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EXISTENCE OF SOLUTION FOR A CLASS OF SEMILINEAR
ELLIPTIC PROBLEMS AT DOUBLE RESONANCE

D. G. COSTA (') AND A. S. OLIVEIRA (3

1. Introduction

In this paper we consider a class of "doubly resonant"
problems of the form

-Au

f(x,u) +  in Q
(*)
u =0 on 230,

where KZCLFN is a bounded smooth domain and we are given a
function % & L°(2) and a Carathodory function f:0xR >R

2
such that m,(®): = maxlslff | f(=z,8)| € L°(q) for each r > 0.

We shall assume the conditions below are satisfied, where (f])

expresses the fact that resonance may occur at two consecutive

eigenvalues Ap < Mgl of the problem =-Au = Xu in @, u =20
on 3Q:

269 D80,
>0

5

K@) <A

(_f1) A S (x): = 'll;rr_);nf f':'@sfli ]

i

S
uniformly for a.e. x € Q3

(F) 2 < B@): = lim inf 25(248) ¢ yip sup ZZE). - (=)

7 = |s|”°° o ~ 8| &2 - "i41?

A
>
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uniformly for a.e. = € @, with strict inequalities
A; < L(=x), K(x) < A;41 holding on subsets of @ of
positive measure, where F(x,s) denotes the primitive

s
Pl e):= Jo Flzyt)dt,

Remark. From the conditions above it follows that there exist
constants a, 4 > 0 and functions b6 L’(Q), B & Ll(Q) such
that

(1) | (x,8) |

N

arls |5 + Bl Tb «Baasa 8161 R

(2) [Ple,e)l g de® + BlR), w &R, & 8K,

Our main result states that, under hypotheses (f]), (F]),
problem (*) is solvable for any given 7% € Le(a). Te aur
knowledge, this generalizes many of the existing results for
doubly resonant problems (cf. 4,791 e g Corresponding
general results for resonance at the first eigenvalue X, have
been recently obtained by Mawhin-Ward-Willem [16] and de Figueire-
do-Gossez [10].

We remark that there is a rich literature dealing with
resonant problems, starting with a very nice result due to
Landesman-Lazer [{4] on resonance at the first eigenvalue.
Besides the above cited papers, we also refer the interested
reader to e.g. []~3,5,6,8,11,12,15,17,18] and their references,

Our approach to problem (*) is variational and uses the
well-known Saddle Point Theorem of P. Rabinowitz [18]. We recall
that, under condition (1), the functional

I(u) = Lz [—;— ‘Vulz ~ Pz u)~hu]dz

is well-defined and of class ¢* on the Sobolev space E = Hz(ﬂ),
with derivative 1'(u) 6 E* = #7'(Q) given by
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TY(u )y ' JQ [Vuvo - flz,u)w-rw] de

for all u,w € E, Thus the critical points of I are precisely

the weak solutions u € E of (*) We shall denote the norm in

=) by |ul - UQ IVulzdx]%.

2. Preliminary Lemmas

Let {un}CEE be an unbounded sequence. Then, defining

Vo= “n
n b L]
M, 1
we have anH = ] and, passing if necessary to a subsequence,

we may assume that

Y,—— V. weakly in E,

(3) PE T8 astrongly cin 5 4),

v, (2) —>v(x) a,e, in @,
and v (x)| < z(z) a.e., where z ¢ 550w,

Now, assuming (f1), we obtain that the sequence
{f(-,un)/uunu} is bounded in LZ(Q), SO we may assume that

f('sun) ~ " N 2
(4) _FE;W_—-———>f weakly in L (9),

Lemma 1 ([4]). The function f above satisfies

(5) L(z) < fi < k(z) if wv(x) # 0,
(6) flz) =0 . e =
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where v and &, k are given in (3) and (f1), respectively.

Proof. See [4, Lemma 4].

Lemma 2. If HunH + o then

2 (xy ) & (2 u, (%)) 2
(7)  L{ew() < lim inf ..ffifﬁgfil_ < Tim sup ———— < K(z)v (@)
' o [ e

for a.e. x6Q, where v and Kk, L are given in (3) and
(F]), respectively.

