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ASYMPTOTICS FOR SOME NONLINEAR HYPERBOLIC EQUATIONS WITH
A ONE-DIMENSIONAL SET OF REST POINTS

A. HARAUX

0. Introduction

¥ and

Let @ be a bounded, connected, open subset of IR
f a non-decreasing function which grows linearly at infinity.
For any & € £%(2) and any non-decreasing function g: IRy »miplR

with ¢(0) = 0 we consider the damped wave equation

R LR f(u) +g(u,) = h(x) t >0,z €0
(0.1)
e (t.z) = 0 t >0, 6 o0

The set of rest points (or equilibria) of (0.1) is given by the
solutions of the elliptic problem
2 € B (R), -hz + f(z) = k() in @

(0.2)

92
I 0 on LY9)

It is not difficult to check that the set of solutions of (0.2)

is of the form

(0.3) E = Z0 + JI

Recebido em 19/09/86.



b2 A. HARAUX i NONLINEAR HYPERBOLIC EQUATIONS 53

where 'z,  is a solution of (0.2), g a compact Tnterval and
the constant function equal to 1 throughout Q. In [2], '
necessary and sufficient conditions are given in order for (0.2)

Aknowledgement. Part of this work was carried out while the
author was visiting the Federal University of Rio de Janeiro,

: : under the auspices of the CNPq.
to have a non-trivial segment of solutions, In such a case the

asymptotic behavior of solutions to (0.1) is not completely
obvious: as we established in [5]), even solutions which do not
depend on 2z may oscillate between several equilibria as 1. An abstract result for Tinearly damped equations
t + +o, if the damping term g(ut) is sufficiently small
[namely 0(|ut|2)] for small values of I“tl' If on the other
hand g(v)v > elvl® ™% for |v| small and for some e > 0,

0 < e < 1, FthenVany solutionrof ‘thelf0bLE.

Let H# and v be two real Hilbert spaces with norms respect-
ively denoted by | | and | ||. We assume that Vv <@, that
the imbedding v > 7 1is continuous and V is dense in H. The
duality pairing on V' x ¥V 1is represented by the symbol < , >

and the inner product of two vectors u,v € H 1is written (u,v).

]
o

(0.4) u" + f(u) + g(u')
We consider

tends to an equilibrium as ¢t =+ +=, (cf. [5]). e ansrnton - A EGh ' SRttt
27 P 4

This means that when % = 0, all solutions of (0.1)
corresponding to initial data independent of =z tend to some (1.1) ¥Yu€/V, <duu> > 0.
equilibria as ¢t - +«,

- 3 (1:528) YueV, ¥v eV, <Au,v> = <Av,u>,
The main purpose of this paper is to extend this result to

any solution of (0.1), and by a method which can be used for 2) A linear operator B €& £(H) such that B* = B and for
different sorts of equations having a similar character. The some @ > 0 we have

special case where g 1is linear is treated in section 1 by a 3

quite simple Liapunov function argument. Weakly nonlinear (1.3) ¥veH, (Bv,w) > aldf.

dampings are treated in section 2. Finally, in section 3, we o

give a 1ist of examples to clarify more completely the kind of 3) A function @ € C'(V) such that Pow ER 5 N
phenomena under investigation. This paper has been motivated satisfies

in part.by the vork ?f H. MaFano Fﬁ] concerning nonlinear (1.4) 6 € C(V,H)
parabolic equations in one dimension, One should note, however,

that the conditions we have here are quite restrictive and for (1.5) N r, (0(w)u]) ()0,

insta {1 oot 0.0 dro d let = th b1 G LY
i ‘1n Sl R e ! g(?) i i We assume that A satisfies the condition

of asymptotic behavior becomes almost trivial in any space

dimension (cf. e.g. [4]). ‘ (1.6) N:={v € V, Av = 0} 1is one-dimensional.
Therefore the present work must be considered only as a

first step to a field of research where almost everything remains Our main result is the following

to be done.

