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A STABILITY THEOREM FOR ENTROPY SOLUTIONS OF INITIAL
VALUE PROBLEMS FOR FIRST ORDER QUASILINEAR HYPERBOLIC
SYSTEMS IN SEVERAL SPACE VARIABLES

HERMANO FRID NETO

Abstract. In this paper we prove an uniqueness and stability
theorem for the solutions of Cauchy problem for the systems

3 Bandiin A

v ‘Z] E s ) P SNy (o, T u) ,
where u is a vector function (u,(x,%),...,u,(=,?)),
f‘L
g = (gl(x,t,u),...,gr(x,t,u), x 6 R" and ¢ > 0. We use
the concept of entropy solution introduced by Kruskov and
improved by Lax, Dafermos and others autors. We assume that
the Jacobian matrices fZ are symmetric and the Hessian

(a;)uu (z=1,...,n3 g=1,...,7) are positive. We ohtain
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uniqueness and stability in Lioc within the class of those
entropy solutions which satisfy
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ﬁl( X s t) J( y‘L’ ) ) > K4,
ek - -
7 7

(=1 yume ang G=IRRARLER)E T o P (——-,xi,——,t), (s ¥ 1)
on a compact set D < R'x(0,%) and a function K(t)GL;OC(@,”ﬂ
depending on D. Here we denote hy (—,x

A t) and

(———,yi,——~,t) two points whose coordinates only differ in
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the Z-th space variable. At the end we relax the hypotheses of
symmetry and convexity on the system and give a theorem of

uniqueness and stability for entropy solutions which are locally

Lipschitz continuous on a strip E"x[0,7].

1. Introduction

In [4] 0.A. Oleinik estahilished a uniqueness theorem
for a rather general class of weak solutions of quasilinear
equations of the form

%u -+ % o(z,tou) + V(z,t,u) = 0,

where the function ¢(x,%¢,u) was supposed to be convex in u,
i.e., ¢, 20. In Eﬂ A.E. Hurd gave a generalization of
Oleinik's uniqueness result to systems subject to symmetry and
convexity conditions in the case ¢ = 0. He used a variation
of Holmgren's method which was also employed by Oleinik. Here
we use the concept of entropy solution introduced by Kruskov
Eﬂ and, with a help of a simple observation due to Dafermos,
which was mentioned by Di Perna in [1], we extend the Hurd's
result to systems in several space variables including the
source terms and obtain, further, stability in L;oc‘ We use
an adaptation of the method employed by Kruskov to prove the
uniqueness theorem of the referred work.

In §3. We make some comments and give a general
theorem of uniqueness and stabhility of the locally Lipschitz
continuous entropy solutions of the Cauchy problems for such
systems without assumptions of symmetry and convexity, which
can be proved using the same demonstration that we give to prove
the main theorem. A result in this direction was given by
Di Perna in [1].
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2. Preliminaries and the Stability Theorem

In 7= {(x,t) :xz 6R", 0 < ¢t < =} we consider the
quasilinear system of » equations

FEleatou) = glzt,u)

lw

&l
(2.1) g a—tu +

QD

X .
T

for the vector function wu(x,t) = (ul(x,t),...,ur(x,t)) where

f'i(ac,t,u) = (af(x,t,u),...,af.(x,t,u))

L= 1 jiuwin s 2 (in (2.1) and in what follows if it appears two
indices ¢ 1in a monomial, then summation is taken from 1 to

The Cauchy problem, then, is stated by setting for
(2.1) and initial condition

(2.2) ulz,0) = u,lz).

We say that (a(x,t,u),bl(x,t,u),...,b"(x,t,u)) is
an entropy vector for (2.1) if:

(2.3) auu(x,t,u) >0 (convexity);

(2.4) bu(zstsu) = a (2,0,u) folz.tu), =1, .04n
(compatibility equations).
It is easy to see that if u(x,t) 1is a smooth

function satisfying (2.1), then wu(x,t) satisfies also the
additional equation:

(12 451) 3—875 a(z,t,u) + 52— D wivt i) = (F S1t)
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forietyany, ynd entiRopy: ¢ v Yectonr sefiotem el L) (a(z,t,u),
bl(x,t,u),...,bn(x,t,u)), where
(2.6) elxist s1t) o= au(vx,t,u)g(x,t-,u) -

-au(x,t,u)f;i(x,t,u) tafx,tiu) + b;i(x,t.u).