Proof. We shall study the pointwise 1imits of the sequence

2F (2 ,u (<))

(8) ¥ (=) = ”2

e,

on the sets 2, = {z 6 2 |v(x) # 0} and @, = {x 6 Q[v(x) = O}

*

(i) On Q«. Since |un(x)| = |vn(x)lﬂun|l * 40 g.e. in f,
we can write
ZF(x’u (37)) 2
y.(x) = ___:Z;éiyy__ v (%)

for all n sufficiently large (given =« €& Qx) and, hence, we
obtain

2F(x,u (x))
lim inf ¥ (z) > (lim inf oo i il T

u, («)

L(z)v (=),

1V

2F(x,u (x)) 2
(1im sup __i__?fji——)u(x)

K(z)v(x)®,

1A

lim sup ¥, (=)

In

in view of the definition of L(x) and X(x). The above
inequalities prove (7) for a.e. x & 9,
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(ii) OnQ,. For =z 6 Q, we distinguish two cases: if

lu, (@)] <1 then |F(zyu, (=) 5 4lu (z)|* + B(z) < 4 + B(x)

and, since |lu | + =, we obtain Tlim ¥, (x)

0 = L(x)v(x)? =
K(z)v(x)®s if |u (z)| 2 1 then

IF(xvun(x))l I ngz Sda

w(2)® 7w (@)t T

+

B(x)

and, in view of (8) and the fact that vn(x) + v(x) = 0, we
obtain 1lim wn(x) =0 = r(x)v(x)” = K(z)v(x)?. Therefore,

Tim ¥ (2) = 0 = L(x)v(e)® = K(z)v(z)® for a.e. =z 6§,

and the proof of (7) is complete. 1

The next result is standard (cf. [05] e.qg.).

Lemma 3. Let m:Q - R be a measurable function satisfying
Ag < m(z) < Mgl with Ap < m(x) and m(z) < )‘i+'| on
subsets v, and U, of positive measure. If v 6 £ 1is a weak

solution of

~Av = m(x)v in @, v=0 on 39,

then necessarily » = 0.

3. The Main Result

Before we state and prove our main theorem we need to
study the functional I:E - R defined in the introduction.
Throughout this section it will be assumed that conditions
(f1), (F1) hold.
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Proposition 1. The functional I satisfies the Palais-Smale
condition (PS), that is, whenever {un} © E 1is a sequence such
that I(“n) is bounded and I'(un) -~ 0 then {un} possesses
a convergent subsequence,

Proof. Let {u } = E be such that |I(un)| Gognde 0 e (),

n
Since VI(u) = u-T(u) where T:E > E 1is a compact operator,
in order to show that {”n} has a convergent subsequence it
suffices to show that {un} is bounded.

Suppose by contradiction that "un | . Then, as we
observed in the previous section, (a subsequence of) B = un/Hqu
is such that v, —s v weakly in E, v —sv strongly in L (9)
and v (x) » v(x) a.e. in @, with Iun(x)l < z(x), z € L*(9).
Moreover, we showed that

f( !un)
(4) —“Z;“—— ———=f weakly in L (Q).

where f satisfies

(5) u=) s e < wm) it o(a) 0,
(6) ey =0 if  wlx)"="0.

Let us define
fz

(22, 45 w(a) # 0
m(x) = {

|

¢

”i

Xi+1)’ 1T e =

Then }(x) = m(z)v(x) and, by (5), (6), we have

SEMILINEAR ELLIPTIC PROBLEMS 27

(9) 2(x) < m(x)

A

k(x) if* ! glz)# 0

(10) m(x)

]
>

if v(z) =0,
so that A, < m(z) g A;4p  in view of (f])‘

Now, by hypothesis, we have |I‘(un)-w| < enHwH for all
w € E, where B, 0. Therefore

II'(un)-unl= ' J £z ) e,
E o s Rl R P
so that
Plzyu,)
| T e

From this, using (4) and the fact that v, >V in LZ, we obtain

(1) [0 =1,

so that v Z 0, necessarily.

On the other hand, for any w € E we have that

w
<€ + 0,
-n

[,

from which, using (4) and the fact that v, — v weakly in E
we conclude

I ()l flzw)
e = i 1
‘-n—[r—-'un van 0 J I unT[— w - o] Jhw

(12) ij.w-j}w=o ¥ w6 o,

in other words, v € E is a weak solution of the problem
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(13)

Now, we have three cases to consider: (i) m(x) = A 3
(ii) m(z) = Azs1d (11d] Ap < m(x) < Aie1? with™ 2. < m(x)

and m(zx) < Age1 O subsets of positive measure.

Case (iii). Since v # 0, this case can not occur in view of

i
Lemma 3.

