BOL SOC. BRAS. MAT,, VOL. 17 N2 2 (1986), 1-22 -22 1

POLYNOMIAL VECTOR FIELDS ON THE TORUS

ADAIRTO G. DOS ANJOS

Abstract: In this paper it is shown that the structurally stable
polynomial vector fields on the torus TZ, with singularities,

are open and dense in the set of such vector fields. Many kinds

of distinct dynamical phenomena are also presented by a list of

examples including the Cherry flows. The above result works for

analytical vector fields on 7® with the same proof.

Introduction: We first define what we mean by a polynomial vector

field on T%. We initially consider the vector fields on R? of

the form:
XK(x’y) = (PK(x’y)s QK(x’y))s
where,
K -
PK(x,y) = 'ZO [ 2_-(amncos(mx)cos(ny)+bmns1n(mx)cos(ny) +
J=0 tmtn=j
cmncos(mx)sin(ny) + dmnsin(mx)sin(ny))J,
and,
K
QK(.z:,y) = 'Z-O lj 2__ (ar;mcos(mx)COS(ny)+b’;mS'in(mx)COS(ny) +
15 m+n=g

1 . 1 y i
+ Cmncos(mx)s1n(ny) + dmns1n(mx)s1n(ny))J.
Let 1m:IR* » 72 given by T(x,y) = (e*,e*Y) be the natural

covering map. We denote n(Xk) by Xk. The set of degree k
polynomial vector fields on T2 consists of the vector fields
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Ek and will be indicated by P, . We often identify 7° with the
square [0,2m]x[0,2r] as usually. It is clear that Be 48w
finite dimensional vector space. It will be always considered
with the coeficient topology. We have the following.

- If Y 1dis orthogonal to a gradient Vf then the orbits of Y
are contained 1in level curves of f. In many cases it is easy
to recognize such curves.

- Notice that in general, é}, 4% Ezazm, is not a gradient of
a real function defined on T°.
Theorem: Let A, P be the set of the degree %k polynomial

k
vector fields with at least one singularity. Then the set of
Morse-Smale vector fields in Ay is open and dense for all Example 1.1. Let f;_m2 + R, f(x,y) = ax + bsinx + cy + dsiny.
ke S R i

Then Vf(x,y) = (a + bcosx, ¢ + dcosy).

A good and perhaps difficult question is to show the same

1f |%| <4 #nd |§| < 1, the phase space of Vf is given in
result for vector fields in Pk—Ak. The first section is

dedicated to a list of examples presenting different kind of By o oNere e Ky Dy B v By 00 aeriolic ginaylani e, fong
dynamical phenomena including Cherry flows, even in bp, (*). we have a Morse Smale vector field with singularities and without
The second section is dedicated to the proof of the Theorem, limit cycles.
L

I am grateful to Wellington de Melo by suggesting this
problem and for helpful comments. I am also grateful to Cesar X '// is, A
Camacho, Alcides Lins and Paulo Sad by many stimulating and ¥, - i -
useful suggestions, and to Moacir G. dos Anjos and Alberto de
A. Cunha by helpful conversations. Special thanks are due to 2
Pedro Mendes who read the manuscript in detail and suggested N ¢ :: 2 o
substantial simplifications. A
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1. The phase space of some polynomial vector fields on 7°2. Fig. 1

Our first examples will be projection on 7° of gradients
of real functions defined on IR% of the orthogonal of such
gradients orfof their pectyrhations. Example 1.2. Let Y, be the orthogonal of vf where ;

f(x,y) = -bcosz - cosy, b > 0. Then Yb(x,y) = (-siny, bsinz).

The following remarks will be useful in dealing with this We are going to describe the phase space of ¥, when b = 1.

kind of examples.
The singularities of Y; mod(2mzx2wz) are p, = (0,0),

- If x =vf 1is a gradient, then X has no closed orbits which Pyl (@), pgi= (new) andipy = (w0}, Me have that p; isa
bound discs on T%. center for py (p.), ¢=1,3, and p,, p, are hyperbolic saddles

—_— ERE A
(*) These Cherry flows examples were a result of a joint work with Alcides Lins. 2
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Since f(p,+(2km, 2mm)) = f(p,+(2knr, 2mm)) = 0 and f(x,y)=0
if and only if y # =7 (mod 2Kv), we have that the lines
Yy =+x + T + 2K7W are made by orbits of Vg

Let @ be the square of vertices (0,7), (w,0), (w,2m) and
(2mym). It is easy to see that @ is ¥ - invariant and that
f(e) = [-2,0].

