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A LOWER BOUND FOR THE FIRST EIGENVALUE OF A FINITE-VOLUME
NEGATIVELY CURVED MANIFOLD

JOSEF DODZIUK*

0. Introduction

In this paper (M,g) will be a complete Riemannian manifold
with a metric g and finite volume 7V, of pinched negative
sectional curvature (KDL Sl <igic loeite 0, and of dimension
greater than two. We prove the following geneneralization of the
main results of [D-R] and [S].

Theorem. Let ¥ be as above and let X = AI(M) = inf{p > 0 |
| v € Spec(A)} be the greatest lower bound of the positive part
of the spectrum of the Laplace operator (considered as an unbounded
operator on L%*(M)). Then
)\>m)_k2
e
where the constant c(n) > 0 depends only on » = dim u,

The method of proof is the same as in [D-R] but there are
certain technical complcations. The main difficulty turns out to
be avoiding the appearance of derivatives of the curvature tensor
in the estimate of L~ norm of the gradient of an eigenfunction
belonging to A (M). This is accomplished by smoothing the metric
using the result of [B—M-E]. The paper is organized as follows.
In Section 1 we introduce the notation, discuss the "thick and
thin" decomposition of M, and show how to smcoth out the metric.
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Section 2 deals with proving that "thin pieces have large Dirichlet
eigenvalues." This was done by an explicit calculation in [D-R]

and has to be replaced by a comparison argument. Section 3 contains
the proof of the theorem.

I am very grateful to G. Thorbergsson for useful discussions
and for a very careful reading of a preliminary version of this
paper.

1. Smoothing the metric

We begin by describing the "thick and thin" decomposition of
Mel(ch. §1050¢F [B-G—S]). There exists a positive number p = u(n)
depending only on »n = dim ¥ such that the set {z €M |
inj(z) < u} 1is either empty or consists of components, each of
which is either

a) a closed embedded tubular neighborhood of a simple closed
geodesic of length smaller than 2y, or

b) a cusp, i.e. a quotient of a horoball in the universal
covering M by a discrete group of parabolic isometries
acting with compact quotient # on the boundary horosphere

H.
Every cusp can be parametrized as # x [0,4) by mapping curves
t - (x,¢t) into unit speed geodesics %) emanating from x and
orthogonal to #. The hypersurfaces H, defined by ¢ = ¢ are
¢®, are perpendicular to geodesics Yy and have sectional
curvatures kx satisfying |k| < 2. This, except for the smoothness
of H,, is either proved in or follows easily from [H-I]. The
smoothness of horospheres follows from the fact that they are
images of strongly stable submanifolds for the geodesic flow in
the unit tangent bundle of M. The geodesic flow is Anosov and
it is a general fact that strongly stable manifolds of an Anosow
flow are as smooth as the flow itself (cf. [H-P]).
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The "size" of components of -either type can be estimated as
follows«:If oy ds-a.short: (off Aengthic 2u) 18 implel closed
geodesic, then the normal exponential mapping is injective on a
tube of radius »(n) in the normal bundle. Denote the image of
this tube by 7. By choosing u sufficiently small we can assume
that »(n) > 1 and that the shell s = {z €6 ¥ | »(n) > d(x,Y)
ey = 1} of T consists of points with injectivity radius
greater than or equal to wu. Similarly, if T s a cusp, we can
assume that all points =« between H = H, and H, satisfy
inj{=)® > AiAs abovie ithils! setl wifllibe called the shell of T,

The union of all tubes and cusps will be denoted Mthin' The
pieces of this union are disjoint and, for each component T of
Mthin’ the volume satisfies vol(T) > e¢(n) > 0. Here and in the
sequel the constants depend only on the quantities indicated.
The same symbol appearing in different inequalities may denote
different constants.

Let S be the union of all shells of components of Mthin'
By definition M, . . = (M - Mthin) US. We will denote by ¥,
t >0, M with all cusps cut off at distance ¢ from the
bounding horocycle.

M'ﬁ
U3 5 == B
1 | A/
0 t
Figure 1

We now state our smoothing result.
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|

\ Thus, near 3m,, g is a product metric so that we can smoothly
Proposition. For every & ¢ (0,1) and an integer k > 0 there double (u,,g). Denote the resulting Riemannian manifold (M,g3).
exists a metric g, on M such that | The metric g  agrees with g on M, and satisfies

B, 2
e Gl R IR Sl S

‘ |Bm(x)| < e(n)

i Rm . < elMn kY8 —
m s ms” k Mokl i ) for all «x € M. Here, Rm stands for the Riemann curvature tensor
1 -
‘ of the metric g. This inequality is a consequence of the uniform
(139)° 1ngeyt>"e(n k,6) >%0 " forfevery iz € Mihick: boundedness of sectional curvatures of the hypersurfaces H,.
|
|
(iv) gt =9 9D M- . ‘ We now apply the result of [B-M-R] to the metric g on the

double M and obtain a metric g4 such that
Here Rms, injg denote the Riemann curvature tensor and the |

