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INTERVAL EXCHANGE TRANSFORMATION
AND FOLIATION

Lacia Helena Vilas Bdas Mendes™

Introduction

Let M be a compact, connected, orientable (¢* two-
manifold. Let us consider a foliation F on M, with isolated
singularities. If we remove a point on a regular leaf of F we
obtain two semileaves starting at x. A semileaf is recurrent
if its topology is not the topology induced by M, The proof of
the following fact is similar to the corresponding proof for
oriented foliations [2]: if =z belongs to a recurrent semileaf
then there is a simple two-sided closed curve C, containing =z,
and transversal .to the leaves of F. _If. C. is such a curve,
let U be a cylinder which is a neighbourhood of ¢ where Flu
can be oriented. Let U, and u_,  be the connected components
of U-C. For each subset Y = (¢, we set

¥O = ¥ x {6} ) R (R
Given (z,8) € ¢S5, 6§ € {-1,1}, we define a map pegitucet ~ott Uich
by

Tl 38 ) a=n (T 8)enqd Belzl 11y
if the oriented leaf, which crosses C at =z from u_6 T0saUs,
comes back  to® ¢ “firstlyfat™9rs" ferossing *ifidfrom u_e to Ue,

* This paper was partially done during some summer programs at IMPA, Rio, in
the last two years.
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6 € {-1,1}. The map 7, defined above, is called Return
Transformation associated to ¢ and induced by F. An injective
continuous map E:¢™ uy ¢'> ¢ 'Uc' defined everywhere, except
possibly at finitely many points or closed intervals, satisfies
the condition ¢ if for each connected component go i ap Dom E ,
88 [=1.0h. iskeh that o(ré)y = 29, o B {-0,00, thew &7 s

a connected component of Dom E and T(s7%) = =i Morecver, if
T(x,8) = (y,8), then T(y,-8) = (x,-8). A return transformation
T has the following proprieties:

B = r {5 defined an ¢ty ¢! except at finitely many
points or on finitely many closed intervals.

b is continuous, injective and has the same class
of differentiability as F.

Py = I¥'Satisfiesttconditron “C.

The positive (resp. negative) T-semiorbit of (x,§) € Cd,

§ € {=1,1}, is the set 0%(x,8) = {r*(z,8),n € Z, » >0, and
Tn

is defined at (x,8)} (resp. 0 (z,8) = {r"(x,8), n € Z,

7 <05 T and " is defined at (x56)F). The T=orbit’of (m,G)GCG,
8§ € {=1,1}s is the set 0+(x,6) B0 (o, 8) 2 ¥ TWwo 'return
transformations

Pl P s T

and
s:¢tyet——v 'ty
are topologically conjugate if there is a homeomorphism
n:c'uc'+ ¢ Uy C' such that ket = Sekh, We say that a foliation
is minimal if every leaf is dense.

The purpose of this paper is to study the relation between
foliations with nontrivial recurrences and interval exchange
transformations. We say that an injective differentiable map E
defined on [0,1) x{-1,1} except possibly at finitely many points
is an interval exchange transformation if |E'(x,8)| = 1, for
every ' (xz,8) in Dom E. ' I'f 7O Vista SUbSEtTof 01, We Set
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WOt enf (ol fe § X, 6 Srl=1.00,

We assume that the foliations have only finitely many
singularities, all of them are n-saddles, n € IN; n g {1,2};
that.is, 'singularjities.withfexactly. n ,separatpices.an_gril.,2},
and a hyperbolic sector between two consecutive separatrices,

We observe that =n = 1 corresponds to a thorn and 7 = 2 to a
regular point, We devote §1 to the study of interval exchange
transformations having dense semiorbits, satisfying the condition
C and we establish the relation between the interval exchange
transformations and the return transformations induced by
foliations with nontrivial recurrences. More precisely, given an
interval exchange transformation E as in §1, we construct a
foliation F on a manifold M having dense semileaves such that,
to some circle ¢ € M transverse to F, the return map

=1

Toioy glbet s i it

is topologically conjugate to E. In §3 we show that the
construction given in §2 can be extended in a simple way to give
all possible foliations with nontrivial recurrences on two
manifolds.