Theorem 1.1. Let w:mt > v be such that
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kot w6 (B ,v) n ¢ (&Y, E) n (@,
(1.89 yt>0, u"(t) + Au(t) + d(u(t)) + Bu'(t) = C
(1.9) U t[u(t),u'(t)]} 1is precompact in VxH.

t>0

Then there exists a € N = A'l({O}) such that ¢(a) = 0 and

(1109 Tim ||u(¢)-al| = 0.
T4

Proof. As a consequence of (1.4) and (1.7) we have &(u(%)) G(f(ﬂf)
with ¥ ¢ 5 ¥, é%(@(u(t))) = (¢(u(t)),u'(t)). This is indeed
obvious when u € CI(IR+,V) and follows then by density when u
only satisfies (1.7).

Therefore we have the identity

(1.11) 2 (3 cau(s),u(t)> + 3 Lt (8) 12+ o(u(t))}
= -(Bu'(t),u'(t)), ¥t >0.

Since |lu(#)]] and |u'(t)| are bounded we deduce
(1:12) I+wlu'(t)lzdt < = J+m (Bu'(t),u'(t))dt < +=,
0 B

By writing (1.8) as a system in [u,u'] we can apply the

invariance principle in the closure in Vx# of | L) u' (5111,

t>0
We obtain in particular (cf. e.g. [11, [3]) *

(154 39 Jimy o o 905 L4 (0
Lt o

(1.14) Tim disty(u(t),5) = 0
Tt

where S, the set of equilibria for (1.8), is defined by

(1.95) S=1{a €V, Ada+ ¢(a) = 0}.
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First we claim that in fact
(1.16) s =8 n ¢ 1 ({0}).

It is clear that wn ¢'1({0}) =S. Conversely if a €& S we have
by #(1.1) and (1:5)

<da,a> = (¢(a),a) = 0.

But <da.,a> = 0 implies a € N. This proves the claim. We now
introduce the function

t
(1.17)  w(#) := (Bu(8),u(£)) + 2(u(t),u'(£)) - 2!0 |u' (5)| *ds.

Obviously ¢ is bounded for t > 0. On the other hand an
immediate calculation shows that ¥ € 01(1R+) with

—
o
~
i

2(Bu' (t),u(t)) + 2<u"(2t),u(?)>

-2<Au(t)+o(u(t)),u(t)> <0, ¥ot> 0,

Therefore ¥ (¢) tends to a limit as ¢ » +~. By taking account
of (1.12), (1.13) and (1.17) we deduce for some % > 0

(7.18% 1im  (Bu(t),u(t)) = L.
trt

Finally, let

(1.19) = = {a €5, 3Jt,>+= such that Tim |lu(t,)~a| =0}.
g

As a consequence of the general theory of topological dynamics,
£ is connected for the topology of V. (cf. [1], [3]). On
the other hand, as a consequence of (1.18) we have

(120 1 c{z € N, (Bz,8) =1}

and since N is one-dimensional this implies ¢ < {2z ,-2,}
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for some =z, € N. By connectedness it follows that I = x{z.}
and Theorem 1.1 is completely proved.

2. Some results with a non linear damping

In this section, o denotes a positively measured space and
the measure on © 1is denoted by dx for simplicity. We choose
H = Lz(Q,dx) and V is as in section 1. We consider 4€L(V,V')
satisfying (1.1), (1.2) and (1.6) as well as the additional
condition

2
(2.1) Yu €V, <du,u> > n|u-Pul

where n > 0 and P: H > H 1is the orthogonal projection on the
line ¥ 1in the sense of #. We also consider two functions f and
g: @xIR ~ IR which satisfy the following properties

(2.2) f and g are measurable in the first variable and
continuous in the second variable,.

(238 f(x,u) 1is non-decreasing as a function of % for all
x € 0 fixed.

(2.4) ¥z eg€Q, f(x,0)=0

(2.5) The (nonlinear) operator defined on 7V by
T$(u)le) = flz,ul2)) a.,e. in 9 carries .V Into '4 ang
¢ € C(V,H).

In order to make the method more transparent we shall only prove
a result involving rather strong conditions on the term g(%,7).
A more general result will we treated elsewhere, c.f. Remark 2.2
below.