2 - = e
injectivity radius, respectively, for the metric gg. Moreover (1=8 .2 g & (138975
k 3 =
|| 2m || S e |V Rm (z) |, || ]| < e(n,k,8),
8o Righs ) 220 zeM 8 x
thick thick ¢ (M)
where the pointwise norm is computed with respect to the metric sinee. M s ™M SH ' and g agrees with—F\on ¥p, (1)
s . . . . M 3 3 . = = N
gy and (ii) will be satisfied on Shiok i 96|Mth1ck g|Mth1ck‘
We now re-attach the cusps, i.e. define the metric gg on M as

Proof. We would Tike to use the result of [B-M-R] which applies follows.
to compact manifolds without boundary, Note howerver, that we G =|M
need X bound only on the compact part My .. of M. The idea g% PG
for smoothing the metric is as follows. Consider the manifold u,, g5IM'M5/u o g[M'MS/u

i.e. M with all cusps cut off. Let M be the double of M,.
We smooth the metric of m, cut M along the boundary of , and =
i e g (z,2) = (1-9(4t-4)g(x,t) +
reattach cusps. This is illustrated in Figure 2. 8
+ ¢(4t-4)g(x,t)
We now describe the construction of gg 1in more detail, To

simplify the notation assume that » has only one cusp for (=,t) € ¥ -M,,

T = B x[0se), Let ¢, be the inclusion of Bl in. 7, Theimbtril

g|T can be written as ds? + (it)*g' Chiboisbla Smoot Al hctin On checks easily that conditions (i), (ii) and (iv) of the

¢: [0,1] » [0,1] so that ¢|[0,1/4] = 0, ¢|[3/4,1] = 1 and define Proposition are satisfied. The third condition follows from the

a new metric gz on M as follows. first two by an argument of [K] as follows. First note that for
i i every < € Mthick the radius of the largest ball around the origin
o i T in the tangent space at = on which the exponential mapping is
g | My-My = dt? + (1-9(3-1))(i}g) (=) +

+ ¢(8-1) (£¥g) (2)
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nonsingular (for the metric g5) can be bounded from below by a
constant depending only on the upper bound of the norm of the
curvature tensor. Thus very short curves in M can be lifted to
the tangent space at their initial point. If the injectivity

\ radius at x € M were very small there would exist a short

closed loop cons?gzgﬁg of two geodesic segments emanating from =z,
By (i) such loop is short with respect to the metric g and can

be assumed to be contained in a ball or radius r < inj(x).
Therefore this loop is contractible by a "short" homotopy. The
homotopy in turn is "short" with respect to g5 and can be

lifted by the inverse of the exponential mapping for gs to the
tangent space at x. It follows that the original closed loop
1ifts to a closed curve. This is a contradiction, since the two
geodesic segments Tift to segments of different rays in the tangent
space.

2. First Dirichlet eigenvalue of a thin component

Let T be a component of Mthin' In this section we outline
the proof of the following estimate.

Lemma 1. If f € C (T) and £|3T7 = 0, then

2
J ARG A ik B X kzj Flav
T =~ e 4 7

Remark. Here T is equipped with the original metric g,

Proof: We sketch the proof for a cusp. In terms of the

\ parametrization of @l'cusp' T @as H x [0,») described in §1, the
volume element can be written as dV|T = h(z,t)dt~dV,, where dV,

iscLhe; yolume element of H = H; ‘in the induced metric,

A standard comparison argument using stable Jacobi vector fields
Figure 2 (cf. [H-1]) yields
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(2.8 %% < ~(n-1)k,

S —

We now apply the argument of McKean (cf, |M|, |D-R|) as follows.

[ o [ v

0

ooaf _l =) a3 2
> Jfo 5e EF i g fo 32 R 2
y g o2y BA (n-1) S "
7 [ gk Bl frtnar,

Therefore
2

Jmldﬂzhdt > (”;” K j £nde.
0

0

integratinn over H# yields the Lemma.

Remark. The proof for the case when T 1is a tubular neighborhood
of a geodesic is identical to the proof above and uses an estimate

for the volume element in terms of Fermi coordinates analogous to
(2. 1),

The following is an easy corollary and an approximate version
of Le-ma 1.

