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ON THE DYNAMICS OF QUASI-CONTRACTIONS
JEAN-MARC GAMBAUDO AND CHARLES TRESSER

INTROD

Let (Eg, dg,-Fp ) and (E;, dj, F; ) be two pointed complete metric spaces
and Egv E; = (Eg UE; ) /(Fy = Fy ) their join naturally equiped with the
distance d such that:

d(Mo, My ) = do(Mo, Fp ) + di(My, Fy ) if (Mg, M ) € EgxEj.

Definition 1: A quasi-contraction is a map f from the disjoint union EgUE
to Eg v E; such that flE- is a contraction.

1

This means that there exists a constant of contraction k < 1 such that :
forany (i, j) € {0,1)%,and P, Q € E;nf1(E),R € E;n £ (E1):

C1) 4(f(P), f(Q)) <k .4;(P, Q),
C2) 4i(f(P), Fy) + d.; (fR), F1j) < k. (P, R).

Alternatively, with an abuse of notation, f can be considered as a map from
Eo U E; into itself. This point of view allows to iterate f and thus to speak about

the dynamics of f. It is precisely our contention in this paper to discuss the

dynamics of quasi-contractions, with due emphasis on the asymptotic aspects.

Recall that the w-limit set «(P) of a point P is the set of limit values of all
converging subsequences extracted from its forward orbit, and that the o-limit

set a(f) of a map f is the union of all «-limit sets of points .

Then our main result (Theorem A in section 2) can be summarized as

follows:

Recehidn em N1/nQ/29
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1) a(f)= o Fo)u o Fy)

2) We find the complete list of possible types of orbits of Fg and Fqand in
particular, using an obvious encoding in terms of sequences of 0's and 1's,
provide all possible symbolic dynamics for these orbits.

3)The codes we find are those which correspond to the most even repartition of
0's and 1's, given a proportion of these bits, and we shall interpret these
proportions as rotation numbers. Thus any quasi-contraction has two rotation
numbers attached to it, and these are equal numbers or Farey neighbors (i.e. two
irreductible rationals pg/qg and p1/q; such that Ipogi-poqil=1)-

4) A code of F; with rotation number p/q means that X(F;) is a periodic orbit
with period q and p points in E1, asymptotically stable if it does not contain any
F;.
5) A code of F; with irrational rotation number means that ( Fp) = &(Fp)is an

asymptotically stable Cantor set.

The paper is organized as follows:
Section 2 contains some terminology we need and the statement of theorem A.
The proof of this theorem is given in section 3, assuming a "reduction lemma"
whose proof is differed to section 4.
Section 5 indicates how our main result apply to a problem in smooth dynamics
(more precisely to the study of a codimension-2 bifurcation involving flows with
a pair of homoclinic orbits).
Finally, section 6 relates the codes for quasi-contractions to the symbolic
dynamics of rotations, thus justifying part of the chosen terminology, and
describes as much of this symbolic dynamics as is needed in the proof of
Theorem A.
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2, DYNAMI F ASI-CONTRACTION

Let W = {0, 1}Z* denote the set of infinite sequences written in the alphabet

{0,1}, equiped with its standard topology, and let W2 stand for the cartesian
product W x W equiped with the product topology. We define the following

two inflation rules :

0 — 01 0 - 0
0: 1:
1 — 1

where 0 and 1 should in fact be considered as extended to self maps of W or w2

according to the context. Then , we have the:

Definition 2: Consider the semi-groupe SG acting on w2 freely generated by

the two inflation rules 0 and 1 , and consider in W2 the finite subset:
W20 = {(0%, 10%), (010, 10°°),(01°°, 1°°), (01°°, 101°°), (0%°, 1°°)}.

A pair (w, w') € W2 is quasi-rotation compatible if it belongs to the closure
of the set A = SG( W20) of all orbits under SG of points in Wzo.

Remark: In the proof of Theorem A, we will encounter n™- iterates of 0 and 1

which read respectively:
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and more precisely their respective inverse maps (deflation rules) 0, and 1, (or
0 and 1 when n=1).

Clearly, the set of all 0, 's and 1, 's generate the same semi-group
A= SG( W20 ) as before. Also, each time we use 0, 's or 1, 's in the proof of

Theorem A, the reader could modify the details in order to use only 0's or 1's

(or their respective inverse maps).