1 - Interval Exchange Transformations versus Return Transformations

Let x% = [0,1) x {6}, 6 € {-1,1}, be two copies of the
half-open interval [0,1) and let X = x"t oyt S belthe disjoint

' and x'. Assume that X' has the positive
orientation:, firoms . Ok 3atossda:  and ™' has the opposite one:
from 1 to 0. Let T be a permutation of the symbols 1,2,.,.,q.

I o= ((“1""’“n)’ (an+1,...,a )) andi, For i<l g

unifontof fix

q
L)
B = n sqgyg o150 R CEL) VVGR%E 1010 1 JRogirenie
gy} T (u) v ) v (q) i
pairs of probability vectors then we set B8, =0, B, = i 9
L o =
(ot 1), VoY T2 T gy Ry = [BL Ve ek - o iy £ fe &
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1 1 T 2
Al n s alinn, Bl v e dr s BT S e Mo ERR TR, sY T
i £ ¥Ry % ¥l BR Sn e
(mod. ]), T F183 5q s
o Ty-1 s Tt T 1 1
- RGN VISET vy BhE SR ISR AL i T ¢ [87;-1 8,) e x

for wu+1 < Z < gq. Let us assume that there exists a permutation
o of the symbols {1,2,...,q9} such that (a,t,0) satisfies the
following properties:

for 1’=1,2)n~'sq-

R R n and To u  khen. ‘gz >n  apnd. Fol >.u;

1A
1A

135

IA

n® Sand S &SR Ethen foz < 'n andl wez > w.

Each (a,t,0) satisfying (i), (ii) and (iii) determines an
interval exchange transformation satisfying condition ¢, by
setting:

P{a,6)iE {maBogy * Bzi-l’ d:i_l), for (z,8) 6 x

Pss e saguch=2d 08 45 &%, ond a§ =l Y. B¢ a .
T maps each X, isometrically onto X;i and we can see that
each interval exchange transformation satisfying condition ¢
determines only two pairs of probability vectors and permutations
v dndoiotbofidi {da2, .5 .tig) ¥ satisfydinghithe conditionss{d) saddd-)
and (iii) above.

Let T be the set of interval exchange transformations
satisfying ‘conditiontc.

Definition 1.1 - For (x,5§) €X, 8§ € {-1,1} we define the
positive lorbit of"/ (z%y8):

0" (z,8) = {(Z"(x,8)y 7. >0, n € Z and I" is defined at (x,5)},
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the negative orbit of (z,8):

0 (x,8) = {T"(x,86),n <0, n € Z and 7" is defined at (x,8)}
and the orbit of (x,8):

0(x) = 0% (x) U 07 ().

Definition 1.2. We say that 7T = (a,t,0) 6 T satisfies
the minimality condition if

M1 - T is aperiodic
M2 - If F 1is a finite union of half-open intervals whose
endpoints all bellong to the countable set

HE g ]
BT %roalls REPLOGIPILEREDRER], MDEB) Ko t0 seipl D)2}
(1,-1) € x~ and (1,1) 6 x', then 7F = F implies that either
1 -1

F=X, or F=X, orelse F =X

x

The following result was proved by Keane [4], for
T 3(diTa) enand ST 2. TR pyn=" [T 20y i n) i

Theorem 1.3. 7 € T satisfies the minimality condition if
and only if O0(x,8) 1is dense in Xs, for each (x,8) € Xé,

8.6 f=1 1

Furthermore, Keane [4] gave a sufficient criterium for the
minimality condition to be satisfied., We call a permutation =
irreduciblie i ({52 J 0. bl R=r i St o tn ) and (1052 555 g b ) #
(1,2, .. g, forceaech 1 <'j < pal,

Lemma 1.4. If <t 1is irreducible and the orbits of the points
of " Di= {(81"])""’(Bn-1"1) are infinite and distinct, then
the minimal condition is satisfied.
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Proof. See [4].