We have that -2 and 0 are the unique singular levels
G R g e (ng)‘i(O) is the boundary of ¢
and the connected components of (f!Q)'l(a) are diffeomorphic
to circles for all a € (-2,0). Then the phase space of Y, is
the one described in Fig. 2.

Y4

2w

The study of the phase space of Ty b > 1 can be done as
follows. The singularities of Y, mod(2nZ x 2nZ) are p,= (0,0),
p, = (0,m), py= (m,m) and p, = (7,0). We have that p; is a
center for DY, (p.) ¢=1,3, and p,,p, are hyperbolic saddles
of Y, . It is clear that p,(p,) is the point of maximum
(minimum) of the Morse function f(x,y) = -kcosx - cosy, and
then the orbits of Y, near ps;(p,) being the level curves
of s they are closed of Ty and thus p,(p,) are in fact
a center for Y, itself. If one looks the slope of Yb along the
square with vertices p,,p,, p,+ (0,27), p,+ (2m,0) and along
the segment [pu,p“+(0,2w)], then by the Poincare Bendixon
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Theorem and because f'[pu’pu+(0’2ﬂﬂ has (m,m) as the point

of absolute maximum and p,,p,+(0,2m) as the points of absolute
minimum, and f s monotonic on the intervals [p,,(w,m)],
((w,m), p,+(0,27)], one can conclude that the saddle p, is
doubly connected with the saddle p,+(0,2m). Thus we have a
graph bounding a disc containing p,. By the analycity of Y,

all the orbits in the interior of such disc except p, are closed
Similar analysis works for p, and p,.

We have that —Yb(x, m+a) is the reflection of Y, (x, m-a)
with respect to the horizontal 1ine Y = w. Thus the projection
of the complement of the discs bounded by the graphs of 43 in
R? mod(21Z x 2nZ) are made up by cilinders on T°. Now,
flzs0) = f(x,2m) and f 1is strictly monotonic in the intervals
[0,mM and [w,2n]. Therefore by the Poincaré-Bendixon Theorem
in such cilinders all the orbits of 1, outside the discs bounde
by the graphs are closed. The phase space of Yp bl e i8S, the
one described in Fig. 3.

Similar analysis works for 0 < b < 1,

y A

A

Y

27

)

¥ >
x

2m

0 <B <1 b x]
Eig. 3

Notice that all the orbits of ?b
and the saddle separatrices are closed.

except the singularities

We are going to modify a vector field §b as above in order
to obtain a vector field with singularities and 1imit cycles.
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Example 1.3: Let ZE b be the vector field given by

3

7 b(x,y) = Y (x,y) + e(cosxz,0) = (-seny+ecosz,bsenx), where
€
b s> dlgsand ba >W0 &smaild.

To see that Zs,b has 1Timit cycles, it is enough to use
the Poincare-Bendixon Theorem in a cylinder made by closed orbits
of }b whose boundary are saddle connections, because Ze’bis
transversal to this boundary pointing inward the cylinder. The
closed orbits which appears in the cylinder are isolated because
Ze,bis analytic.

Example 1.4. Let X be the vector field given by
X(z,y) = (asin(y-68,)-b, esinx), |B| > |al.

The slope E§T§%§2§TT:E of X, 1is odd with respect to
the vertical line x = 0 for each y fixed. Then the flow is
even with respect that Tine. This implies that the vector field
X 'has all its orbits*closed and of*type™™ (1,09

Now we are going to perturb X in order to obtain a vector
field on T2 without singularities and with a finite number of
limit cycles.

Example 1.5. Let Y be the vector field given by
Y(xz,y) = X(=z,y) + (0, Asiny) =

= (asin(y-8,)-b, esinzv+rsiny), where |b|>|al,\#0

and |e| sufficiently small so that the difference between the
maxima and minimg of the graphs of the orbits of X are less
than 7.

The vector field Y s transversal and points inward the boundary
of the cylinder bounded in 7? by the orbits of X through the
points (0,0) and (0,m). Then Y has a finite number of limit
cycles and has no singularities.
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Example 1.6. Consider the family of vector fields
X(z,y) = (alsin(x-sl) + azsin(y-sz) + aa,blsin(w-yl) +

+bysin(y-y,) +b,)sla |+ |a,|<|a,| and |b,|+]b,|<|b,|.

Then any vector field X on 7% has a finite number of Timit
cycles and has. no singularities. This follows from the same
argument above considering the cylinder bounded by

and y = v, o+ —.

y =y, + g

Example 1.7. The Cherrny FLows. Here we are going to construct one
parameter families of polynomial vector fields on T2 which exhibid
Cherry flows for infinitely many values of the parameter. This
shows the richness of the dynamic of such vector fields.