Definition 3: For a quasi-rotation compatible pair (w, w'), the rotation
number of the sequence w (respectivly w') is the asymtotic proportion of "1" in

the sequence w ( respectively w').

Remark: As a consequence of the results reported in section 6, it is clear that
these limits always exist for quasi-rotation compatible pairs, and deserve their

name.

Definition 4 : Let (Eq, dg , Fg) and (Eq, d;, F1) be two pointed complete
metric spaces, and let f: Eq U E{— E U E{ be a quasi-contraction . The address
of a point P in EyUE; , denoted by a(P), is 0 or 1 according to wether P
belongs to Eq or E;. The itinerary of a point P in Eg UE{, denoted by I(P) , is
the element of W defined by:

I(P) = (a(P), a(f(P)), a (f2(P)),......).

We shall sometimes use the notation Ig(P), in order to display the map f whose

dynamics is considered.

We can now state our main result:



66 JEAN-MARC GAMBAUDO AND CHARLES TRESSER

Theorem A:

Let (Eg, dg, Fo) and (Ej, d1, F1) be two pointed complete
metric spaces, and f: Eg U E;— Eg U E; a quasi-contraction . Then:
1) of)= o(Fg) v o(Fy), and o(F;) ,ic {0,1} is asymptotically stable
if it contains neither Fgnor Fj.

2) The pair (I(Fg),I(F1)) of symbolic sequences is quasi-rotation
compatible. In particular the rotation numbers of I(Fp) and I(Fy)
are the same real number or a pair of rational numbers which are

Farey neighbors.
3) Assume that for ic{0,1}, I(F;) has rotation number pi/q;, with

(pj»qi)=1, then:

- if pg/qy # P1/qy > ®(f) consists in two periodic orbits ®(Fg) and
o(F1) with respective periods qgand qg,

- if pg/qg = P1/q1 @(Fo)=w(F}) and either o(f) is a single periodic
orbit with period q=q¢=q1, or there is no periodic orbit, in which
case 3 j €{0,1} such that f4 (F1.j)= Fj.

4) In the irrational case, ®(Fg)= ®(Fp) is a Cantor set which contains
Fg and Fj.

5) For any quasi-rotation compatible pair (w,w'), there is a quasi-
contraction which satifies (I(Fg), I(F1)) = (w,w') ; furthermore, all

possibilities in 2) and 3) can be realized.
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Remark 1 ;

If we drop condition C2 in the definition of a quasi-contraction, even
conclusion 1) of Theorem A fails to be true. One can construct counter examples
by restricting f:x — 2x [modl ] to any complete set S of its orbits since then

f-1lg— S satisfies condition C1.

Remark 2 :
The set of codes for all points in Eg U E is far less restricted than the ones

of oxf). For instance, if E; is a ball in R2 with radius 1 and center F; for i€{0, 1},
one can arange so that the set of all codes for all points in EgUE; be {0, 1}27,
when I( Fg) = 0 and I( Fy ) = 1*° ( [H], [T2]).
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PROOF OF THEOREM A

Proof of statement 1:

The first part of statement 1 is a simple consequence of the following:

Lemma 1:
Let i€ {0,1} and PeE, , then:

Vn>0,3m >0 and (j,k) € {0,1}2 such that both f2(P) and f™( Fj) belong to E,
and di(f"(P) , f( Fp) < k".d,(P, Fy).

Proof of lemma 1:
The proof proceeds by induction on n.

For n=0, the result is obvious.
Suppose the result is true for n=n, with m=m, and (j,k)=(j, k), then there are

two possibilities:
a) 3k;e (0,1} such that (f10*1(P) , fO*(E, )e E, 2.

Hence using C1:

d (Fo%1(P) , fHOHL(F. ) <k.dy (£20(P) , fMO(F,) <k"0*Ld,(P, F).

b) Jkie (0,1} such that f*0*1(P) € E, and f™0*(F;) € Ey .

Hence using C2:

di, (F*1(P) , Fy)) <k.dy (£(P) , f™(F,) < k™*Ld,(P, F).
Q.E.D. (lemma 1).
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For the second part of statement 1, assuming o(F;)"{ Fo,F1}=@, let:

&= min { do[(exX F;) " Eq),Fol , di[(eX Fy) NEy), Fy]}.

Then, for any Pe o( F,) , any ball with center P and radius & < § has its

successive images contracted to the orbit of P.

Q.E.D. (statement 1).