We can generalize those results for our case if we glue the
intervals x' and x~' by their endpoints (1,-1) € X~ and
(0.1)5 € ¥~  and consider the interval exchange transformation
defined on the union x' U X

This result gives a good connection between the definitions
of minimal foliations and minimal interval exchange transformations.

We will study the relation between interval exchange
transformations and foliations with nontrivial recurrences, having
finitely many singularities, which are n-saddles, n € IN. To each
interval exchange transformation r:xtuxt -+ xluxt satisfying
the condition (¢, there is a pair or probability vectors
((al,...,an), (an+1,...,aq)) and permutations T, 0 of the symbols
{1,...,9}, such that for each connected component X of's Dom T
we have TX, = Xii and G, = 8., o’ being the identity. Let
us identify xS with m®m/zZx{8}, 8 € {-1,1}, and we recall that
x' and x~' have opposite orientations.

Proposition 1.5. Given an interval exchange transformation
T = (a,t50)"4in ‘T30 therelexists®a topologicalimanifoldy ¥ with
an oriented foliation o, <called suspension of T, satisfying:

1 -l
i X ¢, (X =t
i) t%IRl¢t( ) u o ( )

“ux' induced

ii) The return transformation associated to X
by. ;& 1s ‘exactly. T
ﬁ ANt X
5 7
7=1
Furthermore, there is a continuous foliation (M,F) defined
on a topological two-manifold M, two times covered by (¥,¢),
-1 3 % .
whose return transformation associated to X  UX' coincides with
T

ﬁ e
t=1 &
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Before to prove this result we can observe that T is
defined by the fact that p and 7(p) correspord to endpoints

of a leaf of F } i
M-(X"UX )

Proof. To each pair of intervals Xj < Dom T and

TX; = Xij < Im T we consider a rectangle R having X. and
TXj = Xﬁj for vertical edges, and lines segment of length 2 for
the horizontal ones. Let us consider a continuous horizontal
flow with one singularity on each middle point of the two
horizontal edges. Next, we glue the upper horizontal left semi-
edge of R, to the Tower horizontal left semi-edge of IRi+]’
1 << < g, by an isometry making to coincide the respective
middle points. We repeat this process with the right semi-edges,
that is, we glue the right upper horizontal semi-edge of R, with
the right lower horizontal one of IR » 1 <72 <4, by an

T (1i4+1)
isometry starting at the respective middle points. With this
construction we obtain a topological manifold ¥ provided with
a continuous flow ¢, whose singularities are all 2p-saddles,
(exactly the identified middle points).

To construct M we identify each rectangle iy with Ir
gluing the edge X, to XIoi’ 1 << <gq, by an orientation
preserving isometry, extending it to all horizontal trajectories
of R, and R ., 1 << <gq. We note that the fo]iafion F
obtained by this procedure is not oriented, Thus, X Tlies
identified with x~' and we get a continuous -foliation (M,F)

two times covered by (N¥N,9), whose return transformation

ot

associated to x ' u % coincides with T 5 ., Notice that
int Xx.
ﬁg1 K
this construction is possible by the condition cC. ]

The following proposition is proved in [1],

Proposition 1.6. Let T, Tl:[O,l) ~ [0,1) be continuous and
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injective maps defined everywhere except possibly at finitely
many points, provided with a dense positive semiorbit and T = T{l
Then, T s topologically conjugate to an interval exchange
transformation E:IR/Z ~» IR/Z.

Proposition 1.7. If T, T1:X'lux1 > x7'Uux'  are maps as in
1.6 and satisfy condition ¢, then T is topologically conjugate
to an interval exchange transformation E €T,

Proof. Let us consider x ' identified with [0,1) and X'
with [1,2). Let #:[0,2) > [0,2) be a homeomorphism given by
1.6, such that E = H.T.H ', It is easy to see that E satisfies
condition . To prove that #([0,1)) = [0,1) and #([1,2))=[1,2)
it is sufficient to note that the condition ¢ implies that, for
each interval H(Xii) = B ([11w2)) * ofgTength Aps there is
.) ="H([0,1)) having the same length A..

