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ON THE NUMBER OF LIMIT CYCLES WHICH APPEAR BY PERTURBATION
OF SEPARATRIX LOOP OF PLANAR VECTOR FIELDS

R. ROUSSARIE

Consider a family of vector fields XA on the plane. This
family depends on a parameter A € IRA, for some A € IV, and
is. supposed to be .¢~ in (m,\) € ®’? x JRA.

Suppose that for 2 = 0, the vector field X, has a
separathix Loop. This means that X, has an hyperbolic saddle
point s, and that one of the stable separatrix of s, coincides
with one of the unstable one. The union of this curve and s, is

the Loop T. A return map is defined on one side of T.

Loops on the plane

Figure 1

We are interested in the number of limit cycles (isolated
closed orbits) which may appear near T, for small values of .
This problem was first studied by A.A. Andronov and others [A].
They showed that for T-parameter families, with the condition
that, div X,(s,) # 0, it appears at most one cycle. Next,
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L.A. Cherkas in [C], considered the question of the structure of
the transition map near a saddle point, for a family of vector
fields X, (below, I call it the "Dulac map" of the saddle). He
derived from his study some results about the number of cycles.
For example, he showed that if div x,(s,) = 0 and if the
Poincare map of the loop is hyperbolic, then this number doesn't
exceed 2.

I want to present a generalization of these results. Suppose
that div X (s,) = 0. Then, it is known from Dulac [D], that
the Poincare map P,(x) of X,, along the Toop I has an expansion

equal to: ) a..xi(Lnx)j. (This means that for each k € Iv,
0<j<z *J

1<2
the Poincare map is equal to a finite sum of the above serie for
0 <J he & «ulok)s i andisomer ng (kAT 6. @is o Upste some ck, k-flat
function; k-flat means that all the derivatives are zero, at
z = 0, up to the order k). In fact, if the function P,(x)-x is
not C*-flat (i.e.:a. =1 and a., =0 for (i,7) # (1,0)),

10 g
. . < k k+1
then it is equivalent to Bpx Or o, .= Lnx s Bk or ag,, # 0,

for some k > 1. (P,(x)-x equivalent to B, means here that

Bl )\ \Is o

follows:

and hyperbolic). Now, the principal result is as

Theorem A. Let X,, A€ w2 ¢® family of vector fields on
the plane, which has a separatrix Toop T for A = 0, at some
hyperbolic saddle point s,. Suppose that divix, (s,) = 0. Let
P, (x), the Poincare map of x,» relative to the loop T.

Suppose that P, (x)-x is not flat. Then, for A small enough,

XK has an uniform finite number of 1imit cycles near T . More
precisely, if P, ,(x)-x 1is equivalent to kak, with By A 801
then XA has at'most "2k 1imit cycles for small X, near T;

if Py(x)-x 1is equivalent to Ockﬂxk“znx,akﬂ #°0, “EHen® x’"has
at most 2k+1 1imit cycles. (Here, "near T, for A small enough"

means: there exist a neighborhood U of T 1in m® and @
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neighborhood V of 0 € IRA such that X, has at most the
specified finite number of Timit cycles in U for A € V).

Remark. Recently, J.S. I1'lIasenko proved that, for any isolated
loop of analytic vector field X, on the plane, the function
Po(x)-x dis not flat. (Isolated means here: isolated among the
limit cycles) [I]. So, for analytic vector fields, the theorem A
works in the following form:

Let X, an analytic vectorn field family on the plane, with
an {solated Loop T at X = 0. Then, for A small enough, Nﬁk

has an uniform finite number of Limit cycles near T.

Now I want to indicate why the non-flatness condition in the
theorem A will be verified in any generic family of vector fields,
depending on a finite number of parameters.

Definition: Let s an hyperbolic saddle point of a ¢” vector
filefdF s 8y th* div "X (s) =0, "Recall”that the infinite-Jet"of
Vbl i £ 5 (S Cm-equiva]ent to:

L 9 9 A d

I X(8) v @ - yum + () 0. (=) )y 5

oo ox 3y P 3y
(The Cw-equivalence is the equivalence up a % diffeomorphism
and multiplication by a positive ¢® function). We say that
isvavsaddedogionden k2 Ny ifin.0
coefficient O in this expansion.

T is the first non zero

Remark: Let o, T, two transversal segments to the Tocal stable
and unstable manifolds of s, such that a transition map D(x)
is defined from o to T by the flow of X.
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Figure 2

Then, it is easy to show that s is a saddle of order k if

is the order of the first unbounded derivative

and only if k+1
k+1

ofe _Dix)caat wap=10,
So the notion of order does not depend on the above representation
of 4 X(s).

Now, we come back to a vector field X, with a saddle Toop T

at a saddle s,, such that div X,(s;,) = 0. Call R(x) the
Poincare map of - X,, from o to «t:

Figure 3

(R(xz) 1is the Poincaré map above the regular part of T).

This map has a Taylor expansion equal to:

R(%) = z-8,-B,2-B,z’~. ... .-pz" -

(In fact 7 D(x)ev .50 Lnz in this case).
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Clearly the coefficients ul,az,...,ak,... and 80,61,...,8k,...
are independent of each other. So, if X, belongs to a g-parameter
family of C*® vector fields, we can suppose genenically that one
of the 241 . first ‘coefficients: in. they lask: Bwal,g,uz,u.,swak”..

is non zero. (Generically means: for X in some open dense

A
subset in the space of all g-parameter families, with the
compact-open ¢~ topology).

If B, 1is this first non zero coefficient, then P(z)-2VR }(x) <

is equivalent to Bk xk. If a, is the first one,

k+1 e

P(z)-x v D(z)-z v oz Inz (As we will show in the following).

So, we have the following generic corollary of the theorem A:

Corollary B: Let a S %-parameter genendc family of vector fields
Xys A G_ml, g¥= Sl Suppose that ‘X, “"has a‘separatrix “loop at
a saddle point s,. Then there exist at most 2 Timit cycles of

X, near T, for A small enough.