. 2
Case (i). If m(z) = A,, we obtain vl ® = xilvl , from £13)
and, in fact, =

2
(14) Ailvlzz =1 = oI,

in view of (11). On the other hand, from II(un)| < C we obtain

27 2F(z,
Bl | SESEEE
I | T Al
so that
2rR(z,u )
(15) i 3 T,
A

Therefore, combining (14), (15) and Fatou's Lemma yields

> | 1im inf ——niaet

2F(x,un) J 2F(x,un)
b sl o lle, I

hence

AiJvz > !L(x)uz,

SEMILINEAR ELLIPTIC PROBLEMS 29

in view of Lemma 2, But then, since I(x) > Ays we obtain
L(z) = A; a.e. in Q which contradicts (F]) and shows that
case (i) can not occur.

Case (ii). Similarly to above, if m(x) = Xi+1 we obtain
2
1= Ai+1|u1L2 and
2F (x3uw) 2F (z,u_)
Ao Jvz = lim J AL o8 J im sup ————:—E—,
Z+1 278 = 7
ll| [,

so that

“i+1j”2 s fK(x)vz

we conclude that X(x) = A,

by Lemma 2 and, as K(x) < ) o

Z+1°

a.e. in @, again reaching a contradiction to (Fl)'

Since neither one of cases (i)-(iii) can occur, this
shows that any sequence {un} © E  for which |I(un)| <0,
I'(un) + 0 must necessarily be bounded, so that the functional
I satisfies the Palais-Smale condition. E]

Now, let us decompose the space E = Hi(Q) as

E=V® W,
where ¥V 1is the subspace spanned by the eigenfunctions
corresponding to Al,...,ki, W=v" and let us define the
quadratic forms w:V >+ R, Vv:W R by

wo) = ol - [uae’s ve,

vw) = o’ -menf, w e W
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Following the ideas of DG,\Lemma 7, we shall prove the following

Proposition 2. There exists & > 0 such that

(a) v(w) > sloll > for all w & w,

2
(b)  u(v) < =8l for all v & V; moreover
(c) I(w) >+ as |uw|| » ~», w & W and

(P72 Plp) » -8 a5 vl » =, » & 7.

Proof. (a) Since ||wl|2 > 2

£+1”w”;2 for all w & W, we have

(16) v(w) > JD“] - k(z)]w’ >0 ¥ we W,

"

Next we show that v(w) = 0 dimplies w =0, Indeed, if
v(w) = 0 we use (16) to get that w = 0 on the set

Q,= {x €6 Q| k(=z) < Ai+1}' But we also get

0= v(w) = Jlull® - |x(z)o® > llol® - A lul 230
- T+1 I
hence lwll?® = %i+1lwlzz, which shows that w is a
Ai+]—eigenfunction. Therefore, since w = 0 on the set &,
of positive measure, the unique continuation principle implies

that w = 0.

Now, suppose that (a) is false, Then we can find a
sequence w & ¥ such that l}wnH =1 and v(w, )~ 0., Passing,
if necessary, to a subsequence we may assume that W= @ %
weakly and wn-———é‘w in LZ(Q), so that

v(w) < Tim inf v(wn) =0
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by the weak Tower semicontinuity of the convex functional v

on W. Therefore, we get v(w) = 0 and,
then, we have that w, > w =0 in L*(9)

v,(‘mn) =1 - J[K(x)w:l >
which contradicts v(wn) +~ 0, Therefore

(c) Let 0 <.e.< Gki+1

there exists B, € LJ(Q) such that

hence, w
, hence

1,

(a) holds.

2F(z,8) < (K(x) + €)s® + B_(x)

= 0. But,

where & 1is given above. By (F1)

for a.e. € @ and all s €R. Therefore, we obtain

22(0) = Jol* - 2fr(e,0) = 2l Null® - [@peero - ofuw - [

v

Pl 2
Sloll” ~ xS llall = el - €,
7+1

for all w € W, that is,

2r(u) 2 (8 - g==)l” - cill -

where § - 8/>\7,.+1 > 0. It follows that
w € W.

(b) Since HUHZ £ Ailvﬁz for all v €V
L

wv) < J[xi - L(z)]v® < 0

£

2 2 2
o) ~efo” - 2o [c sl * < elul - ln ol , - Iag]

c, ¥ we W,

I(w) > 4o

» We have

¥vev,

as |l » o,
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Similarly to (a), we prove that nu(v) = 0 implies v = 0, by
showing that v = 0 on the set @ = {z € Q | Ay < L(z)} of
positive measure and that » is a Af-eigenfunction. Then,
supposing that (b) is false, we obtain v € V such that

”?n“ =1, wu(v,) ~ 0, where we may assume that v =+ v €V in
H

o since V s of finite dimension. Therefore we obtain u(v) =0,

so that v 0 and, consequently, J L(x)v; + 0,7 But, then, 1t

follows that
u(vn) =1 - JL(m)v; -1,

contradicting u(vn) +~ 0, This shows that (b) holds.

