs to the ideal generated by \bar{B}_2 , we conclude that $\ker f^*$ = the ideal generated by \bar{B}_1 U \bar{B}_2

Proof of Theorem 3 and Istylat Isantzasmib-s sat sectores 3 sadd

Let $f:BO(m) \to BO(2^{r_m})$, $\phi: V^n \to BO(2^{r_m})$ be classifying maps for $2^r v^m$ and $\xi^{2^{r_m}}$ respectively, $V = 1 + v_1 + \ldots + v_{2^{r_m}}$ the

total Stiefel-Whitney class of ξ , $U=1+u_1+\ldots+u_m$ the total Stiefel-Whitney class of η^m , $B=\{v_p,\ 0\le p\le 2^{pm},\ p\ \text{not}$ of the form 2^pj , $j=1,2,\ldots,m\}$ and $\bar{B}\subseteq H^*(BO(2^pm),Z_2)$ defined in the same manner as B, in the classes \bar{v}_p , where \bar{v}_p are the Stiefel-Whitney classes of the classifying bundle $v \mapsto BO(2^pm)$. We must show that $\ker f^*=$ the ideal generated by \bar{B} .

Observing that

$$f^*(v_s) = \begin{cases} u_j^{2^r} & \text{if } s = j \cdot 2^r, \quad j = 1, \dots, m \\ 0 & \text{otherwise} \end{cases}$$

it follows imediately that the ideal generated by $\bar{B} \subset \ker f^*$.

Suppose now that V_1 , V_2 are monomials of $H^*(BO(2^m), Z_2)$ only involving classes of the form V, let us say

$$V_1 = v \int_{j_1}^{s_1} 2^r \cdot v \int_{j_2}^{s_2} \dots v \int_{j_t}^{s_t} 2^r$$

and

$$V_2 = v_1^{q_1} \dots v_e^{q_e}$$
 $i_1 \cdot 2^r \dots v_{e \cdot 2^r}^{q_e}$, where $j_a \neq j_b$,

 $i_c \neq i_d$ if $a \neq b$, $c \neq d$.

If $f^*(V_1) = f^*(V_2)$ then we have

$$q_1 \cdot 2^r$$
 $q_e \cdot 2^r$ $q_e \cdot 2^r$ and so by the structure of $q_e \cdot 2^r$ $q_e \cdot 2^r$ and so by the structure of $q_e \cdot 2^r$ $q_e \cdot 2^r$ and so by the structure of $q_e \cdot 2^r$ $q_e \cdot 2^r$ $q_e \cdot 2^r$ we conclude that $q_e \cdot 2^r$ and up to a permutation

of the indices

events
$$i_1 = j_1 \dots i_e = j_e$$
, event ew each all all

 $V = 1 + v_1 + \dots + v_n$ is the total Stiefel-Whitney class of n. bns

$$q_1 2^r = s_1 \cdot 2^r \dots q_e \cdot 2^r = s_e \cdot 2^r$$
; then we have $V_1 = V_2$.

Let now $P \in H^*(BO(2^r \cdot m), Z_2)$ be a polynomial such that

 $f^*(P) = 0$. We can suppose that $P = V_1 + \ldots + V_g + \overline{V}_1 + \ldots + \overline{V}_q$, where each V_i is a monomial only involving classes of the type $v_j \cdot 2^p$ while each \overline{V}_i is a monomial involving at least one class v_p , p not of the form $j \cdot 2^p$. We have then

$$0 = f^*(P) = f^*(V_1) + \ldots + f^*(V_s).$$

Each $f^*(v_i)$ is a monomial, and the summation above must have an even number of terms of the form:

$$(f^*(V_1) + f^*(V_1)) + \dots + (f^*(V_u) + f^*(V_u))$$

where $f^*(v_i) = f^*(v_i^!)$, $i = 1, \dots, u$. Then it follows that $v_i = v_i^!$, $i = 1, \dots, u$ and so $P = \overline{v}_1 + \dots + \overline{v}_q$. But this means that $\ker f^* = \text{the ideal generated by } \{v_p, 0 \le p \le 2^n m, p \text{ not of form } 2^n \cdot j, j = 1, \dots, m\}$.

As an application we can show that every 4-dimensional vector bundle $\eta^4 \to g^2 \times g^2$ is cobordant to a vector bundle of the form $4 \cdot v^1 \to v^4$.

In fact, let $\alpha \in H^2(S^2, \mathbb{Z}_2)$ be the non zero element. Then,

$$H^{2}(S^{2} \times S^{2}, Z_{2}) = Z_{2}(\alpha_{1}) \oplus Z_{2}(\alpha_{2})$$

and

$$H^{4}(S^{2} \times S^{2}, Z_{2}) = Z_{2}(\alpha_{1} \cdot \alpha_{2})$$

where $\alpha_i = \pi_i^*(\alpha)$, $\pi_i : S^2 \to S^2 \to S^2$ are the projections.

In this case we have $A=\{v_4\}$, $B_2=\{v_1,v_2,v_3\}$ where $V=1+v_1+\ldots+v_4$ is the total Stiefel-Whitney class of η^4 . Then we have $B=\{v_4^{\vec{i}}+v_4^{\vec{i}},\ i=0,1,\ldots\}=\{0\}$.

Since $v_1 = v_3 = 0$ and $W(S^2 \times S^2) = 1$, η^4 is cobordant to $4v^1$ if and only if $\langle v_2^2, [S^2 \times S^2] \rangle = 0$.

But we can conclude trivially that $\langle v_2^2, [S^2 \times S^2] \rangle = 0$, so the result follows.

By using the same kind of arguments we can show that every vector bundle $\eta^2 \to S^2 \to S^2$ is cobordant to a vector bundle of the form

$$2^r v^1 \rightarrow V^2$$

References

- [1] Conner, P.E. Differentiable Periodic Maps Lectures notes in Mathematics, Vol. 738 Springer-Verlag.
- [2] Milnor, J.W. On the Stiefel Whitney numbers of Complex manifolds and of spin manifolds; Topology, Vol. 3, 1965, 223-230.

Universidade Estadual de Campinas IMECC - UNICAMP 13.100 Campinas-SP

Universidade Federal de São Carlos Departamento de Matemática 13.560 São Carlos-SP