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ON FINITELY CONVERGENT ITERATIVE METHODS
FOR THE CONVEX FEASIBILITY PROBLEM

ALFREDO N. IUSEM AND LEONARDO MOLEDO

Abstract. Iterative algorithms for the Convex Feasibility Problem
can be modified so that at iteration %k the original convex sets
are perturbed with a parameter €, which tends to zero as k
increases. We establish conditions on such algorithms which
guarantee existence of a sequence of perturbation parameters which
make them finitely convergent when applied to a convex feasibility
problem whose feasible set has non empty interior.

1. Introduction

The Convex Feasibility Problem (CFP) consists of finding a
point a2 in the intersection @ of m «closed convex sets
Ql,...¢f7CJRn. Without loss of generality we may assume that

g/ {s expressed as
Qj = {x 6 B : gj(ac) < )0}

where g.:IR” ~ IR is a convex function. In this formulation CFP
consists of finding a solution to the system of inequalities

g.(x) £ 0 (123 ¢m (1)

Systems of Tinear equations or inequalities are particular
cases of CFP. For the Tinear case, iterative algorithms have been
used for a long time, beginning with Jacobi's and Gauss-Seidel's
methods. More recently, interest in iterative methods has been
aroused by applications, such as Computerized Tomography [7] and
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Transportation Theory [9], where the system of constraints is very
Jarge and presents no detectable structure., For these applications,
it is convenient to have algorithms which satisfy the following
conditions:

1) The system of constraints is not modified at all during the
whole procedure.

2) In each step of the algorithm only one constraint is used.

3) In addition to the current iterate, only one or perhaps just a
few previously computed n-vectors are used.

Algorithms having these features have been called "Row-action
methods" by Censor [1]. Iterative algorithms for the CFP can be

found, for instance, in [2], [4], [6), [6], [00]. We are interested

here in iterative algorithms for the CFP which are finitely
convergent when the set @ has non empty interior. In such a case,
the functions 93 (1 <4 ¢m) can be chosen in such a way that
there exists a real number € such that the system

polel r iz @ution] o §inaf) (2)
is feasible. For instance, if d(x,4) denotes the distance from
x € IB' to a set 4 cIR', and 34 denotes the boundary of 4,
we may take

d(x,q7) it zg ¢
i (1.2 7 2 @)

-d(x,097) TE ., ol

It is easy to show that the gj‘s so defined are convex. If € is
known beforehand, any convergent iterative algorithm for the CFP
can be transformed into a finitely convergent one, by applying it
to (2) instead of (1). But of course, the interesting case is that
in which e 1is not known. A natural option then {is to try a
sequence of positive numbers {Ek} decreasing to zero, so that

at iteration k we consider the system:
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g pm)itey <0 b Hegm) (3)

instead of (1). But then, finite convergence is not guaranteed

"a priori". We study in this paper conditions upon the algorithms
and the sequence of perturbation parameters {e,} so that finite
convergence is achieved, while preserving the "row-action" nature
of the original algorithms. This condition is important if the
perturbed methods are to be used in the previously mentioned
applications. There are other finitely convergent algorithms for
CPF's satisfying a Slater conditions, like Shor's algorithm [12],
which, however, are not "row-action" methods. We prove that if an
algorithm generates a sequence xk that is Fejér monotone with
respect to "9« (1.e. the distance fram xk+1 to any point in @
is less than or equal to the distance from xk to that point),
the rate of convergence is at least linear (i.e., the ratio between
the distances from xk+] and xk to @ 1is less than a constant
Tess than one) and this rate satisfies a regularity condition (as
a function of @) then a "diagonal perturbation" of such algorithm

is finitely convergent, when @ has non empty interior.

The procedure analyzed in this paper was used in [3], [8] to
modify previously known "row-action" methods obtaining finitely
convergent ones.

2. Convergence Results

Let B be the set of functions g:IR”-*lRm convex com-
ponentwise (fe. g(x) = (g,(x)sevesg,(=)) with g.:R' > R
convex (1 << <m)). For g€ B, Tet C(g) ={z6R g, (x) <0
(1 5% <ml}. Let B' = {g6B:clg)# P} and 8°= (g6 B:
int c(g) # @} where "int" denotes interior.