We are also interested to the case of a family which is a
perturbation of an Hamiftonian vector fiefd. This type of family
has the following form:

Xy = X, - €X + o(e)

where A = (g,1) with € near zero and X in some finite
dimensional space of parameters. We suppose also that X, 1is an
hamiltonian vector field. This means that for some area-form Q
on IR?, there exists a ¢ function H, such that xJq = di,
The vector field X depends on the parameter A only. The term
o(e) depends on (m,%,€). We suppose that the level {# = 0}
contains a Toop I' at a saddle point s, of X, and that the
levels {# = b} for b > 0, near 0, contain closed curves Ty
near T = T,. We define the integral function I(b,X) by:

I(b,1) = f » where = X1,
p
It is known that this function is very interesting to study
the 1imit cycles of XA fiohusmal-l e’ # 0. « “In FactByY Y 6 ~i's" ‘a
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transversal segment to T, parametrized by the positive values
of H, the Poincare map Py of X, on o, has the following
expansion:

A ej ® '+ o(e).
T
b
It is easy to see that I(h,)) admits an expansion equal to

-Zo [, (3)b% + a (%)
1’—

7+1

Inb] for ¢~ functions Gpe By WA

(The convergence is, as above, up to Ck, k-flat functions, for

any k). The number of cycles near T 1is related to this expansion
o f T

Theorem C: Let x, = X, - eX + o(e) a perturbation of an
Hamiltonian vector X , defined as above. Suppose that

I(b,R,) vby (%)% with b, (X,) # 0. Then X, has at most 2k
cycles. near Ty, for. A =.[(&, A). near (O,RO) and e # 0.
Suppose that I(b.X,) ~ a(1,)b"* ' Lab, with a,(X,) # 0. Then
b has at most 2k+1 <cycles near T, for A near (O,XO) and

A
g iF 10

The proofs of theorems A and C are based on a structure
theorem for the Dulac map of X,. Such a result was established
by Cherkas in [b]. I present here alternative demonstration and
formulation for the structure of the Dulac map, in finite class
of differentiability, and not in analytical class as in [C].

I shall indicate also the relation between the coefficients of
the normal form of Xy at the saddle point, and the expansion
of the Dulac map. Find this relation is important to obtain the
precise bounds 2k, 2k+] on the number of cycles, in the
theorems A and C. We begin with the following:

Proposition D: Let x, a ¢® family of vector fields, such that
X, admits a saddle point s, with div X (s) = 0. Then there

exists a sequence (GN)N, 0<...<§N+l< Sy < -0 <8y and
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¢® functions o, (X), defined on 0% o, (M) ] < 6N} such
thatsafior, each 4w :

N ;
2N+1 3 9 1 9
J Xy (85) é; e st i (.z oy (A) (xy) 5y
fio L BACE Woieg o Here, s, is the saddle point of X, near s,

(SA is supposed to exist for X € W,;). The 0 equivalence,
is the ¢~ equivalence of (2NW+1)-jets: multiplication by
positive €% functions, and conjugacy by il diffeomorphisms,
depending ¢® on (z,y,\). Of course the jets are taken only
in the (x,y)-direction.

Now, it is known from S. Sternberg [}], that for each
K € Iv, a given ¢” vector field is always CK-conjugate to ,1ts
(2v(x) + 1) polynomial jet, in a neighborhoad of a given
hyperbolic saddle, for some WN(K). The same resul 1is also
availuable for A-families, in a neighborhood of the saddle with
conjugacies depending on the parameter. Combining this, with the
proposition D, we obtain the following reduction of the family,
in CK class of differentiability:

Proposition E: Let a ¢~ family X, such that X, admits a
saddle point s. Let some K € INV. Then, in some neighborhood
of the path {(s(A).3)[A € Wypy ) in ®*>®’Y,  the family is
CK-equivaTent to the polynomial family of vector fields:

3 3 (NY{) 3

% " Yoy C

0
oY =0 141 ¥

(M) (20)°) )5

Here s(X) is the saddle of Xy, near s, and theK aj(%) are
the functions defined in the proposition D, The ( -equivalence
is now the multiplication and conjugacy by functions and
diffeomorphisms, depending ¢ on (2syshA).

Remark: The CK equivalence sends the saddle s, on the fixed

poinitEER e ", Now an homothecy in m*°  dossn't change the
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form of the polynomial vector field in the proposition E (It just

modifies the values of the functions o ), So, we can suppose
1

that the image of the equivalence contains any given fixed

neighborhood of 0 € mwt (For example the ball of radius 2).

So, it is sufficient to consider a polynomial family of
vector fields:

9 9 g Z 3
= - p— (0} e i
- S B e e S Y

where o = (ul,...,aN+1). Let o= {xz>0, y =1} and

t'=1y > 0, = 1}, two transversal segments, in the same
quarter  {z,y > OF ~of “the saddle. We call 'Dulac map Dy of Xo»
relative to o, T, the transition map defined by the flow of Xa’
from o to Tt (0f course we parametrize o by A G o W R o

Ul

We suppose that we restrict o to the neighborhood of
0 ¢ 1RN+1
some M > 0. Then the Dulac map D, is defined on some
neighborhood of 0 € o independant of a. (We take Du(O) = 0).
In fact py(x) 1is analytic in (z,a) for =z > 0. We want to
ma ke precises thepnaturenofs Dymnatirs 2405k
the function:

defined by: |a | < % Il BB R 2 g8 g b ) Janind

For this, we introduce

w(z,0,) = R oh IR

Note that for each %k > 0, ka > -kanx asjaoy & 0 (Uniformely

for « € [0,X] for any x > 0). We are going to consider finite

conbinations of the functions «"w’/ with <,7 € W and 0<j < <.

These functions xiwj form a totally ordered set with the
following order: 25069 2 2t pd e 2> L or ¢ =1%' and i>g!
(N4 2uddfe@dPr 22Ul 520N B2 0k D)

d

The notation = w + . means that after the sign + one

1 J 1

finds a finite combination of z* w of order stricly greater

than z%wd . Then, we have the following structure for Dy:
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Theorem F. Let any X € IV. Then the Dulac map D, of X,
(relative to the segments o, t defined above) has the following
expansion:

PXNE 9RO A0 of [t i ] +0L2[x2w+ N+1

X 1492 a0l T

Fip ] +¢k

where each term between brackets is a finite combination of xiwj
(with the above convention); the coefficients of the non written
xzwj after the signs + are ¢®  functions in o, which are zero
for o = 0. The remaining term ¥, is a CK-function i Azl

which is % =flat for "x = 0, ‘and'amy o-(Up(0,4) = .. 7

v
oK
= ... = (0% = 0%
azX
Remark: The expressions in the brackets depend on X. But the
ordered expansion of Dy(x) 1in term of the 2" v is unique.