The main result of this section is as follows

Theorem 2.1. In addition to the above conditions on A, f and g,
assume that we have

NONLINEAR HYPERBOLIC EQUATIONS 57

(2.6) ¥ (z.,v) € ax®, g(x,w)v 20

(2.7) Je>0, ¢ > c such that for all (x,v) &€ R, clvl<lg(av)l<clo] .
Let wu:IR' + v be a solution of

(2.8} u e omt.vyn ArE ) dvwetra®, v

(2.9)  ¥tER, u'(t) + Aut) + flz.u(t)) + gz, % (8) = O,

- ~ T
Then if % also satisfies (1.9), there exists @& ¥ = 47" ({0})

such that f(z,a(x)) =0 a.e. in © and Tim llu (£)-all = 0.
Tt g

Proof. We introduce F:QxIR-+IR given by the formula
Uu

(2.10) yz €Q, YueR, F(r,u)-= [ Flx ,8)ds
0

It is clear that F is convex in u for any x € 9 fixed and

F, = f. Similarly to (1.11) we have the energy identity

(2,01} éé {% <Au(t),u(t)> + %Wu'(t)lz + (;F(x,u(tyx))dx}

= ‘J glz,u'(t,z))u'(t,x)da, ¥t > 0.
Q
As a consequence of (2.6)~(2.7) we prove (1.13)-(1.74) in the same
way as im [§).
Moreover the hypotheses on 4 and f imply that (15060 Sals
satisfied with S defined by (1.15) and ¢ as in (2.5). We also
note that the set ) defined in (1.19) has the form

(2.12) Tl

where {25} is a fixed basis of ¥ and J a compact interval of
IR depending on u. We have to show that J is reduced to a
single point.

Assuming that it is not the case, let X, € Int(J) apd z o 48

such that
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(2.13) Tim Jlu (e, ) = A 2.l = 0.
N> +eo

We introduce A (t) and u(t) defined by
(2.18) ¥t >0, Pu(t) =u(t) =»r(t)z
and we define the "energy"

5
(28154 E(t)' = % lur(t)| + % <Au(t),u(t)> + [ Pz (B )de]
Q
Since for any a € S ‘we have. F(x,a(x)) = 0 it follows from

(2.15) and (1.13)-(1.14) that

(2:16) Tdime B85 = 0y

T+
We will now derive a sharper estimate which will imply 4 ={x,}
and therefore contradict our hypothesis that oJ is not a
singleton. In order to do that, we use the inequality

2

(2.17) 4 < celut(t)]
in conjunction with the estimate

2
(2.118) é% (9-Bu,u') s/ lul]y ~fulyPu') + <u®,u-Pu>

2
g | w!der-1 cAusunPuz, -~ (Flz,u) ,u-Pu) +.CJull |urPu]

which follows casily from (2.7) and (2.9).

We note that <Au,Pu>= <A(Pu),u>= 0 and by using (2.1)
2
the inequality (2.18) becomes 7 (u=-Pu,u') < Cllu'l - % <Au,u>
= (flxsu)su-Pu).

By the convexity of F in u we have F(z,Pu) - F(x,u)
2 Tlesu)(Busydenaacs Tth yRe forsallssg > 0 and by integrating
we obtain
-(f(x,u),u-Pu) < J F(x,Pu)dx - [ F(x,u)dx,
e b ?
Finally, for any ¢ > 0 we find
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2 1
(2:19) é% (w(t)-Pu(t),u'(t)) < cllu'(t)| ~ oo ¥ Audits) sprlade
+ ( Flz,Pu(t,x))dz - ( F(x,u(t,x))da.
I Ja
As a consequence of (2.13) we have in particular

(2.20) Tim 1Pu(tn) - Aozo| =alo)
P> oo

In particular, for =n > n, we have Pu(t ) € (Int J)z, and
therefore F(x,Pu(t ,2)) =0 a.e. in Q.
In the sequel we set, with A(f) given by formula (2.14):