Dafermos observed (this fact was mentioned in {1]) that if
a system Tike (2.1) has associated to it an entropy vector,
then it has associated to it also an r-parameter family of

entropy vectors (%(x,t,u,v), Bl(x,t,u,v),:..,gn(x,t,u,ﬁ)),
v 6 R”, which are obtained from the formulas:

(2°7) a(x,t,u,v) o a(x9tau) = a(x,t,v) o au(xat!v)(u“v)3
(2.8) Bt SUEOE = Bhlodt tibozabtbuni s) s

- a(e,t,0) (F (2, t,u) ~ £(a,t,0)).

For this family of entropy vectors, whenever Uz i) & viis ka
smooth function satisfying (2.1), we then have the equations:
] 9 T
7 o(z,t,u(x,t),v) + G g Exlo Bu(zit) v) 8=
1

S5(£[t A= itY,9) Y 0Je BT, [iwttn

(2.9) Y(z,t,u,v) = du(m,t,u,v)g(x,t,u) 5

7
¥ au(x,t,u,v)fx_(x,t,u) (t Gt(x,t,u,v) +
7

+ B; (gt stsv).
;.

Conditions (2.3) and (2.4) are satisfied by the trivial entropy
vectors
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n
i(uj,a;.(x,t,u),...,aj(x,t,u)),

g=1ls...,r, which, however, do not give any additional equation
(they, in fact, give exactly the r equations of system (2+1))
and generate the trivial r-parameter family of entropy vectors

(all of them zero).

1
We say that (a(xgt,u),b (x,t,u),__.,bn(a:,t,u)) s, @
genudine entrnopy vecton if

a,(@,t,u) > 0 (strict convexity)

for all = 6 R", t F RO e R".

Following Kruskov we say that a hounded measurable
vector function u(xz,t) 1is an entropy sclution of the Cauchy
problem (2.1), (2.2) in m, = B"x[0,7] if it satisfies the
conditions bellow:

(D1) for any entropy vector (a(z,t,u),b'(z,t,u),...,b"(=,t,u))
for the system (2.1) and every ¢ & C?(%T) (we denote by #
the interior of WT) with @ > 0, we have

T

(2.10) “ ta(@,t,u(e,t) )0 415z, tyu(e, ) )0+ (e, t,u(=, t))e}dsdt > 0;

o T

i
(D2) there exists a set n of zero measure on [0,7] such
that for ¢ € [0,7]\n the function u(x,t) is defined almost
everywhere in En, and for any X >0 we have

(2.11) Tim [ lu(z,t)-u () |de = 0.
t>0 ‘o |<x
6 [0,7]\n 3

As was observed in [}] if we put in (2.10) the trivial entropy
vectors
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1 n
+(uj,aj(_x,t,u) yooe ,aj(ac,t,u))

(§=1,...,7) we obtain the usual integral identity

” (=, t) 0+ £ (=, t,u(w, 6)) 0 +g(w,b,u(z, )0} dzdt = 0,
1

“T,

We note further that if for a given system like (2.1) we have

a genuine entropy vector, we then also have for it -an r-parameter
Family (Q(z, t,u,0), B(Z. t,u,0),...,8 (e, t,u,0)), v 6 R,

of genuine entropy vectors wich are define.by (2.7), (2.8).
Hence, if u(x,t) 1is an entropy solution of the Cauchy problem
(2.1), (2.2) and we have a genuine entropy vector for (2.1)

then u(xz,t) must satisfy the integral inequality

(22) ] tatatuz e, 00, + 8,000,000, 4
™

i
+ y(z,t,u(z,t),v)®}-dedt > 0,

o0, 0
for any v & R* and 9 6 Co(mp)y @ 2 0.

We now pass to the assumptions wich will be made about
system (2.1) for the statement of the main result of the
present work:

(A1) The functions a?(m,t,u) possess derivatives
< 1, 2 2 2
Baj/ g Baj/axl’ ) aj/ sxgauk, 3 aj/aukaul,
which are bounded on bounded subsets of the (x,%t,u)-space.

(A2) Let

. D

f.l z t
= g, (2 u
v (2% tsu) agk( ST U) .

x*

Then, if u 1is bounded, i.e., Zuz < Mz, there exists
a constant ¢, depending only on M, such that
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§ o0 M A0y e
-c |/ b & kA Qun \NE ol 45U . e + b
g1 97 gr=1 IR i) S = j=1 "7
£=1,...,m, for all vectors £ = (El,...,ir).
(A3) (Symmetry). For all x,t and u,

a;k(x,t,u) = azj(x’t’“) (J2k=1,00¢s%),

(A4) (Convexity). For all x,t and u, and each 2=1,...,r
and £=1,...,n, we have

r Ba;:k
(2']3) 5 U (xstau)g-gk f 0,
Fak' g 4

for all vectors & = (El,..m,Er).