Next, if we take X < ¥ (which is always possible), we can reduce
the brackets up to the monomials 2w with < > K+1. (Because
these nomomials are ck and K-flat). So the expansion of D (x)

reduces to:

2) =z +a, [xw+...]+...+4 o s a1 Oy

% K

o

with L

¢K’ (64 and xk-flat, and the brackets depending only on the
2 w? for DtE < ¢ % R,

A natural generalization of loops are the singular hyperbolic
cycles (made by hyperbolic saddles and separatrices). I think
there are some difficulties to extend the above results to the
perturbations of general such cycles. 0f course, it would be very
interesting to have results for non-hyperbolic singular cycles.

I wish also to gmghasize that the expansion of the map D, in term
of functions z'w’ s of the type introduced by A. Hovansky in [H
and the proofs of the theorems A, C below use arguments similar

to those used by A. Hovanski.
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I - Normal form of a family of vector fields near a saddle point
(Proof of the proposition D)

Let X, a family of vector fields as in the statemente of
proposition D. One may suppose that X, is defined on some fixed
neighborhood Vv of 0 € IRZ, which contains for each X € W,

Wy = {Al|u1| < 61}, a saddle point at 0 € R’? as unique singular
point. We may also suppose that there exist coordinates (x,y)
dne I e suchiitha ts

£ Ea(0dis st 1 o (o 03 Pl (1)

0

where al(x) is.a ¢ function of A € W0 =with g, {0J°=-0.
I want to establish the proposition D by an induction on W.
The formula (1) is the first step of this induction for ¥ = 1.

So, suppose that one has found 6, > §,>... > 6N+1 ol Sl o)

% = SPn'cth oms ul,...,uN+], “i:wi > A uch thia't! o 7€ WN:
AT ROl s det s Ty B (541
oo T T ¥y T Ly Ten Y Yy

(The equivalence "nv" being defined in the statement of prop. D).

Consider the (2N+3)-jet. The formula (#+1) gives that:

~2N+3 N
. XX(O) ;»XX F Y2N+2(x) i Y2N+3(A) (20

N s ;
where x, is the right term of (~+1) and Y2N+2(X)’ Y2N+3(A)

are ( maps of WN+] in V2N+2’ V2N+3

(VL designates the space of homogeneous polynomial vector fields
of degree IL).

respectively

Let pg the Lie bracket operator:
5 8
AN [Xal,z] € v,
: ST 10ylo and B0 aCIx i
where Xal s the “I=jet: Xal =in ) TE Folr oy 7="10,
2N+2 Fi .
Po is inversible. So, one may choose Sy 0 < Spe2 < Spyr
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h to have efine inversible for each A € W . Then
small enoug 0 pal(k) o

one can resolve the equation:
o )0 Vame2 ] = Yopea ()

with 8.8 0 ;map of Wypo in Vons2:

U2N+2(X)
e . h N
The diffeomorphism Id - U2N+2(A) brings the jet Xy+¥,. o+Y,, o

on a jet g YéN+3, with YéN+3’ a ¢ map of W, , in Voy,ae

A
N 2
Let now: N, = Ker p21\Z+3 = (zy) i { x’ yaz} This kernel
2N+3 2N+3 .
is a supplement space of B, = Image(p| ). So, ¢, is an
= 3 +3

isomorphism of B, onto itself. By continuity the space B, =p, (xﬂB°)
is of codimension 2 in V,y 4. Taking perhaps a smaller 6N+2’ we
can suppose that B, is transversal to N, for each X € WN+2

So, we can find (unique) ¢® maps VéN+3(A) and WéN+3(x)
of WN+2 in B, and N, vrespectively, such that:

Tomea®) = [y (a)r Vawasl M1+ Hoys(A).

The diffeomorphism Id - Usy,3(X) brings the jet X + Yope3()

on the jet X + W2N+3(A) Now:

W30a(0) = 800 (@) et v yO @)y

- B @) - vy ¢ (B0 + YO @)y

So we have:
N
e, o= (80 @) ) 02 - v2) + SICIREEIL o (o) ()™ 2
and, dividing by 1+ 8(zy)"*!, we obtain:
XN+W
P s AT i m+l 3
RN AR (2 1y ) W - o8 an) ™y 2
+ (B+y) - ()" iy

By
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This jet is Cm-equiva1ent to the initial one, in the formula
(N+2)1. So, we have proved that:

41 :
2N 9 9 T 9
4 +3X}\ L0) I\Iw S Yyt (7:2_'0 0 AP ) o ) )yg'y— (N+2)
¢ =
for X € Wy, o, with oy, ,(3) = —ag (A)-B(A) + B(M) + Y(A).

IT - The structure of the Dulac map. (Proof of Th. F)

Let a given constant M > 0. We consider all the analytic
families X in normal form:

] 9 4 U
o, P ¢ Y ok (I ai+1,(xy)%)1155 (1)

=0
where P () = § a, ui+l is an analytic entine function of
u € IR, with uzg A where A is the set of a o defined by:
A= {of la | < s ]uil <M for < >2}. Let the transversal
segments o, T and the Dulac map Da(x) defined as in the
introduction. Observing the normal form above, it is natural to
make the singular change of coordinates (u = xy, z = z).

The differential equation for trajectories of Xy

x = X

y= -y + (] oy, (20) )y

Or~1 8

is brought in the following equation:
z=x

z

o
1]

[ee]
Po(u) = 1 @ .u
1=1

We see that in (3) the variables (x,u) are separated.
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The first equation gives no trouble. So, we concentrate ourself
on the second equation: u = Py(u)(4) which is analytic in |ul§1
for each o as specified above. Call u(t,u) the trajectory
of this equation (solution of (4), such that u(0,u) = u).