(I

another interval H(X

2. The Main Theorem

Before stablishing the main theorem we give some definitions
and results.

Definition 2.1. Let M be a C* two-manifold with boundary
and corner (not necessarily compact). A ¢¥ foliation F, r > 0,
defined on M is of Type (a) if, for every p in M, there is a
neighbourhood Vp M of p such that, in terms of local
= 210700 Vp =1, ij, Liyd ooy 2aely = (=150 )
Ty o [0,1), and all the leaves of F in Vp are horizontal

coordinates : p
lines.

Definition 2.2. Let J5 be a subset of [F1,1]%{8¥, 6€ 4-1;1},
having at most one point. Let ¥ = [-1,1] x [-1,1]- (J_UJ,)
and denote by F = (M,F) the smooth foliation of type (a) defined
on M, induced by the vector field (1,0), having g, as its
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singular set. Let I < {1,2}, which can be empty, and let
{ci}iEI (resp. {Ei}ier) be the connected components of
[=127] 2"T1057, fe€sp: (/0] ‘= £=-00-7 )" stich thak, cifere cxtiis
an orientation presgrving homeomorphism hi: 8 i Ei’ for each
7 € 1. Denote by M the quociente M/ U hi and by "% the

TEer
foliation of type (a) on M dinduced by F. A continuous foliation
of type (a), F; = (M, ,F,), 1is said to be a simple canonical
region if it is topologically equivalent to a foliation (M,F) as
above.

Lemma 2.3. Let E be a minimal interval exchange

transformation. Let I <IN (I may be empty), and {0(p,5;)} €I
5.{-1,1}
be a family of E-orbits. There are a continuous injective mapl '

T:R/Zx{-1} UR/Z x{1} > R/Zx{-1} UR/Zx*x{-1}, and
continuous maps ~: R/Z ~» IR/ Z and
H:R/Zx{-1Y UR/Zx{1}>R/Z x{-1YUR/Zx{1} such that

a) H(x,s8) = (hx,8), § 6 {-1,1} and if we identify R /zZ
with [0,1) in the canonical way, then % is a monotone non-
decreasing surjective continuous map;

b) hnl(p) is a one point set for each p such that

(pes) € B/ Zx(6}- | 0(p;28,)s 66 (1,13, and nl(q) s a
. 7 T
eI
closed interval not reduced to a point for every ¢ € IR/Z such
thatsi(g, 806 il 0lp o)
1€T S
c) {(Chd) € m/z=x{6}, 6§ € {-1,1}, /H(q,8) € U O(Piaéi)
16T

is dense in IR/Z x{8};

d) T may be not defined everywhere, If IG is an interval
which is a connected component of Dom E then H'I(Ié) is an open

interval, which is a connected component of Dom T,

e) The following diagram is commutative
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T
R/Z x{-1} UmR/Z*x{1} — ®R/Z*x{-1} U R/Z x{1}

| |

E
R/Z x{-Th U RYZ x{1}——"TR/Z*x{-1} UR/Z x{1};
f) T s unique (mod. topological conjugacy).

Proof. For each (q,8) € | O0(p,,6;), we choose a real
1€I
positive number u(q) such that )} wia) =1,

(¢,8) ¢ U o(p,,s,)
16T ol
Identifying IR/Zx{1} and IR/Zx{-1} with [0,1) in the usual
way, we define g¢:[0,1) x [0,1) by

g(zx) = T i)y Af x40
(q’d>€iEI°<P¢'5i>
q€ 0,x)
We can see that g s strictly monotone and g 1is continuous at
q if and only if (q,8) € myzx{8} - 'l 0(pi’6i)’ q e WL oFy NP
1€T
Next we define a continuous surjective non-decreasing map

h:IR/Z>IR/Z by setting
by he= tinElasg(2) (>4 .
We notice that

i) ‘m is constant on each open interval (a,b)cR/Z - Im g;
i) h-l(p) is a one point set x for all p = g(x) such that