Assumption (A3) guarantees, for system (2.1), the
existence of a genuine entropy vector (a(x,t,u),
B (zstsu)seeesh (mytou)) with

2
(2.14) alxstyu) = alu) =]§ lul” = ]5 (“f""‘*“;)'
z T 1_ gt
(2.]5) b (.’L‘,t,u) 3 E u.aq.~% ’ 7:’_‘];--&’”!
j=1 Jd dJ
where the ©* are functions satisfying
of 587 <
ou., = a5 =l,.00y? J=1,00.0,2.
d

We will prove the stability of the entropy solutions of
the Cauchy problems for (2.1), relatively to the initial data
(in one sense that will be made clear below), and consequently
the uniqueness of such solutions, within the class of those
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entropy solutions which satisfy the following condition, which
is an adaptation of that introduced by 0leinik' in- [3]:

() Given any compact set D < w, there exists a corresponding
function KX(t) € L;oc( [0,«)) such that

Uiy @ gy B) =i (Y s )

(2.16) > ~k(t)

L. = .
1 y‘b

(Gl e o a=les o comiilihollid siga e S fn (———’xi’—__’t) and
(—sy;>—>%t) on D, where we represent by (—,x;,—,%)
and (———,yi,——-,t) points which only differ on the <-th space
variable.

2.1 Theorem: Assume that (2.1) satisfy (A1)-(A4). Let u(x,t),
v(x,t) be two entropy solutions of (2.1), (2.2),0n n11=}WX[D,T],
satis fying condition (*) and

u(z,0) = uy(x), v(x,0) = v (%)

with wu, and v, bounded measurable functions on R". Then, foxr
alt X >0 thene exists a function c(t) € L'([0,7]) and a
positive constant K such that

t
e(s)ds

|u(x,t)—v(x,t)|2dx <e 0 NED) -vo(x)lzdx,

|| <X || <x+xt
gon atmost alt t € [0,T].

Remembering the definitions of a{x,?%,u,v), Bt(x,t,u,v)
and"’ y(z,t,u.v), 1n (2.4), (2.8) and (2.9) gespectively, we set

' In fact condition (2.16) is the reverse of Oleinik's condition but this
is only a matter of choose of referentials.
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(2. %) a*(z,tu,) = ofx,t,u,v) + a(x,t,v,u),
(2.18) 8%  (z,t,u,0) = B (z,t,u,0) + B (x,t,0,u),
(2.19) y*(x,t,u,v) =levile it suan) ok (2,6 o).

We also define the functions

(2.20) ¥ (z,6,u,0) = a(@,t,u,0) - a(e,t,0,u),

Bi(x,t,u,v) - Bi(x,t,v,u).

(2,21} e*" (x,t,u,v)

As we have already said, for a system satisfying (A3)
we have a genuine entropy vector which is given by (2.14)
and (2.15). So, in this case we have

2 ] o
oz b, v} = Mol s [ i e % o] - v(u-v)

4
2

2.
3 lu=vl?,
and by the definitions
o*(x,t,u,v) = o (u,v) = lu-w ?
0
er (b o ) =00,
n

for all = 6E , t & [B,®), U BE,

In the proof of Theorem 2.1 we will need the following:

2.2 Lemma: (a) Let D < T, be a compact set. Then thene exisits
K >0 such that
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18% (2 0 u, )|
(2022 <

o* (x, ¢y u,v)

gon (z,t) € D and wu,v 4in a bounded set 0f the (u,v)~space.

(B) gon each J=1,...,r» and i=1,...,% we have

*iT
(=, tyu,v)

(2.23) = e i
J

2.24 ol i e S risaee £ ik
avj

Proof. Assertion (a) is a general fact for systems (2.1)
satisfying only (A1) and (A2) and for wich we have a genuine
entropy vector. By definition, we have