Lemma 2. There exists a constant n =n(n) > 0 such that if T is

a component of Mthin withs shell &5, = and 1" Rl is a-function

on T satisfyding
2
(i) J A Idve o) pagd 0
p 4
2
(i) f | dt| dv < bn
s

(iii) f £2dv < bn,
Js

then

\"4
e
S
1
ey
—
e

[ tasi*av P
2 _
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The proof of the corresponding fact in [D-R] carries over
verbatim,

3. The proof

We first remark that by Lemma 1 the spectrum of the Laplacian
of M-My with Dirichlet boundary conditions is contained in
[}Z(n-1)2/4,w). Therefore (cf. [D-L])

Spec(A) N [O,kz(n—1)2/4) is discrete, It follows that either
XI(M,g) > (n—1)2k2/4 or x,(M,g) 1is an eigenvalue. Since g and
gs are isometric near infinity the same alternative holds for 1
for every & € (0,1). We have to apply the Proposition of §1
with specific values of & and k. & can be chosen arbitrarily,
e.g. & =1/2; the choice of k = k(n) will be described below.
Denote the corresponding metric by g'.

Observe that it is enough to prove our theorem for the metric

g'. i:lndeed ;i 5
[ 1as1av
i

JMdeVQ

then, by min-max characterization of eigenvalues,

I(f,M,9) =

(3.1) A (Myg) = dinf sup  I1(f,M,9)
W few-{0}

where ¥ runs over all two dimensional subspaces of ¢ (M),

It follows from (1.1)(i) that

I(fM,g) > ¢ (n) I(f,M,g') for FECT and
(3.2)
vol(M,g) < c,(n) vol(M,g'),

Hence, if

Al('M’gl) > ____._c(i)k_z_z_
vol(M,g")

then, by (3.1),
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)‘ (M;g) 2 ok
) e (n)? vol(M,g)?

Observe also that Lemma 1 and Lemma 2 of §2 give Tower bounds for

I(fsT,g9). Therefore both remain true for the metric g if we
replace (n-1)°/4 by ec(n).

As remarked above we can assume that X = XI(M,g‘) is smaller
than kz(n~1)2/4 and corresponds to an eigenfunction ¢ satisfying
(i) A + X =0

(ii) [ ¢%av =1
JM

(3.3)
' (iii) | ¢dv =0
M
2
(iv) J ldo| dv = A.
M
A, dv, | | above are with respect to the metric g'

We now show that |d¢(x)| can be estimated in terms of A for

z € Mipick® If 0 < » < inj(x) then by standard elliptic theory
(cf. [C-G6-T])
7 lla%al
do(x)| < b ) [[a7de 5
| % I’ (B (z))

r

(3.4)

IN

b 7 %ol <
(Z))\ ¢L2(M) s

N .
b)\l/Z z )\1
0

0

where we used (3.3) and the commutativity Ad = dA ., Unlike in

the case of functions considered in [l-G-T], the constant b
depends on »r and on Ck(Bp(x)) norm of the curvature tensor for
some "k = k(n), and N = [}/4]+1. From now on we use the metric
g' of § with &k = k(n) and & = 1/2. Since we are trying to
prove a lower bound for X, assume X < 1, By the Proposition

of §1, we can choose a lower bound for inj(x), and upper bounds for

Vsz(x) » 0 < & < k(n) depending only on »n provided x € M, . .
= 2 thick
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Therefore we can assume that the constant % in (3.4) depends
only on n»n. We thus have an estimate

(3.5) ldo(z) | < e(n)r’/’

holding for all z € Mthick' We are now in a position to repeat
the argument of [D-R]. Assume that X < av 2, This will lead to
a contradiction if o is sufficiently small, Note tha Mthick is
As in [D-R], (3,5) and
our assumption on X imply that the oscillation of ¢ on ¥
is less than or equal to cl(n)(u/V)l/z. Hence, if

nonempty and therefore V = vol(¥) > v(n),

thick

sup lo(=) | > e (m)(a/0) )

Ry e

then ¢|Mthick is of constant sign and we may assume that it is
positive. If Minin
(3.:3) (1% 8L Mipin 1S nonempty, then it follows that ¢(z) < 0
for a point = € Mthin' Let T be the component of Mthin
containing . z. Since BT < ﬂ%hick’ |57 > 0 and we conclude that
¢ is an eigenfunction with eigenvalue X for a domain D c T,

It then follows from Lemma 1 and domain monotonicity of Dirichlet

eigenvalues that A >c2(n)k2.

= ¢ this is an immediate contradiction by

If, on the other hand,

sup [6(2) | < e (n)(a/v)}/2,
TEMhick

then for small o the integral of ¢2 over Mthin is at least

1/2. It follows that there exists a component 7T of Mthin for
which

( (bde > ca(n

) vol(T)
Jp Wi

> e,(n) %.

Now apply Lemma 2 with b = ¢, (n)/V, n = es,(n)a, to conclude that

x> [ de|%av s
}T

Fog small values of o this contradicts the assumption that
A< oaV “.
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It ¥0110ows" that

X > e, (n) min

This concludes the proof.
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