(p96) ¢ U 0(pi’6i)’ s € {-1 )1};
1€T
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Tk a gi(e ) e Yx € R/Z;
iv) the set D ={q € R/Z; (h(q),8) 6 U 0(pi'6i)}’ is dense.
7 €T

If we . .set  F(x,8) = (hz,8) .for all « € .Img  and ghz =z
we define a map T by the following composite function:

(i8] ot Wy L BRI it ) ) Lt 8)),E)

n

Tz 00

For the intervals I, where % 1is constant, Iy = [ak,bk],
and ghak = gy M ghbk, we dgfine T by choosing some orientation
preserving homeomorphism Ti:Ik > Ij, where Ij is an interval
[aj,bj], such that (aj,g) = P (BgeBp )« It 5 tnivial ;to see
that T 1is a one-to-one continuous map and T, # satisfy the
required conditions []

Definition 2.4. Let E, T, 2 be as in 2.3. Then we say

that T has been obtained by blowing-up E-orbits via A,
. ;
If p and g¢q are points on the same leaf of a foliation F
AT
then we will denote by (p,s)(qg,£) the closed arc of trajectory

beginning at (p,s§) and ending at (q,£), &, &€ {-1,1}.

Definition 2.5. A continuous foliation (M,F) of type (a)

is said to be a canonical recurrent region with generator

mio i ue e UG, e AR, e 6 T=1 T, if the Follawing

conditions are satisfied.

=1

(), a0 o misSy BaGiBCLer ing Mo GRansviense to .. Fiy &C and !

have opposite orientations and the return map associated to ¢C
induced by F  is precisely T.

(ii) Either Dom T is R/Zx{-1}YUR/Zx{-1} or the
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connected components of Dom I are finitely many intervals

XyseeosX, c IR/Zx{-1} and Xn“,...,XqC.ZR/Zx{U, Moreover,

q
the restriction of T to || X - {endpoints of Xj} isia
J=1
continuous map obtained by blowing up orbits of a minimal
interval exchange transformation satisfying the condition (,
modulo topological conjugacy.

g3 )i I fiwe ‘considery X o andi Tl ) St = o gt it be
: " e g
disjoint sets and denote by S(Xj) the set {(x,éM%x,é),(x,d)GIj}

then (S(x.), F ) is a simple canonical region.
J s(xj)

V) S(X)-(x; U T(X;)) and S(x)-(X, U T(X)), £k,
interesect in at most finitely many trajectories of their
boundaries.

v) If we identify S(Xj) with S(ch), for each
=l e 5qs Sidrstly gluing Xj to T(Xoj) and TXj to ch by
an orientation preserving isometry, and then, gluing

S—Toreilot 8 30 AuT Dmce oo
(2:,8)T(x,8) with T(y,-t),(y,-E)_~Ffor+each (xz,8) 6 Xj, (y,8) =
7(x,8), we obtain

M = { X
sy r it

Lemma 2.6. Let M be a compact connected two manifold
provided with a foliation F, having at most finitely many
singularities and a recurrent leaf f. Then:

(a) for = € £, there is a circle C transverse to F and
containing «=.

(b) If C 1is a circle transverse to F then the domain of
definition of the return transformation T:c 'uc'>c ' uct,
induced by F, 1is a finite union of open intervals (a,b)
whose extremes a and b a0 by F to the singularities
Oif ik,

1

INTERVAL EXCHANGE TRANSFORMATION 69

1

(c) ket Z.:cluct-» ¢t y. ¢!

be @s.in. (b), (S,s) .be, an
interval contained in Dom T and Sa(T) be the set
{(;i;;;?;tEB} - singularities of F} didentified with
{ffT?;ii;;?;t?g)}- singularities of F}, If we consider
(s,8) and 7T(s,6) atbsbe’disjoint sets, *the pair
((5,8) (ZIauF ") dis two times covered by a simple

' (s,8)(T)
canonical region.