Reduction lemma:
Under the hypotheses of Theorem A, there exist two closed sets
EO(I)CEO and E{VCE{ such that:
a) FyeEyD and FieE; D,
b) f(EoDUE; (D) ¢ Ey(DUE; D,
¢) 3 (i1,j1e (0,1)2 such that f(Eil(l))CEjl(l).

This "reduction lemma" is the main building block of the proof of Theorem

A. Its proof is given in section 4. Remark that a) and b) not only tell us that f
restricted to EO(I)UEI(I) is again a quasi-contraction, but also that EO(I)UEI(I)

contains oX Fy) U o( F -

Lemma 2;
Under the hypotheses of Theorem A, if f( F,) €E;, then:

Vn20, f(F)e E;.

We shall use lemma 2 in the present section, and later again as a step in the

proof of the reduction lemma; its proof is also reported in section 4.
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Proof of ment 2;

The proof will be organized according to the two possibilities in statement
¢) of the reduction lemma, that we call "case a" when ij= j1, and "case B" when
i1#]j1.

@) 3 iy €{0,1} such that f(E; ®M)c E; D,

This is by far the simplest case :
- I(Fil) is obviously the constant sequence : I(Fil) = (igsigalqoeniesc)s
- There are precisely two possibilities for f(Fl-il) 2
- either f(Fl-il) € Eil(l), in which case:
B e (L-igsigigseee)s
-or f(Fl-il) € El_il(l), in which case:
iP5 )= {1=13,1-14, 1 s

as a consequence of Lemma 2.

In both cases, one recognizes quasi-rotation compatible pairs with a pair of

rotation numbers in {0,1}2.

This concludes the proof of statement 2 for the case o.
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B) 3 i1 €{0,1} such that f(E;,®)cE ;D

We shall first split the case B according to two complementary further

specifications called respectively (.1 and B.2.

B.1:V m >.0, fM( Eil(l) ) e El-il(l) 2

Then obviously :

I(Fil) = (il’l‘il,l‘il, ...... )

Furthermore,

- either f(Fl-il) € El-il(l)’ in which case (using lemma 2) :

Iy ) = (g 1 14,680

- or f(Fl-il) e Eil(l)’ leading to:

so that statement 2 is proved for the case $3.1.

B.2: Im >0, fM( Eil(l) ) A Eil(l) AR

Then we set :
m; =min { m>01fE; (D) nE; Dz23),

and we define a new map :
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(0. EgDUE, D SEyWUE,®,

f(P) = £(P) if Pe B ;D)
fD(P) = £(P) if Pe E;; D

and one readily verifies that f{1) is a quasi-contraction with spaces (EoW, dg, Fo)
and (E;1), dy, Fy).

Consequently, the reduction lemma applies and there exist two closed sets:
EO(Z) c Eo(l) and EI(Z)CEl(l) !

such that:

a) Fye EPand F e E¥,

b) fDEND UE;P) c Eg@DUEP,
©) 3 (ip,pe (0,1)2 such that fD(E; @) c E, @

The knowledge of the dynamics of (1) encompasses whatever we want to
know about the dynamics of f. More precisely, we have the following two

properties :

P;: o F) € o (F) =Y P wq(F); ie {0,1}.

m;>m=0
Pz: It(l)( Fl) =( ao(l),al(l),az(l), ....... ) =4 If(Fl) =( ao,al,az, ....... )

where:

DYNAMICS OF QUASI-CONTRACTIONS 73

a, (D if a;(D=1-i
A= (aD,by.by ) with by =1-2, (D for ne (1;.my-1) if 2,V =i

The construction of f{1) out of f thus appears as the first step of an inductive

process which after n steps would leave us with a map :

(0. EoMUE;® > Eg™UE ™.

We shall set £ =f.

Now we can split further case .2 according to wether all the successive
)5 fall in case .2 (B.2.2) , or one find one of them in either the case o or the
case .1 (B.2.1).

B.2.1:3 ng such that f (0 falls in case o or B.1.

In this case the inductive process stops and statement 2 is satisfied for
f(Mo-1) gince we are is the same situation as in case o or as in case B.1. Using

P, and the definition of quasi-rotation compatible pairs, this concludes the proof

of statement 2 for f in case f3.2.1.

