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DIFFERENTIAL RINGS AND ORE EXTENSIONS:
BROWN-McCOY RINGS

Miguel Ferrero

Abstract. We consider here a ring x, a derivation D of K and
the differential polynomial ring R = K[X;d]. The ring K is said
to be a Brown-McCoy ring if the prime radical coincides with the
Brown-McCoy radical in every homomorphic image of X, A D-Brown-
McCoy ring is defined in a similar way. We prove the following
conditions are equivalent: (i) X 1is a DP-Brown-McCoy ring; (ii) R
is a Brown-McCoy ring and for every maximal ideal M of R,

K/(M N K) dis a D-simple ring with 1. In addition, we give some
applications and examples on the study of the transfer of the
property of being a Brown-McCoy ring between X and R.

Further, we study the relation between the prime and the
D-prime ideals of a differential intermediate extension of a
liberal extension.

Introduction. A ring X is a Brown-McCoy ring (abbr. BMCR) if
the prime radical coincides with the Brown-McCoy radical in every
homomorphic image of KX. It is known that the polynomial ring
x[x] s a BMCR if and only if Xk is a BMCR [10], In the case of
s = k[x;a], a skew polynomial ring of automorphism type, the
question of whether S 1is a BMCR whenever X is a BMCR was
considered in [5]. On the other hand, in [2], we studied the
conditions under which a differential polynomial ring K[X;D]
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(called also a skew polynomial ring of derivation type in some
papers) is a Jacobson ring whenever x is a Jacobson ring.

The central purpose of this paper is to study the transfer
of the property of being a Brown-McCoy ring between KX and
R = K[X;é], where D is a derivation of X. A differential
polynomial ring R over a BMCR X need not be a BMCR, even if
K is a right Noetherian ring (Example 5,1). Stronger finiteness
conditions than being right Noetherian are needed. We shall obtain

here sufficient conditions for R to be a BMCR when X 1is a BMCR.

Further, we shall give some classes of differential rings which
satisfy these conditions.

In §1, we consider D-radicals and we define D-Brown-McCoy
rings. In §2, we shall prove that X is a D-BMCR if and only if
R = k[x3;0] is a BMCR and for every maximal ideal M of R,

K/M N X 1is a D-simple ring with 1.

A natural question to arise is whether X 1is a D-BMCR if and
only if X 1is a BMCR, under some finiteness conditions, This
question is studied in §3.

In §4 we consider a differential ring (S,0) when S is a
liberal extension of X and D 1is a K-derivation of S, and an
intermediate extension X €T €S with D(T) =T, For the
differential ring (T,D) we shall prove that there is a one-to-
one correspondence between the set of all the prime ideals of T
and the set of all the D-prime ideals. Namely, if P 1is a prime
ideal M(P), the maximum D-subideal of P, 1is D-prime and every
D-prime is of this form. In this case we can apply the former
results and T[x;D] s a BMCR if X is a BMCR.

Some remarks and examples are given in section 5,

Throughout this paper we shall use the same notation and
terminology used in [2]. In particular, L(K) denotes the prime
radical of KX and D(X) denotes the D-prime radical of the
differential ring (X,0) ([2], Theorem 1.1).
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1. D-Brown-McCoy Rings

Let (k,D) be a differential ring. Following ([1], p. 116),
for every a € X we denote by G(a) the ideal {ar + r + !
Zi(xiayi + xiyi) Praxmo Ly, € K} of K and we put GDUﬂ=Zi>oleG(an,
the smallest D-ideal of X containing G(a). We say that a is
a DG-regular element of Kk if GD(a) = K., A.D-jdeal I prof K| is
a DG-regular ideal if every element in I 1is DG-regular. The union
GD(K) of all the DG-regular ideals of X is called the D-Brown-
McCoy radical of X. 1In a similar way to [1] it can easily be
verified that GD(K) is a DG-reqgular ideal and contains every
DG-regular ideal of k. Further, K/GD(K) is DG-semi-simple
(GD(K/GD(K)) = 0). Then a standard argument proves that GD(K)
is equal to the intersection of all the D-ideals I of X such
that x/r 1is D-simple and DG-semi-simple ([1], Lemma 66)., Also,
it is not hard to verify that a D-simple differential r%ng (X,D)
is DG-semi-simple if and only if X has an identity element
([1], Lemma 67). Then we have the following (see [1], Theorem 43).