B* Nwatu,0) = (ay(2,8,4) = ay(e,t,9))(F(2atu) - Fi(2,5,0),

ot*(ab,t,u,v) = (Aau(x,t_u) - a,(z,t,v))(u-v),

By the strict convexity of @ Stheretexist ‘e *> 0 and

¢, >0 such that

3 e % 2
e, lu=v|" < (u=v)a, (=,t,u7) (u-v) < ¢, lu-vl",

for all " in a bounded subset of R* and (x,t) & D. From

this and (A2) we get trivially (2.22). We now prove assertion
(b). We have

Bi(m"t’u!v) = bi(x’t9u) = bi(x’t,v) Tg9 (‘v)(fi(x,t,u) =
v

i fi(,x’t ’U))

and then
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E*i(.x’tnu’v) a Z(Ei(x't,u)_ & bi(x|t9v))
~(a, (4)+ay () (F (&, 8 1) -fF (2,8,0)) .
So, it follows that

E;i(x,t,u,v) ZbZ(x,t,u) 3 auu(u)(fi(x,t,u)-fi(x,t,v))

~(a,(u)+a,(v))Fo(z,b,u)

= au(u)fZ(x,t,u) h av(v)fz(x,t,u)
-auu(u)(fi(x,t,u)‘fi(x,t,u))

= (a,(#)-a,(v))fi(e,t,u)

o (W) (F (2, t,u)~F (2, t,0)),

where in the second equality we have used the compa%ibi1;ty
equation (2.4). We now use the fact that a(u) = = |u| and,
hence,

au(u) = U, auu(u) a I,

So, we have

e* e, tu,v) = F(umv) Fi(a, t,u)- o, t, u) 4 £ (2, 8, )

Then, using (A3) (symmetry) and (A4) (convexity) and remembering
Taylor's formula, we get

E%T‘e*i(x;t’u’v) = -f;u(m,t,u)(u-u)-f?(x.t,u)
J

W 198,85y 0,
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Analogously we prove (2.24). we get a new inequality analogous to (2.27). Then, adding it
with (2.27), the following inequality is fulfilled:

Proof of Theorem 2.1: We suppose initially that fi and g do (2.28) JJJI {(a*(u(x,t),v(y,T))+a*(u(y,T),v(x,t)))(Ct+CT)
not depend on x,t. Let the smooth function tlx 25¥-a) >0 TpXT
be of compact support on %T X %T‘ In inequality (2.11) we set . = (g*i(u(x,t),u(y,r))+6*i(u(y,r),v(x,t)))(Ex’+Cy.)
v = v(y,t) and ¢ = z(x,t3y,7), for a fixed point (y,T) 6 Tps i Y7
and we then integrate over Tns in the variables (y,T): + 20y (u (@) 0 (Y ,T) )+ (u(y 1) v (m,t)))E
(2.25) HH{a(_u(w,t),v(y,r))cgs‘(u(x,t).v(y.r))cxi | + (e (e 9) )= (el 1) 221D (5 -5, )
Tp*Tp
+ y(u(z,t),v(y,1))cldedtdydt > 0. j -dedtdydt > 0.
In exactly the same way, starting from integral inequality We now give an apropriated definition to . Let & be a smooth
(2.11) for the function wv(y,T) written in the variables j function with support in [-1,1], and such that
{yst) s, Bor o= tnln i) tiaind o= t(x,t;¥,T) we integrate ‘ o
over m, in the variables (x,t), to ohtain the inequality ‘ { % 8(ayda = 1.
(2.26) jJJJ{a(U(y,T),u(x,t))€T+Bi(v(y,T),u(x,t))Cyi ‘ We also require & to bhe an even function, i.e.,
TpXTp '
+ Y(v(y,1),u(x,t))cldydrdzedt 2104 d(-s) = 6(s).

‘ [ h >0 we set
Adding (2.25) and (2.26) twice and rearranjing the factors T Y gny

under the integral signs, we oBtain : 8,(0) - h‘la(h‘lc).
¢z 27) JJIJ u;(u(x,t),u(y,T))(gt+;T) + ; Then, we define
TTTXTTT g : " g 4
R B*t(-u(*x’t)’v(y’T))(Ca:.+Cy.) 1y | Szt 1 T) 5h(,x.t,ysT)
1 T
L 2 T~y X =Y t4+T
+ v (ulz,8),0(0t)) 8 4 T (u(e,8) 0, 71)) (5, 8, )1, = 5,58, () - 6 (T o, 5,
T T |

«dxdtdydT 2,80, where ¢ > 0. is a test function on Toe We see that:

Changing the roles of (x,t) and (¥,7t), preserving the
function® ‘z(a,t;t.7). = and proceeding in the same way as above,
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h, h 17Y
G Py, Gh( )5h( 5 & .01 Eh('—?_‘)¢t(x+y t+r),
h h t-T "yz
Cxi+Cyi = h(—7~)5h( ) PRRRaLY h(—_f__)¢ (fii’ E%l);
IS I =T L= Ty
Cxi-Cyi = 8y (=) 8y ( 5 )...Gh(__?_ﬁ)._. h( )¢(x+y E%l)