(12,209 Wi R Fo= Infle > 8., A(R)E ST,

For all = >n. and t 6 [t ,7 ] we have

d 4 2
(2.22) 2 (u(e)-Pule),ut (£)) < ¢ lu'(t)]
ey Au(t),u(t)> - ( Fle,u(t,s))dz.
2 JQ

By computing é% [E(t) + e(u(t)-Pu(t),u'(t))] for e > 0 small
enough, it now follows classically that for some C > 0, & > 0

we have

(2230} E(t) < C exp[-28(t-t, )] (%,)
garall  t g [t o 3, n>an.,

In particular we find :

(2.24) lut(8)] < 1208813 exp(=s(t-t,))

for all t & [tn,rn], noa R,

By integrating on [tn,ﬁ] this implies
1
(20E(#, )7

(2.25) | Pu(t)-Pu(t, )| < | u(t)-u(t,)]| < =
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Since by (2.16), E(tn) tends to 0 as #n »> +e, (2,25) implies
obviously that for n > n,, we have

(2.26) T = 4

N!w

{2CE(t,)}

(2.27) Vot ot |u(e)-u(z,)| ¢ —

By combining (2.13) and (2.27) we deduce

(2, Tim lu(t)-2Ag2 = 0.
Trte

This clearly implies J = {AO} and this contradiction completes
the proof of Theorem 2.1. E 4

Remark 2.2. The results of Theorem 2.1 is still valid if the
conditions (2.7) on g are replaced by the much weaker assumption

(2.29) e Infi|v|,|v|% < lg(z,v)| < c(|v]+]v]|®)

for allkh (z,v)s6 9xIF

1
whereniBncteof Gi1@ Bnlledicantd 2 > 1 15 such that Ve 221 a1
with continuous and dense imbedding. Then the convergence to an
equilibrium can be deduced for solutions in C(E",V)nc' (& ,E)n

W%aé(ﬂ?+,V') for which E(t) 1is absolutely continuous with

g:E < —J gl ,u' (t L&) )u'l(t,x)dz ™ a.e. on T, Y 1F Ta’s' 1 e a T
Q

need to assume that meas(®) < +=. The detailed proof of such

a result, quite technical and combining ideas from the proofs of

[5], Theorem 1 and Theorem 2.1 above, will be given elsewhere.

3. Examples

In this section, we show how to apply the abstract results
of sections 1 and 2 to some concrete examples of semilinear
hyperbolic P.D.E.

-
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The examples are chosen in a way to point out some typical
situations.

Example 1. Let ® be a bounded, open, connected domain with
smooth boundary and consider the problem

gy = Au 4 ¢ sgn u(sinlul)t + au, = 0 on m'xa
(3.1)

% =0 on IR+XBQ

on

where: e > 0, toael 0.

We can apply Theorem 1.1 with &£ = LZ(Q), vV = Hl(Q) and
Do (u)](2) = e sgn u(zx)[sinlul(z)]". 1t is easily verified that
fomiadile ssic i

|u(x)| +
o(u) = c[o [fo (sin s) ds]dx > n[glu(x)ldx =i 14

solpisemeliini> 0. € > 0,

Therefore all solutions of (3.1) on m®mY  are in
C,(B", V) n Cp(B", H). since [p(u)](t) & W (B ,6) it is easy
to check that any solution of (3.1) satisfies (1.9). Therefore
for each solution u there exists a constant
uetill
kem\{0}
as ‘Tl

[(2k-1)7, 2km] such that wu(t,z) > 2 in H' (%)

Example 2.% Leits fihmifs 050 filbe' )4 ¢! and Lipschitz continuous
functions such that

VoZoe 11,2,3,4%, Y u € IR, fi(u)u > s

Let a, b, o, B be 4 positive constants and consider the system
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u,, ~ abu + Fy(v)fy(u) + £5(u) + ou, =0 on R'xg
+
(13%:2) Bt bkv + Fl(u)fz(v) + fk(v) * B, = 0 on. R'%X'q
LR L on ®mYxan
n an

where @ s a smooth bounded, connected domain in IR" and

7:(c)dor, ¥ 2,60 0152,.3,471, ¥ & € IR.