This function is analytic for each t, 1in some neighborhood
of u = 0. So we can expand u(t,u):

o ; ot

u(tu) =} gi(t)u$ (5), with g (t) =e and g.(0) =0 forall ¢ >2.
7=1

We want to study the form of the g9; and the convergence of the
above series, in function of <¢. For this, we are going to compare
u(t,u) to the solution of the hyperbolic equation:

oo

b=4us ] mytt? (6)

=1

We have the following estimations:

Lemma 1: Let U(t,u) = 1} Gi(t)ui the power serie expansion of
£=1

the trajectory of (6). Then for each < > 1 and ¢ > 0:

lgi(rt)l <G (¢) (for any a € A).

Qo

Proof: Substituing (5) in the equation: 5%(t,u) = Py(u(t,u)) we
obtain recurrent equations for the gi(t), the system Eg

g L) =5 . 9

gste)

2
Cxng +oc2g1
és(t) =0t 2u291g2 ) aagi
and more generally:

g; =@, g, + Pi.(ocz,...,ai,g riaingare)iiforesiyn2

1 =2

where P is a rational polynomial in P AT o) with

positive coefficients.
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Now, U(t,u) is the trajectory of U =P4(U) with

a = (%, ¥, m,...). So we have for the G (t), the system E,:
g R &
Gl =?Gl
g, = i, +Me

and more generally:

9 a0y
G.—-{G

y * P (M, MGy, Gy )

% 723

(with the same polynomial P. as above).

We can resolve the system EG by:

%t %’t g (t —TT 2
e, (8) = &% , 6(E] =70, (¢ )e with V,(t) = e ‘M-G dT
)
and more generally:
5t . B ft ~it
Gi(,t) = \Pi(t)e with wi(t) = Joe Pi(M,...M,Gl(T),...,Gi_l(T))dT

It follows easily from these formulas, that Gi(t) >0 for
£03" 0F

Now, we are going to show the estimations |gi(t)[ < 6, (¢)

for each &> 0. 4Eirst, it isq bruesfor,id.=,)¢
la, |t >t
lg ()] < e <e =6,(¢).

Suppose now that we have shown that ]gj(t)[ < G.(t) for
each j: 1 < 7% ¢-1§%and 3z > 0.

We compare the two equations:

g;(t) i)

a9y + Pf(az,...,ai,gl,...,gi

G, (t)

3¢ FPA(My MGy sG L)

T 7

Because the coefficients of Pf are positive, we have:
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l%(az""’ai’gl""’gi-l)l ipi(-lazl""’lail’ |91|,---,|97:_11) S

_<_P7:(M,...,M,G ,...,Gi_l).

Now, for ¢t = 0, we have G,;(0) =1 and Gi(O) =0 ‘for

> 2._ So, we have Gi(O) = Pf(M,...,M,GI(OQ,...,Gi_l( )

MG, (0)" = M and also |g.(0)] < |a,|lg,(0)]" < la | <
So,.for..t = 0 we have g.(0) = G;(0).=,0 -and lgi(0)|<éi(0

This give,s by continuity, for ¢ small enough:

6, (8| < G,(8).

We want to show that this inequality is availuable for
¥t > 0. (and so we will have: |gi(t)| < Gi(t) for >¥lgl> 093

On the contrary, suppose that t > 0 is the inferior bound of
the values t, such that |g.(t)| > G (t). For all t € [0,t,]
we have: [gi(t)l < Gi(t). So for.all ¢ € [O,tD] we also have:

|g,£(.t)l < G,l:(.t)-

e () + P (el e (Bl gy (80D

G lt,) = - L R R P R Y

By induction on <, we know that Gj(to) > lgj(to)l for
2 < g < Z-1. By the choice of t,, we have already notice that

G;(ty) » |9;(t,)]. So the inequality |o | < 7 implies:

ey < é7;(’50)-

But, by continuity this strict inequality is availuable for the
t > ty, t near t,;: this last point contradicts the definition
o f& St

Next, we prove the following:



82 R. ROUSSARIE

Lemma 2: There exists constants ¢, ¢, > 0 such that:

z
]gi(t)l < Co[?et/Z] for any < > 1, ¢t+>0 and any o & A,

Proof: Using the Temma 1, it is sufficient to show that

£42, ¢

Gi(t) < ColCe | for some constants g, 2085408 1,%¢53 0Q)90% A.

Recall that the function U(t,u) = ZGi(t)u$ is the trajectory
2 oT .,
of an hyperbolic vector field: x = P(u)g% with P(u) =§-u+-M ) u®.
=2
From a theorem of H. Poincaré on the analytic linearization,
there exists an analytic diffeomorphism g(u) = u+..., converging
for |u| < k,, for some x, > 0, such that:

9 1 3
g*(P(u)ga) = Pl 8]

9

This diffeomorphisT sends the flow U(¢z,u) of sz into the
=t
flow Uy(t,u) = ue: of %2455. This means:
Ug(tsg(u)) = g Ult,u) for |ul,|U(t,u)| < K

Because g(u) 1is inversible for |u| < K , there exist constants
a, 04 as<s 4 such that:

alul < |g(u)| < 4lu] for |u| < K .
ol AL

a =3t 2
Suppose that |u| < 7 K,e ® . Then |g(u)| < 4|lu| < akje

-

-1

U, (tg(u))] = lg(u)le < ak . Now U(t,u) =g °U (t,g(u)).
This implies that: |u(¢,u)| < %JUO(t,g(u))| <K Now, using

inequalities of Cauchy for the coefficients Gi(t)’ we find:

suptlo(e,u) [ ul=R(2)} %2 oo o0y by

|R(t)|" et i

N ok

le (£)] <
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So, we obtain:

K f e which is the desired estimation with

We will show below that the functions g;(t) are analytic
functions of ¢ > 0. For the moment, we notice that the formula:
gg(t,u) = Pa(u(t,u)), shows that the seriesin u of g% has
the same radius of convergence that wu(t,u). (Recall that Pq(u)

is supposed to be an entire function). The same is true for any

k
derivative E——Z—(t,u), by an induction on k. This remark gives
ot
ar gx.
an estimate for the coefficients ——7%(t) of the derivative:
X dt
Bku 4 9; 1 ; .
e | 'Z v, using the Cauchy inequality along the circle
ot i>1. dt g Ag
of radius R(t) = % K,e 2 =ce as above:
aku
g Sup{|5;;<t,u)l||u|=R(t>}
|—£(#)] <
dt |B(t)|*
k

; . dg, t/2, %
which gives: |——7?(t)[ < Ck(Ce ) for some (¢, > 0. So, we
d-&-

v

have:

Lemma 3: For each k& > 0, there exists a constant Ck > 0 " suth

that?
k

g ..
]T;;%(t)l £ Ck[c‘et/zj

Z
for any < > 1, ¢>0 and a € A.