Theorem 1.1. The D-Brown-McCoy radical GD(K) is equal to the
intersection of all the D-ideals I of K such that Xx/I is
a D-simple ring with an identity element.

We denote by G(X) the Brown-McCoy radical of X and by
M(G(k)) the maximum D-subideal of @&(kx) ([3], p. 11).

Lemma 1.2. M(G(K)) < GD(K).

Proof. If =2« € M(G(k)) and I 1is a D-ideal of X such that

K/I" is a D-simple ring with 1, consider an ideal 4 of X ‘such
that 4/I is a maximal ideal of X/I, Then Di(x) € ATUTo PN TSR0
Hence x € M(4) = I.

In general, M(G(K)) # GD(K). Imn fraic b idf (k,D) is the
differential ring given in ([2], Example 5.1), we have G(k) =
M(6(x)) = 0(8) [¥] and ¢, (k) = ¢(8)[¥].
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We know that ©D(x) < mM(z(x)) = M(J(X)) € M(G(K)) € Gp(K).
A differential ning (K,D) 4is said to be a D-Brown-McCoy ning
L4 GD(K/Q) = 0 {or every D-prime {deal @ o4 K. Hereafter,
Brown-McCoy ring (resp. D-Brown-McCoy ring) is often abbreviated

BMCR (resp. D-BMCR). If is clear that X is a D-BMCR if and only
if GD(K/I) = D(K/I) for every D-ideal I of K,

In [2], we said that a differential ring (X,D) is a quasi-
finite differential ring (QFDR for short) if M(L(k/Q)) = 0 for
every D-prime ideal @ of X, and is said to be a D-Jacobson
ring if M(J(X/Q)) = 0 for every D-prime ideal @ of X, If K
is a D-BMCR, then it is a D-Jacobson ring. Then a D-BMCR is also
a QFDR.

The following is easy to prove (see [2], Proposition 1.2).

Proposition 1.3. (X,D) is a D-BMCR if and only if (¥*,0*) is
a D-BMCR, where (X*,D*) s the usual extension by the ring of
integers.

2. The Main Theorem

If S = K[X3;a] 1is a skew polynomial ring, where a is an
automorphism of X, the question of whether S is a BMCR was
considered in ([5], section 3), The purpose of this section is to
prove the following corresponding result.

Theorem 2.1. Let (K,D) be a differential ring and put B = [x;D].
Then X 1is a D-BMCR if and only if the following conditions hold,

((T)s R s "a.- BUCR.
(II) For every maximal ideal M of R, K/(Mn K) is a
D-simple ring with an identity element.

To prove the theorem we need some lemmas. We begin with the
following

Lemma 2.2. If (k,0) 1is a D-simple differential ring with an
identity 1, then G(R) = 0.
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Proof. This can be proved in a similar way to ([10], Lemma 1).

If , I, is -an. ideal of  x, r[x] denotes the left ideal of Z
of all polynomials I, Xibi,bi €1, Op the other hand, if. I
is an ideal of R, (L) denotes the D-ideal of KX consisting
of 0 and the leading coefficients of non-zero elements of L of

least degree.

Lemma 2.3. Let L be a non-zero ideal of R with LN X =0. If
I 1is a proper ideal of X such that X/I is a ring with an
identitysil .gand (35 & T(&) = K,- thenI [X]iited ot R,

Proof. Let ¢ € X be an element such that e + I is the identity
of ® K/E: and let “0°#%"€- "t (r) “with e-c € I. Suppose that

g = Ko e O TRAD e, €L, 1is a polynomial of minimal degree in L

(n >1). If B =1I[X] + L4, thene = f+h with f 6 I[¥] and

n € L. Moreover o' = gq for some g € R and v < deg(hr)-n+l

by ([2], Lemma 3.2, (ii)). Hence c’e = ¢°f + ’n = ¢’F+gq  and
s0 e - ¢’e = (e-gq)-¢’f. Since e - ¢’e =0 (mod I) we have

e-gq € 1[x]. From among all the polynomials q€R with e-gq€I[X],
choose one of minimal degree, %k say, and let d be the leading
coefficient . of  fg. “Rltims = cq—xkcd. The polynomial s has degree
less than k and e-gs € I[x], a contradiction.

