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THE GENERALIZED GAUSS MAP QF MINIMAL SURFACES IN H?® AND H*

CELIA C. GOES AND PLINIO A.Q. SIMOES

1. Introduction

The object of this paper is to establish conditions for a %
map of a Riemann surface ¥ into Qn-Z' the hyperquadric
22 b ee ¥ 2% = 0 of ¢P”'1, to be the generalized Gauss map
of a minimal conformal immersion of ¥ into #° and H“, the
hyperbolic space of dimensions three and four respectively, Using
the upper half-hyperplane as model for the hyperbolic spnace and
exploiting the conformality between the metrics induced on M, by
the euclidean metric and the hyperbolic metric through the immersion
we can adapt the theory developed by Hoffman and Osserman [H-0,2]
to obtain the conditions,

2. Basic facts

Let <, > be the usual euclidean metric on &' and let #"

and IR7, n=3,4, the set {(z,t) |z 6 E"', t >0} endowed with

the metrics (,)(x £) ~ — <, > and <, > vrespectively, Given
n n t n-1 n-1 n
(x,t) € H°, let z = (z!',,,.,x ,0) € IR ", Thus a,b g H
n A
implies that La b((x,t)) = éﬁ- [(x,t)-a] + b s an isometry of
» a n
B" such that L, b(a) = b, (La ply (V) = bn v for all v 4in the

n
tangent space T_(# ), Let ¥ be a Riemann surface and

e~(P) = (z(p),t(p)) be a conformal immersion of M into #' . If
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q = (0,...,0,1) 6 &, (L ). sends T,

n
% i icall
6(p),a’* 5(p)(# ) Tisometrically

onto Tq(Hn), which is " endowed with its usual inner product,

Let GZ(IRn) be the grassmannian of the oriented 2-vector subspaces
n . n ; Sy ~

of IR, The map G: M -~ G, (IR') defined by G(p)_(LéQﬂ.q)*(oﬁouf(M))

is the generalized Gauss map of 6. It is well known that GZ(IRn)

n-1

can be identified with the hyperquadric @ _, = (] eer ~'/z =
n

U i " = 0} of the (n-1)-dimensional complex
k=1

projective space. Such identification will be assumed throughout
this paper,

Now let 2z = u+Zv bte local iscthermal parameters for ¥ and
let 6 be a conformal immersion of M into IRZ given by
6(p) = 8(p) (¥ p 6 M), Then

(2.1) ey meplys s Sagn [_g.z_],

—
—

wall 9 6n i 30 2106 - o
where = B Al e - R T el 7;;) e ¢,

D

|

Q)

If o(z) = (¢1(Z),---,¢n(2)) € ¢ is a homogeneous local

expression of G(z), there is y: M - €-{0} such that
(:2:22) 28 - yo.

Let ds® be the riemannian metric induced on M byl 185

i% = 1/2 (5%-+ ig%), A the Laplace-Beltrami operator of M with
3z

2

2.
respect to ds% A~ = I%%I = i%%l , H the mean curvature vector

of 6. It is well known that

s B9 B

r 55 57 © = 2E.

(2.3) A® =

wn

>

Indicating by <<,>> the usual hermitian inner product on
N
¢, let

(2.4) V=2 - nod,
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<<(I>_’d)>>
where ¢_ = iﬁ and n = —2%
2 dz | o]
Then by (2.2), (2.3) and (2.4) we have
2 -
(2.5) Vo= |o| VH,
(2.6) (Tog ¥) = =-n

3. The case n=3

Let v = (vl,vz,va) be the normal unitary vector field to

A~

8(M) in IR+, ¢ the extended complex plane and f: M > ¢ the
composition of the classical Gauss map of 6 with the stereographic

w

projection with respect to the north pole of the euclidean unitary
sphere. Then for 2z 6 U =€, we have

(3.1) v(z) =

1 2
s (2 Re f(2), 2 Im f(2),|f(a)]-1}.
1+ |f(=)] | |

Identifying ¢ biholomorphically with ¢ , through the
correspondence &(w) = [1-0”, ¢(1+0”),2uw], &(») = [-1,%,0],
; _

~

, where w&€& € and 2z ,z ,z are

el T
et eat]y = -2
ZS

- 2
homogeneous coordinates on @, © ¢P°, we obtain,

(3.2) [P =L IxE" povd p1+5° by 27D,
Then from (2.4) we obtain
2PFo
(3.3) n = ifi,
e
(3.4) V= -2f_v.
2