B.2.2:V n >0, @ falls in case B.2.
Then the inductive process never stops, and we are left with the last

alternative:

B.2.2.1: 3ng >0,3ief{0, 1} such that Vn2ng,ip =i
In this case , the pair (I(F), I[(F;)) belongs to the closure of the set A =

SG(Wzo) (see definition 1 of section 2) and thus is quasi-rotation compatible.



74 JEAN-MARC GAMBAUDO AND CHARLES TRESSER

Since the inflation rule which relates Lm)( F;) to Ipm-1)( F),ie {0,1}, is
eventually constant (i.e.0 or 1 according to wether i, " isOor 1), we get a single

rational rotation number (which in fact is 0 or 1 according to wether i, 5 isOorl:

see section 6).

B.2.2.2. V ng>0,3 n >ng such that fn-1) Eo(“)) (& El(“) and
f(n)(El(n+1)) C E0(n+1).

In this case again, the pair (I(F;), I(F,)) belongs to the closure of the
set A = SG(W20) and thus is quasi-rotation compatible. Since the inflation rule
which relates Lqm)( F;) tolgm-1)( F,),ie {0,1}, is not eventually constant, we get a
single irrational rotation number ( see section 6).

Q.E.D. (statement 2).

Remark 3 : Irrational rotation numbers correspond to and only to the case
B.22.20.

Proof of statement 3:

Using statement 2, the proof of this statement needs essentially
manipulations on ordinary contractions; details are left to the reader.

Q.E.D. (statement 3).

Proof of statement 4:
From Remark 3 and the definition of quasi-rotation compatible pairs, we
know that for the irrational case, I(fZ(FO))=I(f2(F 1)); so that o(Fy) = o(F)) isa

simple consequence of C1.
It remains to prove that axf) is :
-a) closed,
-B) perfect,

-y) totally discontinuous.
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- a) is a general feature of -limit sets.
- For P), one has to prove that any point in «(f) is an accumulation point of
oxf). This will be true if the F;'s are themselves accumulation points of axf).
Thus let us consider a point F; , and for any n, >0 such that f“O(Fi))e E;let
0< 8n0 =di( fHO(Fi) , Fi)'

Since I(F,) is not periodic, thanks to C1 and C2, there exists n>n, such that

0< di(f%(F),F) < k.8n0.
This proves ).

- For ), one has to prove that the connected components of axf) are reduced to a
single point. Let us then notice that, for any €> 0, there exists Ng >0 such that,

foralln2Ng, (o(f(“)) C Bo(F,©) UB1(Fy,€), where B;(P, 1) is the closed ball in

(Ej, dj) with center P and radius r, because the upper bound on the diameters of
the sets u)(f(P))ﬁEO and OXf(P))ﬂEl gets inproved by a factor k at each

induction step. Hence using P1, one has:
o) C U 50(Bo(f™(F) k™€) UB(f(F,) k™).

If now K is a connected component of &Xf) with diameter §, it is possible to

cover it with a subset of this set of balls, so that we get the estimate:

< 2¢/(1-k),
and since € can be chosen arbitrarily small, we get & =0.

Q.E.D. (statement 4).
Proof men

It is in fact easy to construct all examples with ox(f) indecomposable, just

using piecewise linear contractions with a single dicontinuity ( [G,T],[T1]).
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The cases where oXf) consists in two periodic orbits can also be obtained
from maps on the interval if one accepts maps which are not piecewise
monotone, i.e. have infinitely many segments of monotonicity (see [G,G,T.1] for

flows whose first-return map is approximated by such a one-dimensional map).

It is however easier to construct abstract examples starting from an easily
constructed example for each code in the set Wzo,and using constructions which

imitate the inflations 0}, and 1. Details are left to the reader.
In Figurela, we illustrate the meaning for f of the inverse 0, of 0, ,and in
figure 1b, the construction corresponding to 0y, .
Q.E.D. (statement 5).
FIGURES 1-a and 1-b.come here.

See the end of the paper
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4. PROOF OF E REDUCTTI LEMM

Let us first recall the statement of the:
Reduction lemma:
Under the hypotheses of Theorem A, there exist two closed sets
Eo(DCE( and E{(DCE; such that:
a) Fye Eo(D) and F1eE;(),
b) f(Eo(DUE; (D) € EgDUE(D)
¢) 3 (i, jpe (0,1)2 such that f(Eil(l))CEjl(l).

The proof of this lemma (called RL hereafter) is rather complicated and needs some

explanations. It will be done in five steps and we now describe this sheme.