Lemma 2.4. Let ¥k be a D-prime ring with G, (k) = 0, Suppose
that ®p. #£%00 ¥1's an ideal *of" r "stch that® P A k"="0" and" ‘I 2P
is the ideal of R such that I/P = G(R/P). Then INK = 0.

Proof. Let M be a D-ideal of X such that Xx/M is a D-simple
ring with 1. If t(P) ¢ M, then M[X;D] + P # R by Lemma 2,3.
Hence 0 = G (k) = (I N XK)T(P), by the same way as in ([9],
Lemma 4). Thus, I N kx = 0.

Lemma 2.5. Let X be a D-prime ring with GD(K) =0 and let M
be a maximal ideal of R with MNK = 0. Then X 1is a D-simple
ring with 1.
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Proof. Since GD(K) = 0 there exists a p-ideal I of K such
that X/I is a D-simple ring with 1. If M # 0, choose I such
that T (M) é I. Hence ‘t(M) + I =X and so I[Xx;D] &M, by
Lemma 2.3. Then I = 0, as required. The same result is clear if

M =0.

Now we are ready to prove the theorem.

Proof of Theorem 2.1. Suppose that X is a D-BMCR and let P be
a prime ideal of R. By factoring out P N X from X we may
assume that X 1is D-prime, PN X = 0, and G,(X) = 0. If P # 0,
then G(R/P) = 0 by Lemma 2.4 and ([2], Lemma 3.3). If P =0,
for every D-ideal I of K such that X/I is D-simple with an
identity we have G((X/I)[X;D]) = 0 by Lemma 2.2. Then G(R) <
r[x;p] and so G(R/P) = G(R) < Gp(K)[X;D] = 0. Therefore, R is
a BMCR.

Now, let M be a maximal ideal of R. Put X = K/(M N K)
B = K[Xx3;0], and M the image of M in k. Then (II) follows
from Lemma 2.5.

Conversely, suppose that the conditions (I) and (II) hold
and let @ be a D-prime ideal of X. Then @[Xx;D] is a prime
ideal of R and so @[x;0] = N{M:M 2 Q[x;p] and R/M is a
simple ring with 1} = N{M: M 2 @[x;0] is a maximal ideal of R}.
Hence, @ 1is equal to the intersection of the ideals M NK and
then G (k/Q) = 0.

3. Some Assumptions on (kx,D)

Hereafter, we shall suppose that every ring has an identity
element and if K<sS 1is a ring extension, then X and S share
the identity 1. We shall consider the following condition.

(C) For every p-prime ideal @ of K such that M(L(k/Q))=0,

then L(K/Q) 4is the maximum ideal among alf the ideals I of
XK/Q@ with M(I) = 0.
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If the condition (C) holds and M is a maximal ideal of X,
then M/M(M) = L(K/M(M)). Hence X/M(M) has a unique maximal
jdeal M/M(M) and so it is D-simple. Consequently, M(M) is a
D-maximal ideal.

On the other hand, if (k,0) s a QFDR and the condition
(C) is satisfied, for every D-prime ideal @ of X, L(X/Q) is
the unique prime ideal of x/@ with M(z(x/Q)) = 0. Therefore,
for every D-prime ideal ¢ of Kk there exists a unique prime
p with M(P) = ¢, where P is the ideal such that P/Q=L(X/Q).
Moreover, ¢ 1is a D-maximal ideal if and only if P is a maximal
ideal.