(Here ¢ 1is the same constant as in lemma 2).
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We will give now some precisions about the form of the

functions g:(¢). For this, we introduce the function:
o.t
s
Qa,,t) = el for ¢ # 0 and
1 U’l

Q(0,t) = t. With this notation we have:

alt

Proposition 4: For each k > 1, gk(t) = e Qk(t) where Qk is
a polynomial of degree < k=1 in Q. The coefficients of @, are

polynomials in «a <20 More precisely:

13-
Qk 3 qu i ék(“l""’ak’g)

where ék is a polynomial of degree « k-1 in @ with coefficients
2
i Fle, seenatiy o b 008 fos ] & B,y 8]

(J(usv,...): for the polynomial ideal generated by TI S B

Proof: Write again the system Eg for the g;*
gl F Ongl

TR 2
g .= algz 2 azgl

g = *9; + Pk(otz,...ak,gl,---,gkd)

The polynomial Pk is obtained from the coefficient of u  in the
-qd
expansion ) o. [ ) giui] . It follows easily that Pp s
g2 1>1 2
2 k-1
. . 3 1 A
homogeneous linear in o_,...,0. Each monomial g,"...9; , is
such that: Kl k-1
AT e G0 TR RIS (*)
j:l J j:l J

o,t
First we show that g, (%) = e @ (t) with @ a polynomial
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in @ of degree < k-1, with coefficients, polynomials in
a,t ot
B par B SN L0t Mt

e X (1.6.:

S
1 e

Look at the equation for 9yt

b .9 + Pk(az""’“k’ gl""’gk—l)

and use an induction in k. We suppose known that for each J<k-1
a,t ; ; a,t
gj(t) —lc Qj(t) with deg(Qj) Sadr-1a . Notice that: e =E0GF

So, each gj is of degree < 4 in Q. Now, it follows from the

fiinsENInequal iEylin, ()—that:

2ioLi T
1

Pk(az""’ak’gl""’gk) A Xk(Q), where Xk 35S a

polynomial of degree < k-2 in & (To see this point, replace

k %
. . 1 -1
in each monomial g, ...g;_, of P, a product of two factors
20, ¢t
9:9; by e Qin and the other factors g, = by (u19+])Qg)'
a,t
Now, g2 2 Qk with:
(t -alt
Qk(t) h Joe Pk(uz’ %9y ’gk-l)dT
t ot t :
Qk(t) = ( e Xk(Q)dT = ( Xk(Q)QdT
0 10
o T

(Because 2 = ¢ )i

So, we see that Qk(t) is a polynomial of degree < k-1 in Q
From the induction it follows easily that the coefficients are
polynomials in O;5...50,. To obtain the precise form of the
statement,“noticesthat for &k > 2:

k
Pk(az,...,@k,gl,...,gk_l) = Otkgl + Pk

where Pk is linear homogeneous in Opsevesly o and each monomi
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in ﬁk contains at least one of the g, with ¢ > 2, But, we

7
know that the coefficients of such a g, are divisible by

O seeeslye So, the coefficiegts in Pk are in
I(a oo en sty S M, v, )
= (k—l)alr t -0

Now: @ = ak[ e dt + ( e
0 ‘0

T

- B (T)de

(t (k-1)o,T

Look first at the term dt:

- (k—l)a]T e(k-n)a]T 1
[ e av = s sl
10 i o)
CXJT
Use again: e = aJQ+1. We obtain:
(k-1)a,t
e 1= 14 (k-1)a,040l5(R)

where S(Q) 1is a polynomial in Q.

t (k-1)a,t 0%y
So, we have: ak[o e = 0 + o— 5(Q).
t T L
The term I e P,dt  gives a polynomial in @, with
0
coefficients in J(a "'“k-l) n J(al...ak)z. So, we obtain

finally: @ (t) = o0 + @,  with ék as in the statement.

We go back to the map Da(x)' The time to go from o to T

is equal to:
y i t(z) = -In = (where (z,]1) 6 0 s

given point on ©O).

Figure 4

a
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Now, we have u|, =z and u| =y.
ais Rtheviiliiese Wil s) ifonewl = ad tand +t = Tz Sinl 2%

So, we can calculate Du(x)

Doc(x) = 0(=Lnzexdy b for. & 5.0k
(We enbana o wiin &0, by -0 (0) =0).

is well defined for =z € [0,x]
where X {is some value greater than 0, and is analytic, for

There is no problem to see that D

z # 0. We want tol'situdy its behavior in =« = 0, For this, we
notice that the lemma 2 implies that for each t > 0, the

convergence radius of the serie ZQi(t)ui is greater than

_it %
% e * . So, for any =z small enough, the serie Z gi(t)xL
7
converges for each t < -2Lnx  and in particular for t = -In 2z,

So we can utilise the expansion } gi(t)ui to calculate D, (z):
T
v z
D (z) = ] g (-Inz)z
=1

The convergence is normal on an interval [0,%] for some
d*g .
X > 0. Now, we can utilize the estimates on g —E;% of
lemmas 2, 3 to obtain the following:

Proposition 5: Let any k € IV. Then there exists a KX(k) such
that:

D) = gi(-Ln:x)xi + ¥y

where ¢, s a Ck function in (x,a), k-flat at = = 0.

Proof: Given k, we want to find X(k) such that:

o]

PR KX gi(-Lnx)xi is a Ck, k-flat function.
+1
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: e K !
¥ avegofing! Eo Hiee et dle sertes.n,poFansbe derived, tonp by derive the theorem F of the introduction from the propositions

term. First, we have: f 4 and 5 above (with X vreplaced by k).