First step :

We prove the reduction lemma for all quasi-contractions with constant of
contraction k smaller than 1/2. This result will be called the "1/2 reduction lemma"
and noted (1/2)RL. There is a big gap in the level of difficulties between proving the
(1/2) RL and the RL which cannot be attaqued with the same rough techniques.

Second step :

We give a weaker version of the reduction lemma , called the "pre-reduction
lemma" and noted PRL which differs from the RL only by the fact that we do not
ask to the sets Eo()CEq and E;(DCE; to be closed.

In this second step, we prove the PRL for all the quasi-contractions but the

ones which are in one of the two following configurations noted (¥) :
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f(Fo )eE and f®(Fg )eE; =f""1(Fj )eE,
f(F; )eEq; f2(F )eEg and f>(F; )eE;
and 3 p>0: f2P(Fg)eEq and f2P*1(Fg)eEy.

and the symmetric configuration obtained by exchanging 0 and 1. In general, a

configuration is a set of constraints on the itineraries of the orbits of Fy and F;

under a quasi-contraction.

Third step :
We prove that if the reduction lemma is true for all quasi-contractions with

constant of contraction smaller than a given k() < 1, then the pre-reduction lemma is

also true for all quasi-contractions with constant of contraction smaller than
172
ko)

not yet known at the preceding stage). In a symbolic way, we have :

(even the ones in configuration (*) which are the ones where the result is

(kg)-RL=3(kg) /2.PRL

Fourth step :
We prove that if the pre-reduction lemma is true for all quasi-contractions
with constant of contraction smaller than a given kg < 1, then the reduction lemma

is also true for all quasi-contractions with constant of contraction smaller than k.

In symbols:

(ko).PRL=¢(ko).RL.

Fifth step :
We conclude by remarking that applying again successively step3, step 4, step3,

step 4 .... we get the proof of the reduction lemma.
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Now, we can proceed to prove the reduction lemma step by step.

FIRST STEP :

-Lemm 1/2)RL) :

The reduction lemma holds true for quasi-contractions with k<1/2.

Proof of (1/2)RL:

Let f be a quasi-contraction with k<1/2, we set :
6 = max{d;(f(Fy, Fj), f(F) € E;, je {0,1}} = dj (£(F; ), Fj ).
Then, the reduction lemma holds with:
Ei(D) = B;(F;, 8 /(1-k)).

If 8 =0 the result is obvious and we asume now that & #0. Notice that F; belongs to
Ei(1) from the definition.

Let P belong to E;(1), and f(P) belong to E;.
If £(F;) does not belong to E; then, thanks to C2:

d;(f(P), Fj) < k.di(P, F;) < k.8 /(1-k),

thus f(P) belongs toE;(1).
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If f(F;) belongs to E;, then, thanks to C1:

d(f(P), f(Fy) < k.di(P, F;) < k.8 /(1-k),

but:

d;(f(Fy, Fj) <3,
and dj(f(P), F) < 8+Kk.8/(1-k) <3 /(1-k),
thus f(P) belongs to E;(1).

So far, we have proved that:
f(Eg(DUE; (1) € E¢(DUE (M),
Now, let us prove that:
f(EiO) (o Ejo'
Asume that P is in Eio and f(P) is in El-jo’ then, using C2:

8=d; (f(F; ), Fj ) < k.8/(1-K).

But this inequality is imposible if 0 and k<1/2.
Q.E.D.((1/2)RL).

This restricted version of the reduction lemma is much simpler than the general
case, in that Eg(1) and E{(1) can be defined directly as closed balls when k<1/2. This

will not any more be true for larger values of k, which motivates the nature of the

following step.
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TEP :

We now give the formulation of the "pre-reduction lemma".

Lemma 4 (PRL);

Under the hypotheses of Theorem A, there exist two sets
Go<Eg and G; CE; such that:
a) Fpe Gp and F1e Gy,
b) f(GouGy) € Gyu Gy,
©) 3 (1 ,j1)e {0,1}2 such that f(Gi)CGj.

In this second step of the proof of the RL, we shall not prove completely the PRL,
but only most of it. More precisely, we shall prove the same conclusion assuming
we are not in the pair of configurations noted (*), and defined previously. This

restricted statement is what we call "most of PRL".

r Hm R ",

We shall eventually prove the "pre-reduction lemma" with:
Gi=Eiﬁ(umZO{fm(FO)} L UnZO{fn(Fl)}) ie{0,1}.