If % is defined by # = 7v, (2.5) and (3.4) imply
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(3.5) e e Tty is a differential 1-form globally defined on . Also (3.12) and
SO+1r15)" (2.2) imply \
tF
JZ ”
Therefore (3.14) e (1-£*,2(1+5%),25) .
el
(3.6) fg = 0 <= h = O_
From (3.10) and (3.13) we obtain
Restricting to those 2z € U, where % 1is non-zero, we obtain " 22||2
: (3.15) (el r,s - mi—]—fzfg = 0
P s ik i
3.7 log &), = -2 —2%__f-(log ¥),.
(3.7) A1agc T 35 1+]7° (Tog ¥), Now it is straightforward to see that the differential 2-form
Then (2.6) implies Ak 2
CEneeiy % 3 (3.16) o = {s1® - gy - T‘ﬁﬂT fzf;}ldzt
Vaz ff 1
(3.8) (log k), = -2 —2o. . . . o
& i ]+lf‘2 is globally defined on M and so its vanishing is a necessary

iy condition for G to be the generalized Gauss map of 8.
Let H be the mean curvature vector of 8 = (x‘,xz,t).

Then we have # = t?H + tv3v [G-S]. Hence the minimality of &

Remark: Through the identification of @, with f, the
implies

, existence of w and o is independent f?oT 6. w is defined on all
(3.9) 75 l%“ M and o at all points of M where |f| # 1.

Then assuming the existence of 8 we have that a is

Then from (3.1) we obtain : ] > 2
globally defined and so that B8, = (1-f%)a, B8, = 2(1+f )a and

2
(3.10) AT | 1 B, = 2fa are differential 1-forms globally defined on M,
: i LerE T
t(|F]7+1) Let us now state the results of this section,
Therefore
3
(3.11) fz = 0<=>p =0c¢< > |l =1 <= v =0

Theorem 1. Let ¥ be a connected Riemann surface and let
X R . G: M ~ g, be smooth. Then the following conditions are necessary
From the expressions of % given by (3.10) and (3.5) we obtain ~ 1 T
for G to be the generalized Gauss map of a minimal conformal

tf immersion of M into &°
(3:12) ) = — 2108

lft -1 1) =03
2.) a is globally defined.

=

Since V¥ is well defined on U, we can extend the ratio

|£1*-1 i
(3.13) a:——f%———dz
flet=q

to U. Then it is straightforward to verify that We then have
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t = exp(Z{ Re B8,)
Im

(3.17) x? zf t Re B,
M

x = ZJ t Re B,
M

Proof. The conditions 1) and 2) were already verified and the
formulas in (3.17) are consequence of (3.14).

Theorem 2. Let M be a connected Riemann surface. If &, and
6, are two minimal conformal immersions of M into #° having
the same generalized Gauss map, then there is an isometry

r: g° >5° such that Rl s v= B .

Proof. From Hoffman and Osserman [H—O,Z] there is ¢ € IR, ¢ £ 0

and a vector d suchgthat .6, =.c8 +d.. If 6, .= (2!,22.4),

6, = (y'sy®,s) and d = (d',d*,d’) we have s = ¢t + d°. Then
zz = CZ§. Bu; from (3.14) we obtain ﬁf = ijT fz = 2?. Then
=3 (- £- =2 and so 4’ = 0. Now it is straightforward to see

t
that 7(z',2%,¢) = c(z',x?,t) + (d',d*,0) 1is an isometry of &>.

Theorem 3. Let ¥ be a simpiy connected, non compact and non
parabo]ic Riemann surface and let G&: ¥ » @, be smooth. If

fi M > € s the expression of G, obtained through the natural
identification of @, with & and |f|°#1 on M, the
differential forms o and w are globally defined and the
condition w = 0 implies the existence of a minimal conformal

. 5 ~ - 3 s
immersion § of M dinto H that has G as its generalized
Gauss map.

Remarks. 1) There is no minimal conformal immersion of Riemann
surfaces that are either compact or have parabolic type in 5"

@87
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2) The condition lf\2 # 1 1implies the following
(a) the image of the classical Gauss map of © is contained
in one of the hemisphere of the unitary euclidean sphere;

(b) the mean curvature vector of 6 never vanishes;

(fc) f; never vanishes and so f is nowhere conformal.