Theorem 3.1. Assume that the differential ring (X,D) satisfies
the condition (C). Then X is a D-BMCR if and only if X s a
BMCR and (X,D) s a QFDR.

Proof. Suppose that X is a D-BMCR. Then (X,D) is a QFDR.
Further, if P is a prime ideal of X, put @ = M(P). Then
M(G(K/Q)) = Gp(X/Q) = 0 and M(P/Q) = 0. Hence, by GC ). i G KAL)
P/Q = L(XK/Q) and it follows that G(X/P) = G((X/Q)/(P/Q)) = 0.
Therefore, K is a BMCR.

Conversely, if ¢ s a D-prime ideal, then @ = N{M(P):
P prime}, because (k,p) 1is a QFDR. Since every prime is an
intersection of maximal ideals we have ¢ = N{M(M): M maximal}.
Then ¢ 1is the intersection of the D-maximal ideals M(M).

The following is clear.

Corollary 3.2. Suppose that (x,p) 1is a QFDR and the condition
(C) is satisfied. Then the following statements are equivalent,

K asiSatBMCR .

k is a D-BMCR.

R = k[x;p] s a BMCR and for every maximal ideal M of
is a D-maximal ideal of XK.
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Now we shall consider some particular cases in which the
condition (C) is satisfied. In [2], we said that a differential ring
(kD). “q's 2" FDR e *ipPPishtseT 1es ()= ont™ x ¥ [ whe reft¥( E) ¥ Shfthe
condition given in ([3], section 4). We say here that (x,p) s
a stnong finite difgfenential ning (abbr. SFDR) if the following
condition (SF) is satisfied:

(SF) Forn everny aq € x there exdists a positive integen
m = m(a) such that p"(b) 44 contained in the ideal of K
genenated by B,D(B),...,0" ' (b), 4or each b € Kak,

Lemma 3.3. Let (X,D) be a differential ring. Suppose that either
K satisfies the descending chain condition on two sided ideals
or (&, D) % islia SEDRU Then® tthie” condiit i'oht, (B) i sP's'atiiis fied:

Proof. Let @ be a D-prime ideal of X and put K = K/Q. Suppose
thatyel  iseanyideal 2ofis K wawithiy i1l = LX) pand §M(T)i= 405 jRor

each a € I we have [] D “(Kak) = M(KaR) = 0. Then, from the
2=0

m=1
assumption, there is an integer m such that [] D~

7=
Hence (Kai)m =0 and so a € L(K). Therefore, I = L(K).

Y(Rak) <0,

When K satisfies the descending chain condition on two
sided ideals, it is not clear whether (X,D) must be a QFDR. We
have

Lemma 3.4. Assume that X 1is a D-prime differential ring which
satisfies the descending chain condition on two sided ideals,
Then the following are equivalent.

() L(K) 1is a nilpotent ideal.
(1) L(Kk) is the union of all the nilpotent ideals of K.
{1 158) M(E(K)) .= 0.

Praof. (1) > (1) It dis clear.
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g iih P
(i1) = (did). " Let a € M(L(X)) e,  Put Ij =10y KDY ()&
=0
and denote by Q(Ij) the left annihilator of Ij in K. Then
Ij is a nilpotent ideal and &(I,) 2 l(Il) DA R(In) 2
There is an integer, m say, such that i(Im) = Q(IS) for s > m.
Then if == € Q(Im) we have ij =0 for all 4, and so
z 7 k0% (a)k = 0. Therefore, either a =0 or &(I ) =0. If
z=0
Q(Im) = 0, since Ton is nilpotent it follows easily that Lot = 0.
Then a = 0.

(iii) » (i). Since N D“(L(k)) =M(L(K)) = O, there is an
=0

m=1 3
integer, m say, such that (| D“(z(k)) = 0, Then L(k)" =0,
=0

Corollary 3.5. Let (x,p) be a differential ring and suppose
that one of the following holds.
(a)* (k,p) . isia SFDR.

(b) Kk satisfies the descending chain condition on two sided
ideals and for every D-prime ideal @ of X, L(K/@) coincides
with the union of all the nilpotent ideals of X/Q.