First, as in the introduction, we introduce:

d v LT ) J-1 ; J-1
Lrg.(-Lnzx)x?] = -g; '(-Lnx)ax + Jg.(-Lnx)zx
dx[ J J J -a,
" dgj wlo ,x) = 2—7;4;1 = (o ,-Inz).
: - ; 1
(where gj = Tif)'
1 The proposition 4 gives us the following:
Now, from the estimations of lemma 3 we have:
i | -0, Lnx
- < g, (Lnx) = e @, (-ILnx)
1 2 k k
198 (-ome)| < el 0oal -
3 =
And from lemma 2: | e [akw > Qk(al""’ak’w)]
g | ; i ! 5 B f
|gj(-Lnx)| < Colc-xl with @, of degree < I i and coefficients in
2
J(al,...,ak_l) n J(al...ak) So, the general term gk(-Lnx)xk
So, for some constant M we have:
3 ; in p i) T isifequalto:
do 4y %
F 7
d J . k-a
) -L M _|€. )
ldx(gj( el = 11 ?| gk(-Lnx)mk i 1(akw + @)
: .. -a
More generally, using lemma 3, we have for each s < J: This term can be rewrite as: (using « = = a W)
& J z 2 0 (-nz)ek = waRusa,a e’ (14a,0)3,( )
PR e LT & ey g (-Inx)x™ = oz 14w 4 (Ta,0)g, (0,00 ,0, 0
|7 datime=tl s TeTT Mol®ol 1-a, ‘
For SeiEatZ Bialndigte g (=T at) = = oz,
for some constant M  depending on s.
A 5 Sal, :
It follows from this, that if X > 2k and if 0 < s < k, the 0. g (i
sy 2 2 -
series: D (x) = z+a zw+a,x w+ala2x2w2+x2+x3(1+a1w)Q2 +
a° g :
—_ (=L (e Y converges and is equal to zero 3 3l 8 =
j2;+1 - |9J( 2 (%)) I g q +ogziusa 0w (140, 0)Q, + ...+ Yy
for x = 0. ) " where +... is for the expansion of the xsgs(-Lnx) for 4<s<k (k)
So, we obtain that the function Z el = Da' is k-flat and C . (The coefficients @, are ‘taken to be zero for < > N+1).
J>K+1 \ K§k) )
- ‘ Now, we rearrange the sum gi(-Lnx)xL in the following
+1 g ) T=1
iy R . o (
Suppose now that P (u) = izl a,u’  Ais a polynomial as in the ‘ way: first, we take all the terms whose coefficient is divisible

intrnoduetion. We show how to rearrange the expansion D (x) to ‘ by a,. Next, all the remaining terms (not divisible by o,) but
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divisible by o, and so on, until a We obtain the following

N+1
expansion:
2 2 = 3 3 3 =
Dy (=) = x+a, [xwta,z wiz w@,+a, % w += w@3+...]
. 3= K= o
+ uzﬁx2w+terms in x Qa,...m Qx divisible by o,, not by alj

+ %@Nw\ttems in mNHé

B © A
paqre e o® @ div. by &, not by ul,...,aN_T]

N+1

+ o x w+¢k.

N+1

From the above expansion it is clear that each term after z%w
in the bracket relative to o is of order greater that z°w and

has coefficients in (al,...,aN+1) (because it comes from a term
with coefficients in J(al...aN+1)2, next divided by as). The

sum is stopped at O because a, = 0 for < > N+1. The

function by is Ck in (x,0), k-flat in =z. So, we have

verified all the statements of the theorem F.

IIT - Finiteness of the number of cycles in the generic case
(Theorem A).

As in the statement of Theorem A, we suppose that XA’ A Eﬂ%,
is a ¢* family of vector fields such that:

1) For » = 0, X, has a loop (saddle connexion) T at some
hyperbolic saddle point s.

2} div 2, (=) = 9.

3) The Poincare map P, of X, around T, relative to some

transversal segment o parametrized by =z > 0, 1is such that:

"Case B,": Py(x)-% = Ba’+o(c") with 8, #0 or

1 1
"Case g i1 P Po(x)-m = a xk+ Lnx+o(xk+ Lnxz) with o

k+1 " # 0, for

some - k. >.l.
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The preposition E (which is a direct consequence of the
proposition D proved in part II) shows that for any X € W, we
can choose a CK change of coordinates around the saddle point
sy of Xy, bringing this vector field in the following normal
form, defined in the ball v with coordinates (%,y), x’+y? < 4:

3 v (x) ;
I = ws -y + (L o ) @) gy

where the functions o.,(A) are ¢ on some neighborhood ¥ of
0 € JRA, and WN(K) € IV is some number depending on X. For
what follows, it will suffice to take X > 2k+1.
We can also suppose that the change of coordinates is chosen so
that the Poincare map P, 1is defined on o= {y=1, 2>0}, near O.
Let also T = {z=1}. i

For X € W, the Dulac map Dk(x) is defined from a
neighborhood of 0 € o (parametrized by = > 0) to Tt (parametrized
by ¥). We can extend the chart v in a cX-chart defined in a
neighborhood of T. This chart is an union ¥V uv' where V' is a
neighborhood of the regular part of T, between o and tT. The
vectoriielginsa ¥ 1s & on v,

Now, let R4(x), the map from o to 1 defined, in a
neighborhood of 0 € &, by the flow of -X
differentiable of class

2 This map is
So, we can write it:

Ry(z) = @-[B,(0) + B, (M)a#B, (M)z” + ... + g, (1) +¢,]

with ¢K a o function in (x,A), x-flat at 2 = 0. The functions
Bys...,Bx are at least continuous. (In fact, g.(3) is of class
k-7). ¢

Now, the Poincare map relative to o is equal to: PA=RonDA.
It is clear that the case By is equivalent to:

B, (0) 514, [oCmlS = By =0, B,(0) =B #0 and o (0)=......... = a,(0)=(

The case o

%41 is equivalent to:
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Bo(0) = oovve = B,(0) =0, @y (0) = ...... = a,(0) = 0 and
dges (0) = gy, # 0.