Pilnally . to “provie Hed); we #fix” e ® ‘Suchl that @%<"e¥=<.8),
and use (F]) to get the estimate

2F(z,8) > (L(x)-g)s® - B ()

fortale. z € 'Qsand all’ e € R." which|implies

21(v) < u(v) + ell® + 2(n| ,|v| , + |B_| ,
L L L

=5

1A

(0 = )\i)llvllz " Cl“”” + C,
1

for all v 6 V. Since & - &/A; >0 it follows that I(v) - -
as |lvll > =, v € v. The proof of Proposition 2 is complete.

O

We are now ready to prove our main result,

Theorem 1. Assume hypotheses (f]), (F]) given in the introduction.
Then, for any given % €& L?(Q), problem
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~fu = f(x,u) + R in Q
(*)

]
o

U on R

has a solution u € Hi(ﬂ).

Proof. We recall that the space E = H;(Q) is being decomposed
as E = V@®W, where V 1is the subspace spanned by the
Aj—eigenfunctions, F=lysvssnty and ;W = g Also, our pertinent
functional

lull > + #(u)s u € E,

1) = g Il - | o) + mds = §

is weakly Tower semicontinuous, being the sum of the weakly lower
semicontinuous functional Hu”2/2 and the weakly continuous
functional ¥. Therefore, since I|W is coercive by Proposition
2(c), the infimum B:= infw I > -» is attained., Now take a < B.
By Proposition 2(d) there exists R > 0 such that I(v) < a

for all v & v with |lv]| > R. Therefore, since I satisfies (PS)
by Proposition 1, we can use the Saddle Point Theorem of

P. Rabinowitz [18] to conclude the existence of a critical point
u, 8 £ of 1 with I1(u,) > 8. |

4. Some Examples

Example 1. As a first example, we consider the two=-point boundary
value problem

syl i=- fladetabif2)s0: 0, Sz €

| u(0) = u(m) =0

where % € L?2(0,m) and f(s) =6.5s +2.5ssins. This is a doubly
resonant problem since
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g:= 1im inf fagnbrp Ay R:=Tim sup fifl =9 = ;.
ls[->°° £ lsl-»co
It was handled by a different method in [9] by means of a "density
condition at infinity" for s(s). Here, we compute F(s) =
6.582/2 + 2.5(sins~ scos. s), so that there exists the limit

1ip 220)

- = 6.5,
[spe s

with Ay <645 € Ay and, hence, (F]) is clearly satisfied.
We remark [13] that condition (F1) and the density condition in

[®] seem to be equivalent in the x-independent case f(x,s) = f(s).

Example 2. Now, we consider a PDE example where the nonlinearity
f(x,8) depends effectively on =z and is such that

(Afz) 2(x): = '||’irll inf f-g—aisl—s—)- = 'Xq’., k(xz): = 'Il'mi sup ﬂ%’_sl
8| s s

Let @), 9, be measurable subsets of Q@ such that 9, N 2, = ¢,
meas(Q,)-meas(2,) >0 and meas(Q\ Q,U8,) = 0. Define

f(z,8) = p(x)s + a(z,s)s,

where

: = A+ x)A. =
43, 0, (=) & XQZ( ) it if 2& el @

e AR a6 S
T 1
A

Z+1 2?

a{#9)i= Po, (s} » %, Lal]8e) -

Qi g ) Afizhe Ql
-6(s) if =z € q,,

and 6: R > R is a continuous functions satisfying

8(s) = A, =malq

Tim inflsl+we(s) =0, Tim sup 21 i

L
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)
Tim Al o 0, with A(s) = [ p(t)t dt. Then we obtain
|8 ]+ g2 Jo
A; + 6(s) R 28 8,
222 = o(z) + a(z,s) = ;
Mg 8(s) ifioe€ 9,

so that (fz) is satisfied. On the other hand, we have

it p(x)+24(s)/s* if =z ¢ Q
ZF(":’S) = p(z) + ..2_2 f a(x,t)t dt =
s s 10 \D(.’.C)‘ZA(S)/SZ iif x € Qz;
hence

> AL if z¢€ @
1im 2E(=z,s) _ o(z) = { Z .

[g|>0 g2 K pQbovhguRiA gaby

so that condition (F1) 1is satisfied as meas (2, )-meas(R,) >0,
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