Then the following are equivalent.
is a BMCR.

K
K is a D-BMCR.
R is a BMCR and for every maximal ideal M of R,

(1)
ii)
(iii)
MnNn kK is

a D-maximal ideal of K.

Proof. Since (x,D) 1is a QFDR, it follows easily by Corollary 3.2
and Lemmas 3.3 and 3.4.

Remark 3.6. Corollary 3.5 can be applied when X 1is a ring which
satisfies the ascending and the descending chain conditions on

two sided ideals. In fact, the ascending chain condition implies
that (x,D) 1is a QFDR. On the other hand, it can also be applied
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to obtain a corollary corresponding to ([2], Corollary 3.9). Thus,
if T is a Galois extension of a BMCR X of characteristic P

with a Galois p-group G and Ty ®>KK, then 7 is also a BMCR.

4, Liberal and Intermediate Extensions

n

In this section we consider a liberal extension S = 2 Kai
7=1

of X and a K-derivation D of S, and an intermediate extension
T with D(T)c T. We say that T 45 a differnential intermediate
extension. Applying the methods used in [7] and [8] we study the
relation between the prime and the P-prime ideals of T. As a
consequence we shall see that Corollary 3.2 can be applied in this
case.

Firstly, we prove the following.

Lemma 4.1. Let X be a centrally closed prime ring with center
¢ and M a torsion free liberal R-bimodule with a generating
set of n centralizing elements. If ¢: M+ M is a K-bimodule

homomorphism, then ¢ ,c in: € exist such”that

. % C
12721

n-1 o
¢"(z) = ] ci¢1(x), for every =z € M,
=0
n
Proof. We can suppose that M = ) Km is free over K with
7=1

the centralizing basis {mi}. Then the centralizer of X in M,
n

V say, is equal to 0 cm and ¢(V) = V. Since (¢ is a
=1

field, there exists ¢ < »n such that m1,¢(m1),...,¢t-x(m1) are

t-1 .
linear independent over C and ¢t(m1) = .Z ci¢$(m1), for c.€C.

1=0
t-1 5
Then, ¥ = 7§ K¢$(m1) is a K-sub-bimodule and ¢ (¥) = N. Moreover,
=0
£ =1 5
o (z) = .Z ci¢1(x), for all x € N, as it can easily be

1=0

verified.
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On the other hand, we can find a subset of the generators
L L=l
Tt+1""fmn say, s?ch that: E —{m1¢@u),u.,¢ (mlhmt+1“..,mn}
is a basis of V. Since M = K ®CV 6[7] s flemmass242)s E s a

5 m
centralizing basis of M. Let ¥ =M/N = Y km. and o: # » Hf
i=t+1 ©

the map induced by ¢. Then ¥ has a basis ﬁt+1,...,ﬁ

By induction, 4

t+1""’dn ino=gtexist stich?that

Szt Rabeto o i =

) fegspect)y dj¢J(x), for all x € M. Hence y = ¢n't(x) -

J=0

n=-=t=-1 g % t-1 2

'Zo dj¢ (z) €8 and so ¢ (y) = ] .6 (y). It follows that
J= =0

n v t+g T+n-t L+
67 (2) = J; ;07 (=) + [y e 07N (@) - [ s eydpett (), for

every x € M,
let o S Z Kai a liberal extension of K, D a K-derivation

of 5 and 7 a differential intermediate extension, If S is
p-prime, then KX is prime and we can consider (X, the central
closure of X. Furthermore, ¢S is a liberal extension of CK
and there is a ck-derivation p* of «¢s such that »0*/s5 = Dy
where ¢s is also a p*-prime ring (see [2], section 4). Finally,
cr is a differential intermediate extension. In the rest of this
section we use this notation.

The following improves Theorem 4.3 of [2].