To do this we need the concept of rotation number for degree ]
monotonic continuous endomorphisms of the circle and some of its
properties. Let IN:IR -+ s' be the covering map n(t) = eit. Notice
that given a continuous endomorphism a:8' > 8'  there is a
continuous 1ifting o : R > IR, that is Tod = aoll, wunique up to
translations. The endomorphism o is monotonic an has degree 1
if and only if o is monotonic and a(t+2m) = G(t) + 2m. The
rotation number of a is defined by op(a) = p(a)=1im @fé%%;ﬁ.

>
This number has the following properties [3].
~Nn
; s sl t et
1) Teim e
nroo

exists and does not depends on t.

it): pla).= %, my.n €5@y ns=nd,) if andoonlyoif. o Has &

periodic point 2x of period n(a"(m) = z), or equivalently,
a™(t) = ¢ + 2mm, where M{#):sumi
dig ) let g:5° » 5° be a degree 1 monotonic continuous
endomorphism. Given € > 0 there exists & > 0 such that
if 18-l = sup |B(#)-a(t)| < & then |p(B) - p(a)] < e.
tEIR
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iv) p(a + 2mm) =p(a) + n for any integer =,

Now we are going to describe what we mean by a Cherry flow

2
on T

The flow of a vector field X on T2 s a Cherry flow if
its orbit structure is as follows:

(1) X has exactly two singularities, a source F and a saddle S,
both hyperbolic;

(2) X has a non-trivial recurrence in A= 7% - W¥(F), that is
there is 'z € A such that =z € w(x).

It follows from the above facts about rotation number and
the Denjoy Schwartz Theorem that if X is a vector field in 72
satisfying (1), for which we have a transversal circle | and
an associated degree 1 monotone Poincaré Transformation f : 3§ + 3
such that p(f) 1is irrational, X 1induces a Cherry flow.

Now we are going to prove that
X, (xsy) = (1 + cosx + siny, a(1 + sinz) + cosy), o 6 [0,]]

induces a Cherry flow for infinitely many values of «.

Let Xa(x,y)
o ¢ [0,1].

h

(1S 48 cosxbas singhlai(1m +25inx) % cosyl),

-sinx cosy

We have DX (z,y) Thus (%;, %;) = F 15,48
acosx -siny

source of x, for all o.

The horizontal component of x_ , in the square [0,2n0)= [0,2¢] .

is zero along the closed convex curve T given implicitly by the
equation 1 + cosxz + siny = 0, and is contained in the square

(3. 31 x [r, 3] - a.

The vertical component of Xa in that square is zero along
the curve Hy given implicitly by the equation a(l+sinx)+cosy = 0.
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e s, is graph of a g increasing monotonic function defined
inan interval [a(a), 3], where a(a) is a c® nondecreasing
monotonic function, af(a) = % difsiions % and Ja(g)imly® B, if
a > %. Moreover, Hul(x) > Huz(x) whenever a,
z € [a(a), %;], F € H," for all o, and” &y is horizemtali Since
r in the square @, = [F,m] x [m, S| is graph of a ¢° decreasing

<ia and

monotonic function connecting the vertices (%, %}) and” (w,m),
we have that X, has exactly two singularities: the source F an

a singularity S, €T N @, .

y 4

Y V2 P il
b .

Fig. 4

We claim that S, is hyperbolic saddle. In fact, the

eigenvalues of DXu(Su) are given by

. . . . 2
-(s1nxa+s1nya) i /Qs1nxa - s1nya) + dacosxycosy,,
2

A=

= . - - d S
where S, (xa,yu) € @, We have 1 G B =m oA thu
sinxa + sinya > 03" “"because “T" 1s' a’‘conveXx' curve, Here "0 < a <"1
’ 1 2
Since (xzy.y,) € @ (s1nxa-slnya) + 4uc05xacosyu 500 and
>¥igq i LN T
acosx COsy, sinz siny hen

A . " . 2
it r{ silng, +8dny e /ks1nxa risiny ) 4 4ucosxacosya o
1 2

and

. . . . 2
—(s1nxa+s1nya) + /(s1nxu - s1nyu) + 4acosxqcosya

)\2= 2 >03
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and _thedclaim is proved for 0 < a < L. For o = 0 and o =1
the claim also holds and the proof is easy. The eigenspace
associated to A, is given by the equations