Defining now (jg, j;)e {0,1}2 by Fero,jO and FleEl,jl , we will begin to

organize the proof of PRL according to the four possible choices corresponding to
the set of values of the pair (jy, j;). As the argument will develop, we will be obliged

to isolate the (*) configurations, and finish only at this stage the annunced proof of
what we call "most of the PRL".

The following obvious result will be useful in many instances:
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Lemm inciden
Let {(Ey,dg)} e A be a collection of metric spaces, P a finite subset of

YUoe A (EaXEa)’ and ke [0,1[. Assume that there exists a map:

g:. 4P - P
x,y)e EBZ — x'\y)He E'Y2
such that:
d(x,y)< k.d(x,y).

Then there exists \e A and z € Ej such that (z, z)e P.

In the sequel, the reader will find many claims that "the reduction lemma holds
true with a given set P". What is meant is that for the given P, there exist a g as

above so that the conclusion of the coincidence lemma holds true.
Recall the statement of

Lemma 2;
Under the hypotheses of theorem A, if f(F;)eE; then Vn20, fn(Fi)e B

Proof of lemma 2;
Assume the lemma is false. Then, there exists a first m with fm(Fi)e E; and

f+l(FyeE, ;.

Remark: from the hypothesis we know that m>1.

Claim: the coincidence lemma holds true with the set P constructed with A={i}, and
defined by P={(a,b)l a=fP(Fi), b=fq(Fi), P#q, 0<p<m,0<q<m}.
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Proof of the claim:

There are only two cases to be considered:

a) p<m.g<m: then (fp+1(Fi),fq+1(Fi))e P; we set:

g(P(F).fAF))=(tP* 1 (F, 19+ (Ry)),

and we have:
4P+ (F), A (F)) < k.dj(ab).
b) p=m.g<m: then (fq"'l(Fi),Fi)e P; we set:

g(f(F), Fp=(fI+1(Fy),Fy),

and we have:

(91 (F),F) < k.di(a,b).
QE.D.(Claim).

Hence, from the coincidence lemma, we know that there exist:

0<m{<m, 0Sm,<m,m;<my such that f" 1(F;)=f"2(F;).

Then fm1+m+1'm2(Fi)=fm+1(Fi), and since m+mj-my<m, we get that

fm+1(Fi)e E;, a contradiction.

Q.E.D.(lemma 2).

The case (jj.jj)=(0.1),
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Lemma 6 (PRL true in the case (jj.i;)=(0.1)):
Under the hypotheses of theorem A,PRL holds true for the configuration
Ggei)=(0,1).

Proof of lemma 6:

From lemma 2, we know that:
Upsol(F)DY CE;,

thus f(G;)C G;, for ie {0,1}. This takes care of the case (iO,jl)=(O,1).
Q.E.D.(lemma 6).

The cases (jj.i;)=(0.0) and (jj.ij)=(1.1),
Lemma 7 (PRL true in the cases (jg.i;)=(0.0) and (jj.j;)=(1.1)):

Under the hypotheses of theorem A, PRL holds true for the configurations
Go,j1)=(0,0) and 00,j1)=(1,1)-

Proof of lemma 7:
Since these two configurations are obviously equivalent, we shall only consider
the case when (j.,j;)=(0,0).

From lemma 2, we know that:

Unxo{f(Fp)} C B

Consequently, we can use the following more precise definitions:
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Go=EgM(Up0PFQ} U Upno(FIE))
G1=Elﬁ( UnZO{fn(Fl)}) s

We shall show that f(GC GO, i.e. F] does not have two consecutive images, say
fM(Fy) and f™*+1(F)), in E;. This is obviously true if Gy= {Fy).

Remark: notice that the m above should satisfy m>2 since f(F))e Eq from the

hypothesis.

Claim: the coincidence lemma holds true with the set P constructed with A={1}, and
defined by P={(a,b)e E12I a=fP(F}), b=f4(F; ), p#q, 0<p<m,0<q<m}.

Proof of the claim:

We distinguish two case, a) and b).
a) if p<g<m, ther: tw sibilities:
o) Vie {1,2,.m-q}, 3 ji)e {0,1} with:

E@HEAHE))e Ej(iy EjGiy

Then we have:
dy (T IUEDLNFD) SK™Ld; (ab).