)—¢(“y 59,

e 1) BT

BT ok h
Let I,, I, and I3 be the first three terms in the left side

of inequality (2.27). When we make % > 0 we have

(2.29) 75 +Ih+Ih v e JJ {u*(u(x,t),v(x,t))q)t

mp
) B*'L(u(x,f) 2 O(E, ) ¢x7:+2Y*(u(x,t) WO(x,t)) ¢rdedt,

To prove this we proceed as Kruskov in ]}], using Lemma 2 of that
paper. We now put

= ][] et ute ) otr, 0) e Sy o, 1))

TpXTp

t-T X+y t+T

5h(T)“—“h(‘“z—)——¢( » ) dedtdydr,

. ih
We write I, as a telescope sum in the following form

~
n

. j;f] {HHT(e*i(u(.—~,xj.—~.t),v(—/—.yj,—/-,r))

E*i(u(——’yj’ﬁ"t)’u(+axj’+,T))) h(iﬁz)—‘

oY x+y t+r

L1 s
—6;1(—12——) b X, dxdtdyd'rf +
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[ ™ ety iotamie)) = e (ulemyt) o (—,0)))

M X

Ui

ikt E%l)dxdtdyd'r

h(—g—)———5h(——g——)¢(
We recall the fact that éh is an even function and,
consequently, 62 is an odd one. Then if J # © the integrand
of the j-th term of the sum changes its sign if we replace the
variable ¥ by y. and vice-versa. Analogously for the Tast
term of the sum and the variable ¢ and t. Hence, we see
that the unique term of the above sum wich is not zero is the
Z-th. So, we have

Ifh = JJJJ (E*i(u(__’xi’——,t),U(+,yi,+,T))
g

" - T .-y,
= Uy s 8) D (A s 1)) 6 () — 8 ()

_¢(x+y t+T) dedtdydt

- 2 [f[] s —s b ey, By
yzzxz

'| .
’{(JO e’;‘ll(su(——-—,xi,——, t)"'(]“s)u("—‘syi:'—tt) ,SU(—-,L—,y‘L.,-—F,T)+

+ (]-S)U(—J—,xi,—/——,r))ds)-(u(——,mi,——-,t)—u(———-,y.,—,t)) +

7

1
i (JO (su(—-— i t)+(1 —s)u(——— A t) ,sv(+,yi,+,‘r) +
+ (1-s) v(+sxis+a'r) ) ds) - (v(——, yi’+' T) "v('_'_’xia—?L"’ T) )} dxdtdydr.

We now use condition (%) and Lemma 1.2, item (b), to obtain
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i g Bey
I~ 2% JJJJ dadtdydn-0(Tol)—&) (—5)—o (Zp¥, BT

[t 2 ae*i
ALaClg: Jo By ST ey U efo— Fpir et )
+ (1—s)v(——-,y.,;,—'—))ds](.yi‘xi)

T e

+ K”(ﬂ[? J a;—— (sUl——yy..s—) +
k1o Yk A

& (] =S )u(_:xi a‘—‘—) s 37’(—'_‘3 xis"_) +

+ (1-8)0(-—,¥ ;) )ds] (@;-y,)} o

Then, for some k(t) GLl([O,T]) and some constant ¢ > 0, we
have

og Il et e
I%Hh: |£ff2_y_|< R
|55 <h, 0 <55 <
1=n
{Zgj j; (‘|3iuk€*i(~’_)|+l’3‘%'f*i('—,—)l)d8}dxdtdyd'r.
=1

We use again Lemma 2 of {}] to prove that the right side member
of the last inequality converges to

i=n
(2.30) 2””0” AT
2. J ¢(x,t)|K(t)|{k§} UaT,f (u(2,8) v (z,¢))|
4 i=

. IT%E*i(_u(x )y o(e,t)) |) Ydedt |
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We then arrive to the following integral inequality which is
obtained from (2.28) joining (2.29) and (2.30):

JJ{Q*(M (,7%) ,U(x,t))¢t+8*i(u(xat) ,‘l)(x,t))d)x

iy

7

¢ B I (e, t) so(z,)) 4

Ras

9 _*7 0 %t
(lr“f MWE Jo} dedt > 0.