To look for the fixed points of Py we prefer to consider
the map Ax = Dy-Ry: the fixed points of P, will correspond to
the zeros of Aﬁ’ Choosing N(X) > K in the theorem F (which

is always possible), we can write:

(m)=x+a1(A)E;w+....] + ... +a (X)[?Kw+---]+¢K-

D)\(Vx)=D X

a(2)
So that:

By (2)=8,(M)+a, (3) [pur...] + B, (A\)z+a, (A) wt...] + ...

K-

+8,_ (N ro (A) [k . Tru oy

K ~1

Using the remark after the statement of theorem F in the
introduction we can write:

k+1m+ R

A‘A (€)=, (A)+a, (1) [t . ]+. .. .+Sk(‘)\)xk+ak+1 (A) - %

where the functions wK,¢K,¢K are CK, k-flat in = = 0.
The precise meaning of the notation: +..., {8 gdiven in Zhe
introduction.

To study the number of zeros of AX,_ we have to extend
somewhat the algebra generated by the z'w/. We introduce now

the algebra of functions, continuous in (z,X) which are finite
L+na

13 1
combinations of the monomials =z mm, Lsn € Z, m € IN,

o, - al(x), with coefficients, any continuous functions of .

(e call it the algebra of admissible functions).

0f course, we consider also the monomials as functions of
(x,al), but when we consider combinations of monomials, «a, is
always replaced by the function al(k).
Now, we introduce between the monomials, the following partial
strnict order:
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2'+n'a11n'< L+no, m

Ao w X W < >
2' = &, n'=n and m'>m
L+n'ay ! Lo,
(Notice that % w and z w with* ‘n # n',. are not
ordered).
Later on, the notation: f+... where f 45 a monomial will

mean that aftern the sign + thenre exists a (non precised) finite
z» with g;> f. (This notation
extends the one defined in the introduction). We afso use the
symbol x to nreplace any continuous function of A, non zero at
A=0, and we write ¢ for the denivation in x: ¢ = %g.

combination of monomials g

With these conventions, we indicate now some easy properties of
the algebra of admissible functions.

a) Let g, f two monomials with g>f; then % (£,0,) > 0
for (2,0 ) = (0,0). This follows from the two following

8(a,)
x lwm

observations: o > Inf(T:LT’ -Lnxz) and + 0 (for any
1

continuous function S(ul), with s(0) > 0), if (x,al) > (0°,0),
and m € IV,

b) Let a monomial f > 1. Then f(x,al) %10= farz)> 0

; Lm0,
(uniformely, for @y bounded): £ > 1 means that f = = w

with 2 > 1, and we can use the same argument as in a).

c) fi>f, and any g > geur,.
2+na; o

d) Let f=x w . Then:

. g=1+n0 t=i+no, m=1

f= D+(n-m)a J= P e Yo

From this formula follows easily:
£+na1 -

e) Let f =<« w with 2 # 0, and g any monomial such

that g> f. Then g 1is a combination of two monomials g¢g' and
g™ Ui R S ) f g g,



94 R. ROUSSARIE

We shall also use rational functions of the algebra of the

following type: ;}44444. (The admissible national functions).
For them, we have:
2emly g-14m0y
& WA T ; d W :
I e i T e . Ak

We can give now a proof of theorem A. We shall consider
successively the two cases Op , and  Bg.

A. Proof of Theorem A in the case 0, .,

Recall that:

A, ()=B +a, [Ewr. .. J+B z+a, k.. J+... 0y ot . .]+kak+0tk+ixk+1'w LIRNE

where a., Bj are continuous functions; vy, is a X function
of (z,)), k-flat in =, with ¥ > 2k+1. Next, we suppose that

By {0) =, Lo B, 00) =10y O (10N =" %0 4 4= ak(O) =0 and uk+1(0)#0.
From the property d) above it follows:

(mjw)' = (j—al)xj4m+... if 4#0 and W=z

So, deriving Aﬁ’ we obtain, using also property e):

A = 0‘1[*‘“---]+51+°‘2[*‘§‘*’+---]*'----**U«kﬂxk“”f o (pK

(For the notations *, +..., see the conventions introduced above).
If we derive A, k+] times, we find:

-k~ -(k-1)-a
A)(‘k"'l)(x) =4 [ 1+...:}+0L2l:*.ac ]+....:]+...+*0Lk+1w+ it w}({k’“)
A11 the monomials %wg, for 4 < k, have disappeared. Multiplying
k+a1
by = , we obtain (use property c)):
k+o k+o
kaAfGl [*1+...]+0c2[*x+...]+....+*akﬂx g R A w]gkﬂ) (1)
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(Above and afterwards each bracket designates an admissible
function).

Locally (in some neighborhood of =0, #=0), the zeros of
xk+alA§\k+1)

A§k+i) are zeros of the following function & =

k+oy

............

0 le { cK-k-1 .
D e e S function, at least K-k-1

flat in x=0. Using the property f), we have:

b k=1+0
-2 * O x
Na A . Pt J I k41 rit
€, S e o P = 0 I [ # R . T e e e S o i
. 4 K-k-2 2 >
where &, = ¢, 15 K0 s ERRCZTTIRE AW #5058, = Gyl 4,

where = u s inversible as an rational admissible function. Let

-1, a .
€, = u, g, and derive again ¢g,:

We write it ¢ =oa,u, +... where %, fis inversible as admissible

rational function. We define &, = ugléz, and so on. By this way,

we find a sequence of functions: 51’52’-"’Ek such as £&: is the

J

product of ¢ by some inversible admissible rational function.

j-1
For the last one Ek, we have:

T T s e

where ¢, is CK'Zk, (k-2k)-flat.

Deriving a last time, we obtain:
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Then, using the fact that ék tig 1 gf k]

X-2k-1>0 and the property a), we obtain that:

-flat, with

S
x W lgk Tradgl, % ofl):

(Where the term o(1) 1is continuous). The assumption ak+i(0)#0
implies that locally xi%w—lék and also ék are non zero for
small (A,z) (« > 0). So, the function Ek has at most one
zero, for small (X,z), gk_l, at most 2 zeros, and so on: &,

has at most %k most k zeros locally. Now £, has at least the

same number of zeros as A§k+1), so finally we obtain that the
map Ax has at most 2k+1 zeros for small (A,x).