={sine. # IDERE (cosya)y =0
(@cosz )z - (siny, + 2)y =0
Nk sinx
Then its slope is £ = 20 This fact, the convexity
T cosy,

of T and the orientation of Xa along T 1implies that one of

the connected components ¥ 0 WS(SQ)_{Sa} lies entirely
inside the disc bounded by T and has 7 as its a-1limit, by the
Poincare-Bendixon Theorem. (see Fig. 4). The direction of X
along the diagonal y = z 1is as in Fig. 4, because

a(l + sinx) + cosx
T +sinx + coszx

the direction of x, along the boundary of [0,27] x [0,27] is
as indicated in Fig. 4. The other connected component y, of
WS(Su) - 15,1 is not contained in [0,2n] x [0,27]. In fact,
since X, has no closed orbit imside [0,27] 2 D onl. < A%

Y, = [0,27] x [0,2m] then by the Poincaré-Bendixon Theorem again
o(y,) = F or a(y,) = Sy- Thus Xu has at least three
singularities which is a contradiction.

Then by the configuration of & An [0,2m]x[0,2n] v,
crosses the segment - {0} x [0,27].

With the same kind of arguments one can check that the
connected components Boy Bp . of g iy {Sa} are such that B,
crosses the segment [0,2n] x {27} and B, crosses the segment
{iZmiloa i) 2l

This gives a description of the phase space of X, fion

0 <a < 1. The phase space of Zrysand G ivels dgitvieins intiFTigl W6

< T orsl0 "< o ¥ 1IN, It i's easy to see that

POLYNOMIAL VECTOR FIELDS 11

-

2m

/\

A

il

HV

om

2
8

2

Fig, 5

We have that all the orbits of points in {0} x [0,2m] - vy, cross
positively the segment {27} x [0,27] in [0,2m]x[0,2n] = T2,

Then there is a well defined Poincareé Transformation fov b= E
associated to Ea where I s the projection of {0}x[0,2r] on
¢ [3]. HWe have that tpi(f ) = 0 and p(A¥ = -1, Then from
the facts stated for rotation number we have that X, 1induces a
Cherry flow for infinitely many values of o € [0,1].

In the Cherry flow above the set WS(Sa) U W“(Su) is called
a "Cherry fork".

Our Tast example is a one parameter family X, of polynomial
vector fields of degree &k = max{m,n}, which for infinitely many
values of o presents m.n "Cherry forks" such that the unstable
manifolds of the sources does not contains saddles in its closures,
and also non trivial recurrences.

Example 1.8. Cherry flow with finitely many forks

Let Xoc(x,y) = (l+cos(mx)+sin(ny), o (1+sin(mz))+cos(ny)),
0 <a <1, myn positive integers.

We divide the square [0,27]%[0,27] into m.n retangles
Rij whose sides has lengths %; and %;. U to a translation
and a change of coordinates of the form (u,v) > (mu,nv), we can
see that the phase space of * ¥ in Rij is the same as the

phase space of the vector field Y, given by
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Y (xsy) = (m(1 +cosz + siny), n[o(1 +sinz) + cosyl)

in the square [0,27]x[0,27]. This phase space was essentially
described in the example 1.7. As in that example we have a well
defined continuous monotonic non increasing degree one Poincaré
transformation f&:z > I associated to Eu for each o € [0,1].
Since - o(£,) = 0% and gilTas) < & %, for infinitely many values
oiffi s p(fa) is irrational and thus Xa has non trivial
recurrences for such values of «a.

Let Eij be the closure of Wu(Fij) Yhere Fij is the
source of Xa in Rij' We claim that if Xa has non trivial
recurrences, the et i R

< n 'y i, does not occurs,
This follows from the fact that
240 2T
Xq(x+79y +7)=Xu(x3y)’
and then F..o>pg. . implies that . ., oE... Then X exihibits
) 7. sy Tyl iJ

a closed curve T, which does not bounds a disc, made up by
singularities and regular orbits, which is a contradiction.

2. Proof of the theorem

The proof of our Theorem follows essentially the same steps
of the Peixoto's proof of the density of Morse-Smale vector
fields on two-dimensional manifolds [4], except that we need to
deal only with global perturbations instead of local ones.

Let x = (P,Q) be a polynomial vector field on IR’ The pertur-
bations to be used along the proof are mostly orthogonal pertur-
bations, i.e., we consider the vector field X+ = (-@,P)

and perturbations of the form XSA=N S ¢it, ie is called an
orthogonal perturbation of X, on T2

Our first step is to prove that the set Bk of the degree
k polynomial vector fields on 7> with all singularities
hyperbolic, is dense in the set Ak’ of the degree % polynomial
vector fields on T? with singularities.