B) 3 i)e {1,2,..m-q} such that:

V 1:0<i< ig, j(De (0,1} with: ((PH(E,).FHE e Bjijyx EjGiy.
3 jtig)e (0,1} with: (P0F AT e Bjopx By i)

Then we define r by:
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{ p+i, if iig)=1
= q+i, if 1-j(ig) =1 »

and from C1 and C2 we have: :
d{(f'(F)).F) <k'.d;(ab).

b) p<q=m:

from C2 we have:
do@*+1(F)).Fp) <k.d;(ab).
combining C1 and C2 and the fact that:
Upso{ff(Eg)leEy,
we have:
d (PTS(F)),F)) <kS.d;(ab),

where fP+S(F) is the next element of the orbit of F; which belongs to E; after
().

Q.E.D.(Claim).
Hence, from the coincidence lemma, we know that there exist:

0<m;<m, 0<m,<m,m;<my such that f1(F{)=f"2(F))eE,.
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It follows that {217 M ™M2(F )eE . Since 1M1 M2E ye B, we get that
fm+1(F1)e E(, a contradiction.

Q.E.D.(lemma 7).
Lemma 8:
Under the hypotheses of theorem A, if there exists n>1 and i€ {0,1}such
that:
fYF)eE;; and IF)eE;, (9
then:

fl(F)eE;; and fA(FPeE,.
Proof of lemma 8:
Let m be the smallest n such that (**) holds true. If m=1, the lemma is proved,

and for m infinite, there is nothing to prove. We shall thus suppose that m>1 is

finite.

Claim: for m>1 and finite, the coincidence lemma holds true with the set P

constructed with A={1-i}, and defined by:
P={(a,b)e E1_;2l a=P(F,), b=td(F;), p£q, 0<p<q<m).

The proof of the claim and the conclusion of the proof of lemma 8 go along the
same lines as before. Details are left to the reader.

Q.E.D.(claim and lemma 8).
Remark: In the rest of the paper, we shall no longer give the proofs for claims such

as the one above, nor give details on the way to use them.

For G(j and G violating the PRL, it is evidently necesary that two

successive points of the orbit of Fp or F1 be in the same E; since otherwise:
p 0 1 i
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f(Gg)C Gy andf(G)C Gy

Thus we have to examine three configurations:
A: d m,n>0 such that:

fY(Fy) , fm"'l(FO)e By s

and
fiF,) , 1 EF ek, .

B: 3 m,n>0 such that;

fM(Fg) , O+ (FpeE,,

and
fF) L E e,

and one is not in a configuration C as defined hereafter.
C: 3ie{0,1}, and m,n>0 such that:

fM@E,) , M*1F)eE;,
and
2F) , P F)eE, .

Since we have already treated the cases where (jO,jl) is (0,1),(0,0) and (1,1), it

would only remain, in order to prove the PRL, to show that none of the
configurations A, B, and C as defined above, can occur in the case (jo,j 1)=(1,0).

We shall prove this completely for the configurations A and B, and it is in the study
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of the configurations C that we shall isolate the (*) configuration described at the

beginning of this section.
I ibili £ 1 fi ton & il (iguig=(1.0

Lemma 9 :

Under the hypotheses of theorem A, one cannot find two integers m and n such

that:
(@ fOFy , M*1(FpeE;,

and

B) f(F) , O (E)eE

Proof of lemma 9:

From lemma 8, we already know that if two such integers m and n exist, then
m=1 and n=1 satisfy the same conditions. Thus it only remains to prove the

impossibility of:

(o) f(F) , f2(Fp)eEy,

and
(B") (Fp) , f2(FeEo.

If (a') and (B') hold simultaneously, we deduce using C2 that:

(a') implies-

do(f(F1),Fg) < k.d; (E(Fg).Fy),
and (B') implies:
d (f(Fg).Fy) < k.dg(f(F).Fp.
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It follows that f(F1)=F0 which is impossible since f(Fpe E{ and f2(F 1)€ Egp.
Q.E.D.(lemma 9).

L ibility of 1 fi ion B in 1 oud1=(1.0)

Lemma 10 :
Under the hypotheses of theorem A, f(Fgle Eq, f(Fe E(), one cannot find two

even positive integers m and mj such that:
(@) fi(Fg)eEy , i< mg, i even, fi(Fg)e By, i< my, i odd,
(B) H(F)eEy ,j<my, jeven, iF))eEy, j<my, j odd,
@ fPO0EpeEy , M0 (FpeE,,
& fMFPeE) , fPIH(E) ek,

Proof of lemma 10;
Assume lemma 10 is false.