Theorem 4.2. For every D-prime ideal @ of T there exists a
prime ideal P such, that M(P) = @,

Proof. As in ([7], Theorem 3.2) we can see that @ N X is prime
and there exists a D-prime ideal @' of S such that @'NkK =
.Mt and s ol Mg c @. By factoring out from x, T and S
respectivelyttheoidealsnig'sN ks bg'n T +iand @' we may suppose
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that X is prime, S is a D-prime liberal extension and g is
a D-prime ideal of T with @nk = 0.

If K 4is a centrally closed prime ring, (7,0) 1is a SFDR
by the former lemma. Then, there exists a maximal ideal, P say,
with respect to M(P) = @, and P s clearly’ prime.

In general, consider ¢cx ccrccs and the derivation D*.
Then €@ s a p*-ideal of c; and . doneT = 9. \This icaneasily
be verified as in the proof of Theorem 3.3 in [7]. Let Q' be
a D*-maximal,ideal of ..Z with nrespect.to g'.=,¢@ cand @'fNr = @,
Then @' 1is a p*-prime ideal of c¢r and @'Nck = 0. From
the first part there is a prime ideal P' of (T such that
M(P') = @'. Therefore, P =P'N T is a prime ideal of 7 and
M(P) = Q.

The following corollary completes the results of [2]
concerning with intermediate extensions (see Corollary 4.5 in izl

Corollary 4.3. Let X be a Jacobson ring and 7 a differential
intermediate extension. Then 7T[x;p] 1is also a Jacobson ring.

Proof. Since (T,D) is a QFDR, we can apply ([2], Corollary 3.6).
Then we must prove that T 1is a Jacobson ring. But this is an
easy consequence of going up ([6], Corollary 4.2) and
incomparability ([7], Theorem 3.3).

Theorem 4.4. The differential ring (T,D) satisfies the
condition (C). Moreover, if @ is a D-prime ideal and I is an
ideal with M(I) = @, then ™ cq.

Proof. By factoring out convenient ideals we may suppose, as in
Theorem 4.2, that X is prime, S 1is a D-prime liberal extension,
7 is a differential intermediate extension and @ is a D-prime
ideal oif gZ.ssuichethatead ek =:0:

If XK 1is a centrally closed prime ring we consider the
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differential ring (T/2@,p) and we apply Lemma 4.1. If 4 is an
ideal with M(4) = 0, as in Lemma 3.3 we have 4" ¢ 7ﬁ1 D'i(A) =0p,
Then In_C_; Q. i
In general, consider the central closure CK of X, Then
CKSCcTccs, where Cs s a D*-prime ring and D*(cT) < cr.
Firstly, suppose that P 1is a prime ideal of T with M(P) = @.
We now use the same way used in ([7], Theorem 3.3), Then C@ N T=qQ
and there exists a D*-prime ideal @' of ¢T which is D*-maximal
with respect to @' > (@ and Q@' N T =9, Also there exists
a prime ideal P' of T which is maximal with respect to
PV CPadn By ycandi- Pao N8 Tyt Poyy Funthen:, 1 Bu's My &= 0:4and
M(P') 2 @'. By Theorem 4.2, Q' = M(E) for a prime ideal & of
cr. Then B" ctgisc POl andthences 7 =t P 1) JUTHA follllows thatt i E p! |
by ([7], Theorem 3.3). Therefore, P"c P'"n r = T

Finally, suppose that M(I) = 9. Then I N kX =0 and let P
be an ideal of T which is maximal with respect to P 2 I and
PN XK =0. Hence P is prime. Furthermore, @ = M(H) for a
prime ideal H# and we can see that H# = P as above., It follows

that nz’ c pl c @ and the proof has been completed.

Combining the above results we have the following.

Corollary 4.5. For every D-prime ideal @ of T there is a

unique prime ideal P of T such that M(P) = @. Moreover, P

is the ideal of T such that P/Q = L(T/Q), and P" < @, Finally,
Q@ is D-maximal if and only if P 1is maximal,

Corollary 4.6. The following conditions are equivalent

is a BMCR.

is a BMCR.

is a D-BMCR.
= 7[x;p] s a BMCR and for every maximal ideal M of
R, MN T 1is a D-maximal ideal of 7.