Proof. The proof of item (a) is similar to the one for
oriented foliations, [2]. Applying [3, Lemma 3.3] to the oriented
foliation induced by F on the double covering constructed in

(1.3) we obtain itens (b) and (c).

Lemma 2.7. Let M be a compact connected two-manifold whose
boundary has finitely many simple closed curves. Let YiseeesYy, c M
be pairwise disjoint simple closed curves, bounding no discs.

If »n s large, two of then will enclose a cylinder of M.
Proof. See [5, Lemma 1].

Lemma 2.8. Let ¥, F be as in (2.6), There is a circle C
transverse to F such that, if T:c¢ ' uc' ctuc denotes

the return transformation induced by F, then

1) There are at most finitely many connected components

-1 1 ¢
Al,...,AS cC =8 IR, As+1 e A, €0 - {F} which are not

g " -1 1
contained in Dom T and wl,...,wpcc - {f}, Wp+1""’Wz =

which are not contained in Im T;
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2) Llet U be a connected component of ¢t u Cl-{f}. If
for some m € Z, 7" 1is not defined in U, we have only the
following two possibilities:

2a) There exists % € Z, 0 < k, such () 614 ,..., 4} and
for, each JJushk i(g3E L ZYH 77 is defined on uz

2b) There exists k'€ Z, k < 0, such that TkUﬂe{Wlp..,WE}
and for each j >k (5 € 2), ™ s defined on u.

3) {f} N ¢ s either a Cantor set or is equal to cC.

Proof. Applying (2.6) we obtain a circle C transverse to F
satisfying (1) and (2) such that, for U as in (2) we have the
following possibility besides (2.a) and (2.b):

2c) There exist @n Sikienzeiin <0t isiuchithat

r®(u) ¢ {4 4}

1y Pl

EHW) § L, o S0
and ‘for each i'n < J < k(76 7), Tj is defined on U, Choose an
interval [a,b] = ¢ such that [a,b] 'U [a,b]1 does not intersect
any connected component of et {f} that has finite orbit.
Using the fact that [a,b] 1is a transversal section and crosses
f infinitely many times we construct the circle ¢ as done in
(2.6). By the choice of [a,b] we see that the return

transformation associated to ¢ satisfies either (2.a) or (2.b)
and never (2.c). It is not hard to prove (3). 1

The main result of this paper is given by the following
theorem which generalizes its similar one for oriented foliations,

proved in [3, Theorem B].

Theorem 2.9. Let ¥ be a connected compact C% two-manifold
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and let F be a continuous foliation in ¥ with at most
finitely many singularities. Then, # =M - {singularities of F}
is the union of finitely many submanifolds M1"-"Mk (not
necessarily F - invariants) such that

(@)’ ‘for each "z, 7;M; " "and Mj intersect in a subset
(possibly empty) of their boundaries. Moreover, F induces on M

a foliation denoted by F|, ;
2

(b TAN  R  ( S| ) are canonical recurrent

k-1

k=1 M

regions. Furthermore, (Mk,FIM ) 1is a canonical recurrent region
k

if and only if it contains a point of a recurrent leaf;

(c) the decomposition of M satisfying (a) and (b) above
is unique, modulo topological equivalence and permutation of the
suffixes.

Proof. For a recurrent leaf £ 6k, " let ¢ be acircle

as in (2.8). Assume that T?T_TT—E s a, Cantor“sety Let "7 “"be'fa
Cantor map([3]). Then #: ¢ *uc' » ¢ 'uc' s constant in
some interval & < CG, & € {~1,1}, if and only if 88 s
contained in the closure of a connected component of (C-{f})d.
The maps T and 7 induce continuous injective maps,

E, E:c'uc* - ¢c”'uc' such that

(a) the following diagrams commute:

¢} padYesiaog e @iy o hgserodss 90k @
hl lh and hl Jh

2 E i 3 E :

) | RO B cluet —— ¢~ tud!