Given g € B, Tlet g+e denote the function with components
grtese.e,g, teL (e > 0] .o 0bserviesthati i f 1 576 B® then there
Baicés = >0 such Shat _gte 6 8° . for e & [0.%),

We consider algorithms for the CFP of the form: 2z’ € IR" arbi-
trary, xk+1 = F(g,xk), where F :BxIRn+1Rn, and look for condi-
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tions on F such that there exists a sequence of positive real
numbers {ek} so that the algorithm: s arbitrary,

xk+1 = F(g+ek,wk), converges finitely for any g € B® (i.e.
there exists k such that =z € C(g)).
Let |[.] denote the Euclidean norm in ', and for S <,
x 6 R’ dist(z,S) = inf [lz-yll.

y€s

We make the following assumptions on the algorithmic operator F
(a) If 468, then [[F(g, )=yl <llz-yll vz e B, y ¢ c(g)

(Fejér monotonicity).

(B} rw o3 BZ-+(O,1) such that
dist(F(g,x),C(g)) < o(g) dist(z,C(g)) ¥ g € B, «x ¢ IR

(Tinear rate of convergence).

Given g € B and a sequence f{e;} of positive real numbers
decreasing to zero, consider the sequence

z’ 6 I’ arbitrary

xk+] = F(g+ak,mk)

s k
Let xk = c(g+ak), dk = dist(x ,C(g+€k)).

and (a) and (b) hold, then there exists K

Lemma 1: If g € B,
Tl N

such that ‘for % 2+

Proof: Since ¢ 6 B, there exists X so that Clg+ey) # 523
for k > kK. Since {e,} 1is decreasing Clg+ep,q) 2 Clg+ey).

4 Ao} 4 k+1
So, using condition (b): dk+1 < dist(=x 4 C(g+€k)) =

A k
= dlst(F(g+ek,m ), clg+el) 2 Xkdk‘

2 5 -
Corollary 1. If g € B and X 1is as in Lemma 1 then, for

k-1
BouK d fee T S
k - ok JL
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Let < , > denote the Euclidean inner product in 1" and

39 (x) the set of subgradients of g At xy e theset
of vectors ¢ € IE" such that <ty =x> < gi(y)—gi(x) v y6 ",
Since 9.2 =15 conviexs, agi(x) is non empty. See, e.g. [11,
sections 23, 24 and 25],

Lemma 2: If g € B°, (a) and (b) hold, k>x and z* § c(g)
then there exists p > 0 (depending only on g and z’) such
that €, S Pdy.

- 1
Proof: Since g+e, € B, take 2K € C(g+ek) such that
K

[ 1
dk = |2 =2 .. o So:

g.(z5)+e, < 0 (1<%<m) (5)

since =5 ¢ ¢(g), for some gj:
k
gAY Jere 0 (6)

From (5) and (6)

k
Euld gj(x ) - gj(zk) g <t§, 2k-zk> (Z)

k
where tj € agj(xk). Take now a fixed y € C(g+eK).

So y € C(g+€k) for k > K. From condition a)

k k k
IV gl = NPgreg,a )l < lsepll. so =Tyl < 5yl

Let U= {z ¢ B": [lz-y|l < [lz%-yll} and

o = max {||t|l: ¢t ¢ 3g;(x) for some < and =z € u}. Since U
is compact, p exists provided that the effective domain of
each g; is the whole mR". o depends only on g and "

¥oe S0P 0N 1o’ candt Pt RO Vehnent C LR W P eed Bs X, from

(7) get & < lelllla®a Il < pqy.
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Corollary 2. If g €B?, k> & and il C(g) then

k=1

ep < 0dy ('HK A) (8)
J:

Proof: Follows from Corollary 1 and Lemma 2.

If the algorithm (4) is not finitely convergent for a g € B
then (8) holds for any k > K. We will impose additional conditions
on o so that a sequence {ek} can be chosen violating (8) for
large enough k. Hence conyergence must indeed be finite. Consider
first condition:

(c1) J € (depending on g¢g) such that o(g+e) = a(g) for e€(0,€).