Sy X} R,
nonoS~—non
et

Observing that the functions between the brackets are bounded
by a multiple of the square of the norm of wu-v, we then obtain

231 [[e¥ (et w6118 48 (ules0) 0(m, )0,

Ty

+ e(t) |u(z,t) - v(x,t)|2¢}dxdt >0,

7

where e(t) 1is a function in 1'([0,7]).

We now pass to the adequate definition of ¢. We define
¢ 1n the same way as Kruskov in [3]. So, let X > 0 satisfy
(2.22) in Lemma 2.2. Let n” and nv be the sets of measure
zero which appear in (D2). Given t 6 [0,7], define n" as
the set of points in [0, ] which are not Lebesgue points of

the bounded measurable function

U(t) " [ |u(x,t)—u(_ac,t)|2dx,
|x|5X+K(to—t)
We set n° = nu U nv u n“; it is clear that n° has
measure zero. We define



56 HERMANO FRID NETO
g
ah(a) = J‘w Sh(d)dc

0
and take“two numbers. o ‘and: Tt 6 (0,t,)\n , p % 7T, In {(2.31)
we set

= [U.h(_'t-p)—OLh(_t«T)__]X(.’L‘,t), by & min(p!to“-’:))

©-
|

where

>
n

X (,t) = 1-o (lz|-X<K(t,-t) + €), e >0.
We note that X satisfies the relations

B*%(u,v
%

P RAN R NI
X LA W o (u,v) "7

From (2.31) we obtain the inequality:

[ Byte=01-8(t=0Ixeto p) ¥ (ulz, ) (2, 1) dwat
m

+ thb(x,t)c(t)lu(x,t)*v(m,t) |2d:cdt -
Ty

Since o and T are Lebesgue points of u(?¢) and
o*(u,v) = |u=v|%, it follows that when %2 > 0 and € >0

we obtain: .
|lu(x, 1) =v(x, 1) | dz <

J|ac| <X+K(t,=T)

. lu(x,p)-u(x,p)lzdx
|| <X+ K(t,=p)
o+ [T e(it)( |u(x,t)—v(x,t)|2dx)dt_

Yo |z | <X+ K(£o-t)
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Applying Gronwall's Lemma we arrive to

2 JTC(t)dt 2
f lu(st)-v(a,t)| de < lu(zs0)=v(x,0) | dr.

|| <x4k (t ,~) || <x+x(,-p)

We now make p = 0 and obtain the desired result. The case in
which the functions f* and g depends explicitly on the
variables (x,t) does not present any additional difficulty
and can be treated in the same way as the above. We must only
to take into account also that

2

ls;i(xnt:uav)l clu‘vls

I A

and

2 2
18X (2.t ,u,)| < clu-vl’,

for some constant ¢, 1in each bounded subset of the
(z,t,u,v) -space, and use still more times the Lemma 2 of

(3]
B 1

3. Remarks

The crucial point of the proof of theorem 2.1 is the

estimative of the terms involving the functions ¢€** It 1s

precisely there that we need to use assumptions (A3), (A4)
and condition (*). These terms appear because of the lack of
symmetry, in general, in the entropy vectors (a2 ,tu,v),
31(x,t,u,v),...,Bn(x,t,u,v)) relatively to the variables
(u,v). In the case of one equation, the entropy vectors
introduced by Volpert and Kruskov, namely,
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1
(Jumv|s sign(u=v) (£ (2,8,8)=F (£,5:9)) 5000y
N
sign(u-v) (F" (=, t,u)~F (2,%,9))),
are symmetric with respect to the variables (u,v). But,
working with systems, entropy vectors analogous to these could
not be used in general.
We finally remark that the same demonstration of
theorem 2.1 could be used to prove a general stability theorem
for locally Lipschitz solutions of Cauchy problems for systems

(2.1) which satisfies (A1) and (A2), only, and possesses-a
genuine entropy vector. More clearly, we have the following:

3.1 Theorem: Assume that system (2.1) satisfies (A1), (A2) .
and possess a genuine entropy vector. Let ulz s Bl s 4 ad v(x:
be two entropy solutions of the Cauchy problem for G2 s 0

"= E™0,7|, with

u(x ,0) = uo(_x), v(x,0) = 7—’0(35):

and suppose that u and v are Locaklly Lipschitz continuous
on T Then, fon each X > 0 zhere exdst positive constants C
T‘ ’

and K such that

|uo(x)‘vo(x)|2dx,

|x|<X+Kt

lu(x,t)ov(x,tﬂzdm 5556
|=|<x

gorn ate ¢ & [0,7].

0]

(2]

(3]

(4]

LEXLE

ACE%

SN
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