We start with the following

POLYNOMIAL VECTOR FIELDS 13

Lemma 2.1. The number of singularities of X ¢ 4;,, k > 1, s
finite and Tocally constant for an open and dense subset of Ak'
Moreover, if %k = 1, the number of singularities of a vector
field in such subset is 2 or 4.

Proof. Let %€ 4, and X = (P,Q) be the liftting of % ndto |
The singular set X_l(O) copsists ofya f;nits set mod(2n1Z x 21z ),
whenever 0 is a regqular value of X : R >R . IT 0. synot.a
regular value of X, by Sard's Theorem there is an arbitrarily
small vector v € IR which is a regulay value of * X..  This: 0

is a regular value of X-v. By the Inverse Function Theorem it
ol lowsy that df. . X, 7 6 Ak are sufficiently close and 0 is a
regular value of X:IR°> IR2, and thus of Y:R?~ IR?, then
#x0 (0) (mod(2rz x 2mz))= #¥71(0) (mod(2rZ x 2mZ)),

This finishes. the proof of the first.part of. (2.1).

For the second part of (2.1) it is enough to show that if
e 4,, is in the open and dense set satisfying the first part
of (2.1) then there is: Y. A, arbitrarily close to ¥ such that
Wishasapxactly. 220k exactly 4 singularities. We have

X(z5y) = (alc05x+a251nm+a3cosy+aqsiny+a5,blcosx+b2sinx+b3cosy+bhsiny+b5)=(0,0)

cos cosy as
1F.and only 9f, A. [ ] =B - , Where
sinax siny b

a a, 2, -a,}
A= and B = . By a small perturbation
b, b, -b, -b,

of X we may assume that 4 and B are invertible matrices.
It is enough to consider (z,y) € [0,27] x [0,27]. Then

COS bt " cosy as
Gvx € [0,2vk"s 4, Eull . .and Hiy € [0,2vf~+>5 -
sin = siny bs
are parametrizations of two ellipses I, and T, in &', Thus,
after a small translation of ?, we have that # (Plﬂ L) /2
gy F(I, A1) =4,
Now we can prove
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Lemma 2.2. The set Bk is open and dense in Ak'

Proof. Given (x,,y,) € [0,2r] x [0,2r], the vector field
ps : o ;
(s, oo F GIMEIIBYLALER (PN RSN (e i s iy <515 13 Hin
EZ A
> 15 siich" thatt Z(xo,yo)(xO’yo) = 0 and D2

(xo syo)(xo ,y0)=I=

= identity. Therefore, if (xo,yo) is a singularity of a vector

e 2
field X on R, then (x,,y,) 1s an hyperbolic singularity

o EZ(x y,) for all € > 0 sufficiently small. Now, the
0 ]

Lemma follows from this fact and (2.1).

A closed onbit Y of X € P, is isolated if there is a
neighbourhood U Pf Y in 7% such that Y is the unique
cloSed! orbit 'of X contained ind U

Now we are going to prove that there exists an open and
dense subset Ck of Bk such™that™urs e Ck’ then ¥ has no
closed orbits or has only isolated closed orbits.

In order to do this we first state a simple and useful
remark about closed orbits of vector fields in Bk s LEisita
consequence of the fact that X ¢ Py is analytic and then any

first return map (Poincaré Transformation) induced by % is
analytic.

Remark 2.3. Any closed orbit Y of X € P, is isolated or
belongs to an open band of closed orbits (i.6., y © U, where

U = T° is an open set homeomorphic to (0,1) xS, and U is a
union of closed orbits of X).

A graph of X € B, RS UECERNYECETIRh" " tp . b 3¥, 0 s san

n
of saddles p,s>---sp, and regular orbits Yol +one oY, pe0F % “siich
that a(y,) = p,» wly,) = p )

n
w(yn) #hpy 717 Leth At .U]({pi} U Yi)' We also refer to T as
t:

oy z=1 a2, a(yn Fnis and

a ghaph of X.
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To obtain the above mentioned set C, wWe need to analyse
the boundary of an open band of closed orbits of X € BLOIRTRIS
is done in the next lemma.

Lemma 2.4. Let U be an open band of closed orbits of X € By -
Then 33U 1is a finite union of graphs of Z.