B. Proof of Theorem A in the case Bk

We derive the map By only k times:

-k+i-o
% 1 k
A§ )(x)=a1[}x +...]+....+ak[*w+...]+ *3k+....+w§ )
and introduce, next:
(%) k-140; k=140
E - A)\ (-’Z?) ~ , i . , *qu uH-*Bkm +5,
et 7 I TR N S T St
A BiAvrsl ot za LIRS Be e taviticramas sediBa; ool LT

where &, is CK'k, (k=k)-flat in = = 0.

As in paragraph A, we define a sequence of functions

E »..esEp, With £; equal to éj_l multiplied by an inversible

admissible rational function. The last function & _, is equal to:
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*a, x w+*B. x +
L k K
Ek_l_ *ak—l + = + Qk-l
and then: o a
. *akx w+*6kx + !
AR T SRR g
. K=
where L is of classe C 2k+], (K-2k+1)-flat.

We take now £; as:

i ]

: B fldanth
G = W -[*1+....] Ek-l = *og + *Bk T ot ;5 @k

where the bracket is the denominator in the expression of ék_l.

The function @, is CK‘zk, (k-2k)~flat.

If we derive Ek’ we obtain:

~1l-0,
x e s 1
Ll T et Ny
and:
Fhtacle ol .. TR a0 tanxTeuctiogt. ,a
Er=0 k k =10 k
*X +. * +

The rest is o(1). So, because Bk(O) # 0, we have that ék #0
from (A,z) small enough. It follows easily that the map Ay has

at most 2k zeros for small (XA,z).

IV - Finiteness of the number of cycles for a perturbed Hamiltonian

vector field (Proof of Theorem C)

As in the statement of Theorem C, we suppose that the family

takes the special form:

XX = Xo AL Al o(e) where A = (E’X)'
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For €=0, the hamiltonian vector field Xo is ¢© equivalent to

xg% - 5%. It follows from this that the functions ai(x) in the

normal form are divisible by e: a,(}) = e&i(e,i) for some C°

function &i. So, the proposition E gives a cX-normal form equal

to:
v(K) .
ER S L S i, 2
T3z " Y3y e[izo aiﬂ()\)(xy)jl T
It suffices now to consider a polynomial family x, with
o = €en, 4= (&1,...,&N+1). From the proof of theorem F in the

part II, it is clear that the function D (x)-z is also divisible
by €. This means that there exists some c® function ix(x,u),

kK-flat in 2x=0, such that:

O z) = x+e(&lExw+...]+...&K[}Km+...] + @K)

where w = B _orl with o, = €ad;. (We choose W(X) > K).
1

1

Return now to the initial family X,. As in the part III,
we can choose some CK-chart around of the loop T, transversal
segments 0, T for which, the transition maps are respectively,
the Dulac map : Dy (x) = Da(k)(x) and a map R,(x) such that

Ry (z)-= 1is also divisible by €:
R, (z) = z-e(B,+B,% +...+§KxK+$K)

where the Ej are continuous functions of A and 5K Al

function of (z,A) which is k-flat in =2=0.

Now, the map A, = D

A =Ry uds equal to 4, = EZA with:

A
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E, = B,+a, [zo+...]+ +0, EmKw+ 1+8 Pt
A 0 1 « e o ke X SN Kx X
for some CK, K-flat function @K.

As in the part III, we say that we are in the ék or &k+1
case’ at'' ¥, O9¥ Ek(O,iu) or 5k+1(0,io) is the first non zero
coefficient in the expansion of E(O,io)° The zeros of the map 4,
pour ¢ # 0 are the zeros of &,, and if (€ X ) 0000, s s
So, the study of the part III allows the following conclusion:

in the case Bk’ the map &, has at most 2k zeros for (g,X)

near (0,%,), € # 0; in the case § e ithei map 4, has at

k+1
most 2k+1 zeros for (e,X) near (0,X,), € # O.

It remains to show how the two cases &k+1, Ek are related
to the expansdion of the Lntegraf I. Recall that:

I(b,%) = J By @ =244  dE=x J0
; Fb

where Pb is a cycle of the Hamiltonian function #, near the
loop. We suppose that these cycles are defined for b > 0.
({p=0} corresponds to the loop). To compare I(b,X) to the
A,-map we change the parametrization b by the parametrization z.
(b(x) 1is a diffeomorphism of the segment o, preserving 0). So
we take: I(xz,A) = I(b(x),2).
Now, notice that:

Ax(x) =Ia(x)-x H o PR NiSg-:

P)\(x)-x S TN

A
If we compare this expression to the one using I, given in the

introduction, we obtain that:
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B, (=) = I(x,X) + ¢(x,A,e) where ¢ is some function tending
to 0, for € = 0. It follows from this that, for each A:

I(x,)) = Zi(x) where Ei(x) = K(O,i)(x)'

(In fact, we have to notice that Ez(x) is continuous in e,

because z'w’/ + z"(Inz)?, uniformely in =z, when o and also

g > 0, for each < > 0). Return to the map A%:

k+1w+... + O

BT o e e - - k -
By, = Byta, [wo+. . J4Biz+. . + Brzro, 2 !

In each bracket [@im+...], i £k, the term +... s zero for

Qpees =...=0, = 0. So, this term is divisible by e. It follows

that:

k+1

Bs ()=Bo (0.%)+3, (0% )atnar+B, (0, )t . 48, (0,R)a4d, | (0,1)a" marto (e 1)

Now, if I(b,x ) " bk(io)bk with bk(io) # 0, we have in the

x-coordinate:
= = - = k 0 - -
I(xsh,) = Aio(x) " Bk(O,Ao)x with Bk(O,xo) # 0.

So we are in the "case Ek“. Also, if I(.b.io)-m'ak,(io)kaLnx, then
- - = 004 i 3 - - ; -
I(zsh,) v ak+1(0,X0)x Lnz  wWith ak+1(0,%o) #1000 1f ak(ko)#o

and we are in the case ak+l.
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