P le) = [ 7

Assume that |f,(u)] > nglu| - Cp for k 6(3,4) and 7. =0
on “[-R,R] for ¢ & {1,2.,3,4} with & % D..0Then

i) The system (3.2) has a two-dimensional set of equilibria,
namely a subset of IR’ including [-r.8) %,

2
ii) The Cauchy problem for (3.2) is well set in [HI(Q)]
and for any solution (u,v) we have the energy identity

it
(3.3) j% (JQ{% w2t 2ol L vl + L w|? e Fo(u)F,(v)
o Folu) 4 F,(v)}de)

= -a” ui dx = Bl’ vi dzx
Q )
Therefore if Byt 0 and n, > 0 the trajectories of (3.2) are
bounded in (#'())® and (u,,v,) is bounded in (Z2(2))>2.
Then the analogs of (1.9) and (1.13)-(1.14) are easily checked.
Although Theorem 1.1 is not directly applicable in this case,
it follows from a calculation similar to the proof of (1.18)
that J u2(t,x)dx and J v2(t,xz)dr have limits as t - 4w,
Q

Q
Therefore any solution (u,v) of (3.2) is such that

Tim sw(t) = s Tim v(t) = D
Tt Lt e

in H'(qQ), where (%,%) are two real constants such that

fa(#) = £,(%) = 0 and
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either fi(u) =7f,) =0 or Fy(u)F, (v) =0

(note that if Fj(s) =0, then fj(s) = 0},

This example shows that the method of proof of Theorem 1.1
is applicable to systems in some special cases. Of course some
of the growth or coerciveness conditions on the f; can be
relaxed.

Example 3. In both examples 1 and 2, we can also take

n
Q=1 ]O,kj[ and replace the Neumann boundary condition by
=l
an o-periodicity condition.

Example 4. Let f € c!(IB) be such that f(u)u > 0 for all
u € IR and assume

(3.4) 7 ()] < c(1+]ul®)

with s > 0 if n € (1,2}, s € [0, 2] if = > 3.

Let 9 be a bounded, open, connected domain in ®" and
consider the problem

ol = hyu b Plu) + ale)u, =0 on = >

¢ t

tt
(3.5)

u =20 on JR+>< YY)

where a € L”(@) and 0 < o < a(z) a.e. in ©, and A, is the
first eigenvalue of (-4) in Hé(ﬂ). Then any solution of (3.4)
in the class C(R', #l(2)) n ¢'(®", 12(2)) such that

U [y(t),ut(t)] is precompact in Hé(n) x L2(92) s such that
t>0

Tim ( Iutizdx =0, and  lim L) 5000 Wherey ¢ @aR i is such
t—>+ooJQ t>4 oo

that f‘(ccbl(,x)) =0, ¥ 2 € Q.

This result follows as an immediate consequence of Theorem 1.1
Note that all solutions tend to 0 except if f =0 in some
interval containing 0.
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Also precompactness of trajectories is easily achieved
assuming that for some n > 0, ¢ >0 we have

(3.6) Yu€ R, F(u)>nlul - c.

03:2) If n> 3, (3.4) is satisfied with s < -2

Example 5. Consider equation (0.1) with f as in example 4
satisfying (3.6)-(3.7) and g satisfying (2.6)-(2.7). Let z,(x)
be a solution of (0.2) and let us introduce

(3.8) W(t.2) = u(t,x) - z4(z).

Then u 1is a solution of

- s = = -+
Uy, = Bu+ Flx,u) + g(u,) =0 on R'xQ
(3.9)
i L 0 on ®E'xag
on

with F(z,w) := f(z,(x)+w) - fla {=}).

By applying Theorem 2.1 to (3.9) we obtain that u(t) tends
to @hPimit. n HI(Q) as t »+ +~, Therefore in these conditions
u(t,.) tends to a solution of (0.2) as ¢ + +w.

Remark 3.1. It is possible to imagine many other examples. For
instance (-4) with Neumann conditions can also be replaced
by e ol Hé(Q) when the first eigenvalue 2
HS(Q) is simple.

s
J of A . 1qn
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