Proof. By the hyperbolicity of the singularities of X € Bk’ the
set of singularities in 38U, which is non empty, are made up
necessarily by saddles. Let « €& 9U be a regular point of i
and y the X - orbit of =x. We claim that w(Y) and a(y)
are'saddles. In fact, if this is not the case, w(yv)(a(y))
contains a regular point and thus, by the Jordan Curve Theorem,
Yy dis a closed orbit. This implies, by the analyticity of X,
that z €.,U, which is a.coptradiction,

Now, using that if p € 9U 1is a saddle then at least one
stable and one unstable separatrix of p is contained in 23U,
and that the number of saddles of X is finite, we get that
oU is a finite union of graphs of X as we want. A consequence
of the proof of (2.4) is the following

Corollary 2.5. Let ¥ € B, and Y,,Y,,Y,,... be a sequence of
closed orbits of X. If there exists a sequence {mn}, £, BN

=3
—

such that =z - = then (U Yn) - Y, 1is a finite union of
n=1

n
graphs of X.

[el” p & 7" BE"a"sRUdIc 0f VI%¢ B,. Denote by Wf(p) and

W?(p) the connected components of WY(p)-{p} (called saddle
separatrices). We say that Wf(p) (W%(p) is a stabifized unstable
separatrix if w(Wz(p)) (w(wf(p))) is an hyperbolic sink or an
hyperbolic attracting closed orbit. Similar definition for
stabilized stable separatrix.
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Remark. Let Y be a saddle separatrix of S Bk' Itaw ¥ ) (%(Y)
is a closed orbit, then by a convenient small orthogonal
perturbation of X we stabilize the corresponding saddle

separatrix of the perturbed vector field. (See []], Theorem 71,
72, pag. 399-400).

Lemma 2.6. There exists an open and dense subset of Bz, made up
by vector fields with no graphs.

Proof. Let X € Bk' We are always using that in By, the number
of stabilized separatrices is locally maximal. First assume that
X has a graph bounding a disc on e graphs bounding discs
are partially ordered by the inclusion of such discs, We may

assume by a small perturbation of X, if necessary, that a minimal

graph T of X satisfies the following condition: %\= I Ehar
has no graphs inside the disc bounded by T, for small values

of A. By the Poincare-Bendixon Theorem and by the kind of our
perturbation, for small non zero values of A, fx has for each of
its saddles in T at least on more stabilized separatrix. Because
X has a Tocally finite number of hyperbolic saddles, this process
shows that there is an open and dense subset of B, where all the
vector fields has no graphs bounding a disc on T,

Now we consider a vector field X 1in the set above, holding
at least a graph T does not bounding a disc. We may assume that
there dre fgraphst ST HESLE R0 ¥ bounding a topological cylinder
¢ = r* such that X has no graphs in C. It may happens that
Foo=T,. Lot p €T, - be a saddle of Z. let p =.f, <py<idqsng
be a maximal chain of saddles of X contained in C, We have
that p, £ T, U T, because ¥ has no graph bounding a disc,
unless P, = Po. Then the w-Timit set of one of the unstable
separatrix of p, is either a hyperbolic attractor or the graph
I',. If the first situation occurs for one of the unstable
separatrices of P,» by a small orthogonal perturbation of 4
we stabilize one more saddle separatrix of the perturbed vector
field.
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Otherwise, we consider a maximal chain of saddles of X,
pé tafld. . o pg = p contained in C. Then, the o-limit set of
one of the stable separatrices of pé are hyperbolic reppelors.
Thus, again by a small orthogonal perturbation of X we stabilize
one more saddle separatrix of the perturbed vector field, and
the proof of (2.6) is complete.

Corollary 2.6. There exists an open and dense subset Ghivaf a8
siiichi tihat {if L% € .4C

isolated closed orbits.

k
©° then X has no closed orbits or has only

Lemma 2.7. There exists an open and dense subset of Cp made up
by vector fields such that they have no closed orbits or their
closed orbits are hyperbolic, finite and locally constant,

Proof. Let ¥ € Cp ¥(7Y) an arbitrary neighbourhood of ¥ and
Y, € w(¥). We can assume that ¥; has at least an isolated
closed orbit. By [1], Theorem 71, 72, pag. 339 - 400 we may
assume that this closed orbit is hyperbolic. If there exists a
neighbourhood of ?l, made up by vector fields that has only
this closed orbit, we finish the proof. Otherwise for every
neighbourhood of Yl, Nl(ﬁl), contained in m(Y), there exists
iz € v,(Y,) with at least two closed orbits which we can suppose
hyperbolics. In this way, or the lemma is proved, or we can
construct a sequence of vector fields {?n}, and a sequence of
compact nested neighbourhoods {Nn(Yn)}, such that if 7 € Nn(?n)
then the number of hyperbolic closed orbits of Z 1is greater or
equaloto s naem = 162636 .6 nw 8nd  diam Nn(Yn) - 0 when #7n > .
is a finite

Then ngl(N”(y”)) = {Zo}. Here we use that P,

dimensional vector space. Therefore, 7, has infinitely many
closed orbits which is a contradiction with (2.5) because Z,
has no graphs. This finishes the proof of our Lemma,
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Remark. Here there is a difference between the polynomial and the
analytic case. The convergence of a subsequence of ?n in the
analytic case follows from Montel's Lemma [2].