K
T
r
R
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Proof. (i) «— (ii) It can easily be proved using going up and
incomparability ([6], Corollary 4.2 and [7], Theorem 3,3).

(ii) «—— (iii) +— (iv) It is a direct consequence of
Corollary 3.2, and Theorems 4.2 and 4.4.

5. Remarks and Examples

If X is a right Neetherian Jacobson ring and D is a
derivation of X, then k[x;p] is also a Jacobson ring ([2]
and [4]). The same result is not true for Brown-McCoy rings.

Example 5.1. Let X = @[Y] be a polynomial ring over the field

@ of the rational numbers and let D be the @-derivation of X
defined by D(¥) = Y. Then X is a BMCR and (kx,D) 1is a QFDR,
We can easily see that GD(K) = (Y), the ideal generated by Y,
and D(XK) = 0. Hence K is not a p-BMCR. If M 1is a maximal
ideal of R = k[x;D], then M N kK = (¥Y) 1is D-maximal. Therefore,
R is not a BMCR, by Theorem 2.1.

There is an alternative definition of a D-BMCR. In [2], we
said that X 1is a D-Jacobsen ring if M(J(k/Q)) = 0, for every
D-prime ideal @ of X. We say here that X is a weakly
D-Brown-McCoy ring (abbr. wD-BMCR) if M(G(x/Q)) = 0, for every
p-prime ideal ¢ of k. Thus, a D-BMCR is a wD-BMCR, but the
converse is not true. In fact, the differential ring given in
example 5.1 is a wD-BMCR. This example also shows that if X s
a wD-BMCR, B = K[X;D] need not be a BMCR.

If K is a right Noetherian ring, then X satisfies the
ascending and the descending chain conditions on two sided ideals
and also (X,D) s a FDR. Hence, if @ is a D-prime ideal of KX,
then there exists a prime P with M(P) = @ and P/@ = L(K/Q) by
Lemma 3.3. Therefore, the prime radical L(X/@) 1is prime (see
also [4], Theorem 2.2). This result is similar to that in
Corollary 4.5.
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Now, if the abelian group (x,+) 1is torsion free we can
easily see that M(L(kx)) = L(k). Then, if we suppose in addition

. that X 1is an algebra over the field @ we have 0 = M(P/Q) =

M(E(K/B)) = L(K/Q) = P/Q@ .~ and so P =@, Finally, if P ‘is a
given prime we put @ = M(P) and as above we have P = M(P) is
a D-prime ideal. Therefore the set of all prime ideals coincides
with the set of all D-prime ideals in this case.

More generally, suppose that the condition (C) is satisfied
and let P be a prime such that (x/M(P),+) 1is torsion free.
As above we get P = M(P) 1is a D-ideal of XK. Thus if X is an
algebra over @ and the condition (C) holds, every prime ideal
of K is a D-prime ideal.

Suppose in addition that (x,D) 1is a QFDR. Then for every
D-prime ideal @ there is a prime P with @ = M(P) = P,
Therefore, we again have that the set of all prime ideals coincides
with the set of all D-prime ideals in this case. Thus we have

Remark 5.2. Suppose that T 1is an algebra over the field of
rational numbers and D is a derivation of T, and assume that
one of the following conditions is satisfied.

(i) The ascending and the descending chain conditions on two
sided ideals of T.
(13T ETS D) ¥ 1s “ar SEDR.
(iii) T is a differential intermediate extension of X and

D/K = 0.

Then the set of all the D-prime ideals of T coincides with
the set of all the prime ideals.

Finally, the following examples are easy to verify.

Example 5.3. Let (k,D) be the differential ring given in ([2],
section 2). Then X is a BMCR, R = K[x;D] is not a BMCR, and X
is not a wp-BMCR. Further, the condition (II) in Theorem 2.1 also
holds in this case.
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Example 5.4. Let (x,D) be the differential ring given in (2] ,
Example 5.2). Then X is not a BMCR, but it is a D-BMCR and
R = X[FaDiyw is ga "BMCR.
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