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PRINCIPAL-CURVATURE-PRESERVING ISOMETRIES OF SURFACES
IN ORDINARY SPACE

IOANNIS M. ROUSSOS

1. Introduction and Results. In this paper we determine all
* with
nonconstant mean curvature that admit a one-parameter family of

surfaces of revolution and all flat surfaces in IR

geometrically distinct nontrivial isometries which preserve

both principal curvatures. — An isometry of a surface is
nontrivial if it does not extend to an isometry of the whole
space. Also two isometries are geometrically distinct if one

is not the composition of the other followed by a space-isometry.

The surfaces which admit principal-curvature-preserving
isometries have been studied since the time of 0. Bonnet T
He first showed that all surfaces with constant mean curvature
(other than planes and spheres) can be isometrically deformed
under preservation of the mean curvature (equivalent to
preservation of both principal curvatures). The surfaces of
nonconstant mean curvature have been studied by many
mathematicians, especially by E. Cartan [2]. Lately S. -S. Chern
[3] has given an interesting criterion for their existence.
In these papers, several far-reaching general results have been
proven, but the differential equations describing these surfaces
were not integrated and no direct geometric description of them
was available. This is why my interest was motivated in determining
explicit examples of surfaces of this type.

o > S 3
We consider a surface of revolution in 1Ir
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x(z,0) = |r(z)cosp, r(z)sine, z] (1)

where x = r(z) 1is a function in the =z-z plane and 0 < 9 <-2m,
The principal curvatures are known to be:

. _r"
Ex%s “irtdtant = =) + ]]:«sz’ (2)

k = 1 & 3
parallel r[(_r')z RETEVE (3)

Away from umbilic points (i.e., a = ¢) we have:

Theorem 1. The surfaces of revolution with nonconstant mean
curvature that admit a one-parameter family of geometrically
distinct nontrivial isometries which preserve both principal
curvatures are exactly those for which the function = = r(z)
satisfies the following fourth order ordinary differential
equation:

[ (ate)'r jll # [E;cc? l:l r (4)
: /(rl)2+1

(a=c)vV (") +1

where a, ¢ are given by (2) and (3).

The flat surfaces (i.e., of zero Gaussian curvature) in IR’
with no umbilic points are determined to be pieces of generalized
cylinders or cones and pieces of tangential developables. To state
and prove the next theorem we need to express these surfaces in
their principal parametrization.

A generalized cylinder can be expressed as

f(s,z) = C(s) + zz (5)
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where (¢(s) 1is a plane curve parametrized by its arclength

and lying in a plane with unit normal Z. One principal curvature
is zero and the other one is #k(s) where «k(s) 1is the plane
curvature of ¢(s) and + or - depends on the orientation.

A generalized cone with vertex at the origin may be given
by
g(2,2) = 2e(2) (6)

where e(%) 1is the curve formed as the intersection of the cone
and parametrized by its arclength £, and A > 0. One principal
k_(2)

curvature is zero and the other one is _QK_— where kg(k) is

the geodesic curvature of e(2) with respect to the unit sphere
and again + or - depends on the orientation.

Finally, a tangential developable can be expressed as
h(s,t) = ¢(s) + te,(8), t >0 (or ¢ < 0) (7)

where ¢(s) s a curve in I®r’, parametrized by its arclength
s and el(s) = ¢(s). One principal curvature is zero and the

# T
other one is +# ?ﬁé%% where «(s), 1(s). are the curvature and

torsion of (C(s) respectively. Again + or - depends on the
orientation. Now we have:

Theorem 2. The flat surfaces in IR’ with nonconstant mean
curvature that admit a one-parameter family of geometrically
distinct nontrivial isometries which preserve both principal
curvatures are exactly the following:

1) Generalized cylinders whose plane basis curves are the
logarithmic spirals in polar coordinates (r, 8) expressed by
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6 #10 neonstantly ~-wo<+Bbgse,

2) Generalized cones whose intersection with the unit sphere
centered at their vertex, as a curve on the unit sphere has
geodesic curvature

k (&) = p csc &
o # 0 constant, 0, <. B, < T,

When pp = 1, there is a one-parameter family of nontrivial
isometries between the corresponding cylinder and cone, which
preserve the principal curvatures at the corresponding points,
This family is given by:

2 = 8(s,z) = arc sin g

32+(z+e)

A= A(s,z) = vsz+(z+e)2

where € 1is the parameter.