Proof. If\z# 17 dimplies the global existence of a and w =0

is the integrability condition of the system (3.14). This gives
the local existence of §. The global existence follows from
theorem 2 and the simply-connectedness of M, through a standard
monodromy argument.

Theorem 4. Let M be a Riemann surface and 8: ¥ - E° be a minimal

conformal immersion. If f: M > ¢ is the generalized Gauss map

(through the identification of @ with f) then the quadratic
. . fz fZ 9 . .

differential form vy = W;TT:T dz is globally defined and

holomorphic on M.

Proof. (3.12) implies that y 1is globally defined, The condition
= fZ?Z
w = 0 1implies that (————w—)g =0
Eallia

Corollary. If © s non totally geodesic its umbilic points are
isolated.

Proof. p € ¥ is umbilic for & if, and only if, it is umbilic
for 6, that is if, and only if, £, (p) =0 [K]. Then p is
umbilic for & if p is a zero of y; but the zeroes of Y are
isolated points.
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(4.6) n=F1F, + FoF,,
4. The case n = 4
|
(4.7) Vo= (Fi-ra )AL o ci(rer,y 1AL,
In this case, the hyperquadric @, is biholomorphically Vel V9
identified with @ x ¢ through the correspondence given by (P9 (75
11 1 2 . 1 2 1 2, op Lo 2 ] where 7, = P L and Fy LBDELE
s = 1 s = ’ = -l (W + s 2 2
E(w',w) Dtw 0?2 (l-w w?),w'-v (0 +w") 1+ £, | 1+ £, |?
2y _ 2, 2 . 1 . T .
Ele,07) = [uhdw’,1,-2], glu se) = [w',-dw’,-1,-7], From (2:5), (4.7) and # = ke, + h,e, we obtain
3 3 .y
S R T O S WP R B SR o oy F,-F, -3 (F,+F,)
IR A gl-7g? (4.8) hoo= S :
_p L e B S P Y T P Lt ¥ S P VTP EN
where (w',w?) €6C x ¢ and z',z 20,2 are homogeneous por i ( 1 Fal)
coordinates on @, CP3. Taking on ¢ x € the metric LED
2 12 212 3 B N - = - =
ds = 2]d? l > Zldf l > and on &, the metric induced by (8494) # gL g (fl)z (fz)z 8
AEA T (T+]w™|7)
the Fubini-Study's metric on wpa, ¢ becomes an isometry. Then But H = t°H + t(Uu)N, where v, = (0,0,0,1) and ( )N

the generalized Gauss map decomposes naturally into a pair of stands for the orthogonal projection over the normal fibre bundle

e of 6. Then assuming that B8 1is minimal we have
functions = (f,,f,): M +» ¢ x €. Moreover, if z = u+iv € U = € are

isothermal parameters on M, we have &z) =t[o(z) where (v )N
’ ( . . (4.10) H = - ; ,  [6-5].
4.1 ) = (1+ SN 3 i=F,.-% + .
Gh A o e This together with (4.5) imply
If we set - -
(4 M) o Im(1'f1f2) y 'Re(]‘f1f2)
(4.2) ALz =, (o TPl bty Yl Fiss (PoR 1)) ' il My e \
Sin pish e . 2117, 19004 1£,17) YRR
then
Therefore
(4.3) <<d(z), A(z)>> = 0; -
(4512) (f1)§ = (fz)é =0<= HF =0 <> ] - fif, = 0.
4.4 o] % =t al® = 201w £ [ Py (14 Py
: ! o] 4] . ll ) [le ) From the expressions of %, and %, given by (4.11) and
Wbpdaiar (4.8) we obtain
’ i ) itF 215601
(4.5) e, = KE_BE_Q, , = KZ_EE_E, e, = fzfﬂi_é, e, = /2 Im A, €4.13) Vo= i = i 2’ g e
o] |a] 4] 4] YofyFas  [WH)F 00600 r080)

is an orthonormal frame of IR" adapted to the immersion 6,
Then, from (2.4), (4.1) and (4.5), we obtain
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(4.14) Fr(1 = F,F,) = F,(1 - £1F2).