End of the proof of the theorem

Let X be a vector field such that X 1is in an open and
dense set consisting of vector fields with no graphs, all
singularities hyperbolic and with finitely many hyperbolic closed
orbits, whose number is locally constant. To finish the proof of
our Theorem it is enough to show that if X has a nontrivial
recurrent orbit then by an arbitrarily small orthogonal perturbation

of X we get a vector field Y satisfying the above conditions
and holding at least one more stabilized saddle separatrix, Since
the number of saddle separatrices is Tocally constant, it follows
that there exists an open and dense subset of Cq such that all
X in this set does not have non-trivial recurrences. Now, using
the Denjoy-Schwartz Theorem [5] and a finite number of small
ortogonal perturbations, we can break the remaining saddle
connections stabilizing all the saddle separatrices, and the
Theorem is proved.

Let Yy be a non-trivial w-recurrent X-orbit. Ordering the
critical elements (singularities and closed orbits) of X in
the natural way (i%e. o, < g, <= #*(6,) N #°(0,) # @, where,
0 =1,2, are critical elements of X), we may assume that
there is a saddle p €Y with at least one unstable separatrix
which is a non-trivial w-recurrent orbit, and we can choose a
chain of saddles ' 5 .. p. 200 "< p, < p Wwhose minimal element
is g. Let T be a piecewise analytic curve made up by saddle
separatrices joiming "'~ to® p." Assume first that 'Eihas at
least two saddles. Let ¢ be a ¢® transversal circle to X
Cros'sing uYisat acpainty oy Bigy & sThe liifitsing 2 02 Glw it ithies el
¢* = {c+ (2mm, 2nm) = Cops Tom € Zz} where ¢ is the image of
-yl o embedding ¢:mR + IR® wich separates the plane in two
unbounded connected open sets.
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Then, it is clear that X 1is transversal to Cmn Forita sl
msn € Z, point to the right, as we may assume, and the same
occurs for small orthogonal perturbations of X. Suppose firstly
that one of the stable separatrices of g crosses g finitely
many times. Thus, cutting the torus along C and using the
Poincare-Bendixon Theorem, we get that such separatrix borns in
a source (i.e., repellor critical element). Therefore by a small
orthogonal perturbations of X we stabilize a stable separatrix
of a saddle of T.

Suppose now that both stable separatrices of g cross ¢
infinitely many times. There exists a disc in m®? bounded by
arcs of the stable separatrices of g and of a transversal
curve € to X containing a unstable separatrix of q,s

where q, is projected on ¢q. This follows from the fact that
one of the unstable separatrices of p 1is a non-trivial
w-recurrent orbit, and from our hypotesis on the stable
separatrices of ¢q. Thus by the Poincaré-Bendixon Theorem we
may assume that the unstable-separatrix of g not in T is
stabilized. Otherwise we already got a new stabilized saddle
separatrix for a vector field arbitrarily near X. By Denjoy-
-Schwartz Theorem [5] we may assume that there exists a saddle
q, of X with an unstable separatrix crossing C__ in a point
b arbitrarily near the unique intersection point a of a stable
separatrix of ¢, with (., . Our vector field X has no graphs
and all its critical elements are hyperbolic. Moreover, all
small orthogonal perturbations of X remains transversal to qm1
for all m,n € Z.

We can choose an order in Com such that a < b. Given
€ > 0, there exists a flow box B at a & Com and a saddle
q, of X with an unstable separatrix crossing C _  in a point
b €B, a <b, such that, the orbit of ¥, = X + Ax* through the
intersection of the X-orbit of » with the left side of B,
intersects Cmn in a point less than the intersection point of
the Xx-orbit by the intersection of the X-orbit of a with the

right side of B, for some 0 < A < €, Let %y be the unstable
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separatrix of X, by g, nearest A, in compact parts, and B8
be the stable separatrix of q, nearest B, in compact parts.
Consider the i
m e images [bko’b]’ [a, a, Jre Cop OF the
continuous functions g

A

»e 0,21 >an SR AT

3
€ [0,7\01 > Bao D B B0 Ein

We notice that these functions are well defined for )\ € [0,¢)
0 s

sufficiently small.