Observe that condition (c1) is implied by condition:

(ci) 3.8 68 olg+e) s continuous as @ Ffunction of e .at

e = 0, because assuming (ci), since o(g9) <1, given any

u € (o(g),1) there exists € so that o(g+e) £l for e e (0,8€)
and we may redefine o(g+e] = u, for ¢ € [0,8), satisfying b).

Theorem 1. If g € B>, (a), (b) and (c;) are satisfied and

oo

kz e = @ then algorithm (4) converges finitely to a point in
e

c(g)-

Proof. Consider X' > X so that e, < elofopenk hoxk, «51¢ loons
vergence fiis®not if inite; stheny from.Conollany 25, forsalll =kin-k'.

k
i S10dp L
J

1 k=K' B Py

A = .08k olg _ i A S
X' J) K ( ) kZ:KI k - 1-0‘(9)

g ¢

in contradiction with the hypothesis [ €, = =,
k=1

So, 1f B satisfies (c1), we may take €y = and get finite

xoj

convergence for any g € 8. We can weaken hypothesis (c1), but
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then we need to impose even slower convergence to 0 for the
sequence {ek}. Assume:

fegl 3 €>0 so that o(g+c) < 1~ for € & (0,8) and choose

k
{e,} so that: y (1-¢)
e« og=]
go & e
r Sits, B Srep 0. (9)

Condition (9) is implied by:

k

pn g - o

By = % does not satisfy either (9) or (10) but €, =

for instance, satisfies both of them.

Theorem 2. If g € BZ, (a), (b) and (cz) are satisfied and (9)
holds then algorithm (4] converges finitely to a point in ¢(g).

Proof: As in the proof of Theorem 1, take a convenient X' and
apply Corollary 2 for % > kx'. Use condition (c2), assuming
convergence is not finite, and get

k-1 k-1 L
srla B Rt cmd oy ¥ NG, = =
€p < pdy (j=K' §) S edy £ (1-¢€5) >0 < <

for«all - ks goiinvcontradictionswith ' (9).

References

(1] censor, Y., Row action methods f§or huge and sparse systems and
thein applications. SIAM Rev. 23: 444-464 (1981),

[2] censor, Y., Lent, A., Ciclic subgradient projections. Math.
Prog. 24: 233-235 (1982]}.

[3] De Pierro, A., Iusem, A., A Finitely Convergent Cyclic Sub-
gradient Projections Method (to be published in Applied
Math. and Optimization).



18

4

(5]

(el

71

(e]

Ell

Qo]

01l
02l

A.N. IUSEM and L. MOLEDO

De Pierro, A., Tusem, A., A parallel phrofection mezthod 0§
§inding a common point o? a famdily of convex sets,
Pesquisa Operacional 5: 1-20 (1985).

Eremin, I., The relaxation method for s0lving systems of
inequalities with convex functions om Zhe Left hand
s4ide. Soviet Math. Doklady 6: 219-222 (7965).

Gubin, L.G., Pelyaky B T Ravtk, BiV.,*The method of pro-
jections gorn finding the common podnt oé convex sets.
USSR Comp. Math. Math. Phys. 7: 1-24 (1967].

Herman, G.T., Lent, A., A family o4 {teratdve quadratic
optimization algordithms forn pairns of Lnequalities,
with application {n diagnostic radiofogy. Math. Prog.
Studies 9: 15-23 (1978}).

Iusem, A., Moledo, L., A Finitely Convengent Method of
Sémultaneous Subgradient Projections fon the Convex
Feasibility Problfem. Matematica Aplicada e Computacional
5,2: 169-184 (1986).

Lamond, B., Stewart, N.F., Bregman's balancing metnod.
Transp. Res. 15 B: 239-248 (1981).

Motzkin, S., Schoenberg, I.J., The relaxation method for
Linean inequalities. Canadian J. Math. 6: 393-404
(1954).

Rockafellar, R.T., Convex Analysis. Princeton University
Press (1970).

Shor, N.Z., Cut-o4§ Method with Space Extension £n Convex
Programming ProbLems. Kibernetika 13, 1: 94,95 (1977).

Instituto de Matem3dtica Pura e Aplicada
Estrada Dona Castorina 110

22.460 Rio de Janeiro-RJ

Brasil

Instituto de Investigaciones Economicas
Universidad de Buenos Aires

Cordoba 2122. 1120 Buenos Aires
Argentina