(b) E (resp. E) 1is defined everywhere except at
{h(Zl),...,h(Ar)} (resp. {h(ﬁl),.,,,h(ﬁp)} which is either empty
or a finite set of points;
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(¢) ' =%

(d) E has a dense positive semileaf.

We can assume that ¢ = IR/Z and E is a minimal interval
exchange transformation. We notice that T can be obtained by
blowing up E-orbits via *%.

-1 4 A 1_
Let S1""’Ss < ¢ - {Al,...,As} and Ss+1,...,S8 (=g
{4 s...,A_} be the connected components of c'1~{Al,...,AS}
s+1 r
) & & .
- ly. We denote by J. the smallest
and ¢ {As+1,...,Ar} respectively %otz

interval that contains 5, Eiaehs hhonteehiite Siln 257 o5 e L et

{k .,KS} and {K ,...,Kr} be the connected components of

19 S+1

~

¢ - {Jl,...,JS} and ¢! - {J .,Jr} respectively. Let

e
B i i : ger

Ji(T) be the set {(z,8)7(x,68), (x,8) € o - {singularities of

F}}, <=1,2,...,r. Identifying J;(T) with the corresponding

- i 3. g :
set Jc(i)(T)’ t=1425..:525 @as in (2.6), and setting

M U Ji(T)
Z=1

then ; S(ME;
My has the following properties:

F/M,) s a recurrent canonical region. We claim that

a) each K., T=ea? i S is on 3M,.
b) each Ki’ t=1,2,...,r, 1is entirely contained in the interior

of  “hm Y

In fact, the map # defined above gives a semiconjugation
between T and a minimal interval exchange transformation E
such that:

i) the semiconjugation % ds constant on Ki’ for each

a2 R8erps

197} h(Ki) c IR/Z -Dom E
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1) E-l(h(Ki)) € Dom £ and 77'(x,) = Dom 7.

We know that {f,} accumulates on the extreme points of K,
and k; N {f } =@, for each £=1,2,...,r. Hence there is an

open interval Ii satisfying: Ki c Ii < Im. Biloforsndsd 250! supn

We conclude that there exists a rectangle Jj(i)(T) of M
with side T(Jj ﬁ)) containing K. This implies that KiCZBMI,
and we have (a) and (b).

If C is another curve transyverse to 4527, f:5+1115‘1+5+luc_1
is the return transformation associated to ¢ and ¥ is the
recurrent canonical region generated by 5, then the fact that
M and M, are topologically equivalent results from the
following considerations.

Let X =« ¢ be an interval on 3y such that:

a) £,NE -0

b) the extremes of % are accumulation points of 1L 8.

Let us consider the band 7 of M obtained by the backward
saturation of the interval X by the flow F. We can observe
that F accumulates on {f,}, too. Let KX be the interval
of € determined at the first time that 7 crosses c. Hence,

n
there is an integer n,> 0 for which 7T "k is on oM, and

satisfies (a) and (b) above. Let 7 be the band like 7,
associated to X,. Now we can establish an isotopy between F

and F which carries X; onto 2, and it is not hard to
complete the proof of the topological equivalence between M

and M. Let ¥ & M-M, be a point a recurrent leaf £, € F.

Since {fz} 0w, =¢, there is a recurrent canonical region

(M, ,F/M,) such that M, n M, = 3M; N aM,. Thus we obtain a
sequence M, ,M,,... of recurrent canonical regions such that

M N My = aMk n oM, . Furthermore, since each generator 7. of M,
is associated to a simple closed curve c; bounding no disc



74 LUCIA HELENA VILAS BOAS MENDES

and each pair Ci’ ¢c. of those curves cannot be homotopic (because
Mi(]M' = BMi n sM.), using (2.7) we conclude that the sequence
{Mi} is finite. The uniqueness results from the fact that two
curves transverse to a recurrent leaf {f} generates topologically
equivalent submanifolds.
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