After a first version of this paper was written, Prof.
K. Kenmotsu kindly informed me about his joint work with Prof.
A.G. Colares on this same topic [4]. They have given some
equivalence conditions for the existence of the surfaces and
they have generalized Theorem 2 in that a surface of the above
type with constant Gaussian curvature must be flat. I wish to
express my thanks to Prof. Kenmotsu for sending me his preprint,
in which my work has been quoted.
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2. The proofs of the Theorems

For the proofs of these theorems we use the existence
criterion given in [3]. This is described as follows: For a
surface in IR without umbilic points and of onconstant mean
curvature we define the 1-forms:

0, = VW, +uw (9)

where {w,, w,} 1is the principal coframe of the surface and u,
v are defined by

d(a+c) = (a-c) (uw, + vw,) (10)

with a, ¢ the principal curvatures. Then, necessary and
sufficient conditions for a surface as above to admit a nontrivial
family of geometrically distinct isometries which preserve both
principal curvatures are:

Proof of Theorem 1. For a surface of revolution given by (1) we
have that the principal coframe is:

w, =Y(r") +1 dz w_ = rds.

1 2 2

Then, by (2), (3) and (10) we get

u = (a+-0>l ) P O.
(a-c) /(r')" 41
So, by (5) we have
G (aa+fé)l dz, «a,= (Za) de
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We observe that dal = 0 always, and the condition do, = a, ~a
is equivalent to ordinary differential equation (4).

Proof of Theorem 2. For a cylinder given by (5) we have principal
coframe

With a = k{(s) (the plane curvature of C(s)) and ¢ = 0 we
easily get by (10)
K-I

dasty) fd . = 5 g) da.

]
o = K (.S
1 K(s

We observe that da, = 0 and do, = o, a, give the ordinary

1 1 1
differential equation (EE) = (£.) . The solutions of this

equation are

<(2) = Zarg

where p, o are arbitrary constants. For cylinders of nonconstant
mean curvature p # 0.

Now we can determine c(s) by «k(s). Up to the isometries
of the plane, ((s) 1is the logarithmic spiral given in polar
coordinates by

r(6) =

e p # 0 constant, - < 6 <

»/p2+1
Next, for a cone given by (6) we have principal coframe

w, = Ade,  w, = d\

With @ = Z— and ¢ =0 we get
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k! (8) : k(R)
= . dt + = dx, = -dg + X%TET Al
o, kg(l) e i A o, dsg 5 d
Again do;, = 0 and da, = o ,~a, gives

2, 1

1 2
k! :
g g
The solutions of this ordinary differential equation are

kg(z) = BAEs co(L+0)

where P # 0, 0 are arbitrary constants and 0 < £ < m, We may
assume G = 0 since, by an isometry of the unit sphere we can
eliminate it.

When pp = 1 the formulae given by (8) determine isometries
as claimed in the Theorem. The proof of this part is easy and
left to the reader.

The proof of the Theorem will be complete by showing that a
piece of tangential developable does not admit any nontrivial
family of geometrically distinct isometries which preserve both
principal curvatures. For a tangential developable given by (7)
we have principal coframe

w, = ds + dt, 9, = tii(a)de.
With a =0 and ¢ = ?%%2% (assume Eigl < 0) we get
o, = {% + 1; - éé}ds + %-dt,
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né
tZ

assertion about tangential developables since dal =0 s
necessary.

Then da, = ds~dt, which is never zero. This proves our

Final comment. By the extensive work of Cartan [2], it can be
shown that a general surface of the above kind is isometric to
some surface of revolution in such a way that by rotating the
surface of revolution and mapping back into the original surface,
a one-parameter family of principal-curvature-preserving
isometries from the surface to itself is created. However, for
the surfaces of revolution of Theorem 1 and the cylinders of
Theorem 2 these isometries are trivial, whereas for the cones of
Theorem 2 they are nontrivial. The proof of this fact involves

a very long computation based on some.general results in Dﬂ

and [3]. For this the interested reader may refer to [5].

Finally, at the suggestion of the referee, I am including
some pictures of curves which satisfy the differential equation
(4). These pictures look very interesting and they were provided

for me by Professor Robert Gulliver, while I was still in Minnesota,

who was very interested in this equation at that time. He changed
the derivatives involved with respect to the arclength parameters s

(notice that ds = V/[»'(2)]% + 1 ds) and ran his program in a

Macintosh personal computer. I wish to express my thanks to him.
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