Since ¥ is defined at all points of U, the ratios

il b 2l
e and el may be extended to all U,

'l'fl.%z ]-}'1.702

Then, the differential 1-forms

(F,),
(4.15) o = a, =

1 da., o

(= L[ 07

are globally defined on M.

From (2.2), (4.13) and (4.14) we obtain

£ kil
(4.16) 8, = 2P _ILE (Gup g i(1ef ) F F,mi(F,4F,))
ot 1 A e
] 21,17, 7.7,
LN N - 'T:T}:T; thdalfirly ;+|f |; L b Vo= B
(4.17) ) !
_ 2|f,| F, -7,
(G —]———w+|f2[2 odalfds x ———Hllez- (F,) 406,02 = 0.
If we set
— 2|f1|2-?2 ?1'?2 2
by & LOAF =DMy, L - —;:]}ZWE' 1z g ;:T}~T; (F),(F)5]1dz]
(4.18) 1
. A
o ZIf2| fl fz‘fl 2
wy = [(FF,-1)(F )5 - NP ggag+;qEF<ggwggwﬂ

we have two differential 2-forms globally defined on M,

The existence of the minimal conformal immersion & having
G as its generalized Gauss map implies that O 20, 50, and w,
are globally defined and o = a, and w, = w, =0, Then the
differential 1-forms B = =gC1I%F el B = (V= o Sge

Bt (R =) o and B, = -(fl+f2)u1, are globally defined on M.
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Let us now state the results of this section,

Theorem 5. Let M be a connected Riemann surface and let
G: M -~ Q, be smooth, Then the following conditions are necessary

for the existence of a minimal conformal immersion

6 = (ml,xz,ma,t) of M into H':

1) o, and a, are globally defined and o, = o,

2)r i = =0

1 2

Moreover, if these conditions are satisfied, we have

= exp[ZJ Re 8,]
M

2 = 2[ t Re B,
(4.19) ! iM

gt ! ZJ t Re B,
M

s = ZJ t Re. B8,
M

Proof. It remains only to prove the formulas in (4.19), but they
follow from (4.16).

Theorem 6. Let ¥ be a Riemann surface and let &,, 6, be minimal
conformal immersions of ¥ into H'. It él and §, have the
same generalized Gauss map, then there is an isometry riH" 5 B
such that Toél = 62.

Proof. It is similar to that one of theorem 2.

Theorem 7. Let M be simply connected, non compact and non
paraboiic Riemann surface and let G: ¥ » @, be smooth.

If fi.f,: ¥~ ¢ are the components of & obtained through
the natural identification of @, with ¢ x ¢, and 1-f1?2 £ 0,
the differential forms O 5 0, W, and w, are globally defined and
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the conditions o, = o, and w, = w, =0 1imply the existence of a
minimal conformal immersion & of » into &' that has C as

its generalized Gauss map.

Remark. The hypothesis imply that the mean curvature vector of @

never vanishes and that (fl)é and  (f,); never vanish

Proof. 1—fl}2 # 0 implies the global existence of a, and a
Besides, the conditions 0, = a,, w

S
1
conditions of (4.16). Therefore & exists Tocally. The global
existence of & follows from theorem 6 by a straightforward
monodromy argument.

Theorem 8. Let M be a connected Riemann surface, & be a minimal
conformal immersion of ¥ into &' and T8 T M @ the
components of its generalized Gauss map, obtained through the
natural identification of Q, with ¢ x ¢. Then the quadratic
differential form

(£),07,),(F),(F)), )
s dz

A-For WIrtaF IR At 815

is globally defined and holomorphic on M.

Proof. The global existence follows from (4,13) and the conditions

a, = a, and w, T w, = 0 dimply that y is holomorphic.

Corollary. If & s non totally geodesic the umbilic points and
the umbilic directions of & are isolated,

=w, =0 are the integrability
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5. Final remarks

1. If in (3.1) we consider the stereographic projection relative

to the south pole of the unitary euclidean sphere, the identifica-
tion of &, with f is made through the correspondence s
Bla) = (-1 800 #1053 06], E0n) = 17,2,00, B ([ a%] ) asatts

3
2

where w € ¢ and z',z%,z° are homogeneous coordinates on
Q,< ¢p®. Then instead of (3.174) we have

and the conclusions are similar.

2. 1f we set f, =f,=<f, on the case =n = 4, we recapture the
case n =3 on the totally geodesic submanifold

L =0 of H
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