I there: is" A" €7 [0,€)" "such that by < a, we get a

. ; 0y i 0
vector field Xy holding a saddle connection joining q, With
q,s for some value of ) € (0,Xx,]. Now, by a convenient small
orthogonal perturbation of XA (for this 1) we get a vector
% 2 :

field on 7 with one more stabilized saddle separatrix.

Otherwise, a?\0 < b,k0 for all ‘A, © 0,V  such ' that

x € [0]>a €cC

mn mn

Let a  be the least upper bound of such a, and b, be the
0

greatest Tower bound of such bk AT
0
Ay = lub Oy € [0,e) :2 € [0,3]>ay ¢ and 26 D] >P 6c
are both well defined}. It is clear that @, nc¢ = §6 or
1 mn
BA1 n ) =¢.
We claim that if 8"1“ @ ot =¢ then g, belongs to a

saddle connection of x and so, as above, by a small orthogonal

7‘1’
perturbation of ix we get a vector field on 7% with one more
1

stabilized saddle separatrix.
Ini Ufactne (B S
o] is in the houndary of {(Xx)t(ax)’ 0, < =,
t > 0} by the continuity of the flow (Xk)t with respect to A

and with the initial conditions (close to ql). In this case,

B is contained in a band of I8 bounded byt & andeices,
mn m

o 1

n
for some m', n' € Z. Thus, except for a compact part of

and ) € [0,2,]+b, € ¢ are well defined.
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8. aill {g.. ki .sthe. projection .of, . B on T2 is contained in a
Ay ! Ay

cilinder. Then by the Poincare-Bendixon Theorem and our hypothesis

if follows that u(éxl) is a saddle, where BA is the

1
2

projection of Bx an.c sl
)

Now we assume that S)\l nc. ¥ ¢ and so a)\l JEFEN =¢-

Using the same argument as above, we get a finite chaim of saddle
connections starting at P and ending at a saddle ¢g,, with
all regular orbits contained in the boundary of

{(Xx)t(bx)’ 0 <A <A, t <0}  Thus we may repeat that
procedure changing ¢, by ¢q,, and (a,b] =C, , by

[al,b;] c [a,b] = Cpp+ Continuing in this way and using that

the number of saddles of X 1is finite, we get either a
perturbation E% of X, 2, <% < e, with a saddle connection
containing q,> and thus by a small orthogonal perturbation we
achievea vector field with.one more stabilized separatrix, or

we get a vector field X, , 2 <3; < e, such that X,, A€[Ay.¢)
satisfies our first hypothesis about the family XA’ A6 D),e),
with respect to X and so we get a saddle connection joining 9
with q, for some vector field X, with 2%, <X <e. By a last
small orthogonal perturbation we obtain a vector field with one
more stabilized saddle separatrix.

If T has only one saddle p, vremainding that in this case
one of the unstable separatrices of p is w-recurrent, then the
Theorem can be proved by the same arguments as above. For Y
a-recurrent the proof is similar. This ends the proof of the

Theorem.

The Analytic Case. Initially we remark that given an analytic
vector field 7 on 7T° whose orbits are all dense, there exists
A # 0, arbitrarily small, such that the analytic vector field

¥ =7 + A7+ has at least one closed orbit. So in this case it
remains to prove that given an analytic vector field ¥ on r°
whose orbits are all closed it is possible to perturb it in an
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analytic fashion in such a way that the perturbed vector field
has an isolated closed orbit. This can be done as follows. We
consider the vector field X+ and its orbit through a point 72
belonging to a closed orbit Yy of X. Let o be the orbit of ¥
through p.

Al

Let " gi€ &y 'beSthesfirst Tntersectionof A& withy ‘after p.
Assume that g # p. When p = g the proof is similar and easier.
Consider an analytic flow box ¢:U -~ (-6, 1+8)%x(-e,e) <« IR® of
X  such that ¢(p) = (0,0), ¢(q) = (1,0), o([p,q]) =
(250 67 B 10T P " LE "R 795 [nrq] Y he Mefined BY
6(z) = Yae it [p,q) where N, is the closed orbit of X through =.
Consider the function 7F:72 > IR defined by f(xz)=sin(2N($-6(x))).

This function is an analytic first integral of X. The vector

field X + e.f-X* is the desired perturbation of X, and then the
Peixoto's Theorem is true in the analytic case when the manifold
is the 2-torus.
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