Claim: the coincidence lemma holds true with the set P constructed with A={1-i},
and defined by:
P=((a.b)eEg>UE; % iye (0,12 psm, q<m, prq, such that a=fP(F;), b=fA(F,)).

The proof of the claim and the conclusion of the proof of lemma 10 go along

the same lines as before. Details are left to the reader.

Q.E.D.(claim and lemma 10).

By exchanging if necessary the indices 0 and 1, it only remains for PRL, to

prove that configuration C cannot occur if:

{f(FO)eEl and  fM(FpleE| = fM+1(R))eE,
f(F1)eEq ; f2(F))eE,
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In fact, we will need to split the configuration C according to the more precise

configurations:

f(Fo )eE; and f™(Fg )eE; =f™*!1(Fy)eE,
Hi | #ry )eBg; £2(F )eEg and £>(F; )eEg ,

or:

f(Fg )eE; and f™(Fg )eE; =f"*1(F)eE,
2 | £(F; )eBo; f2(F; )eEq and £3(F; )eE; ,

but first, we need to proceed with a pair of lemmas which will be usefull in both

cases.

Lemma 11:

Under the hypotheses of theorem A and assuming H, let j>1 be the
smallest integer i greater than one, if any, such that f‘(FO)e E,, and let j=2+n, n>0.

Let then p>1 be such that fP(F;)eE;; we know that fp+1(FO)e E( and we denote

m(p) the smallest positive integer m such that:

fp+1+m(FO)e El .
if such an m exists, or m(p)=+co in the other case, then:

Vp>1, m(p)>n.
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Proof of lemma 11;
The case m(p)=+c° is obvious and we now consider that m(p) is finite. If the

lemma is false, there exists a first p=p, such that m(p)<n. Then, one gets a
contradiction and the conclusion of the proof of lemma 11 using:
Claim: the coincidence lemma holds true with the set P constructed with A={1}, and
defined by:

P={(a,b)e Elzl a=fq(Fo), b=f"(F), 0=<q<r<p,}.

Q.E.D.(claim and lemma 11).

Lemma 12:
Under the hypotheses of theorem A and assuming H, assume furthermore

that for k<r,
f(F1)e E; = £<T(Fy )eE,.

Denote by n>2 the number such that fS(Fl)e Eg ifse{1,2,...,n}, and fn+1(F1)e E;.
Let j, o<j<r, be such that fj(Fl)e E; . Finally, let m(j) be such that f{(Fl)e E( for
t{j+1,....j+m()}, and £+ (E ) E;. Then m(j)<n.

Proof of lemma 12;
If the lemma is false, there exists a first j=j <r such that m(j,)>n. The

contradiction which allows to conclude the proof of this lemma then comes from
the:
Claim: the coincidence lemma holds true with the set P constructed with A={1}, and
defined by:

P={(a,b)E; 2l a=fP(F,), b=f"(F,), 0<p<qsj,}.

Q.E.D.(claim and lemma 12).
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I ibility of C jng H:

Lemma 13:

Under the hypotheses of theorem A and assuming Hy, one has:

£2(Fg )e Eo.

Proof of lemma 13:

The lemma follows from the:
Claim: the coincidence lemma holds true with the set P constructed with A={0}, and
defined by:
P={(f(Fy), Fo).(tX(F)),Fp)}.
Q.E.D.(claim and lemma 13).

Lemma 14:
Under the hypotheses of theorem A and assuming Hyp, if f™(Fo )eE; (in

which case one knows that me(Fo )€ Eg), then:

f7*2(F, )e Eo.

Proof of lemma 14:

This is a direct consequence of lemmas 11 and 13.

Q.E.D.(lemma 14).

One then has the following:

L 15 G ibili f C ing Hy):
Under the hypotheses of theorem A and assuming Hy, then for all k>0:

*(F)eE; = £ (F ek
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Proof of lemma 15;

If the lemma is false, there exists a first r=r, such that:

fO(F))eE; and  £0*I(F)eE,.

One then concludes thanks to the:

Claim: the coincidence lemma holds true with the set P constructed with A={1}, and
defined by:

P=((F1.f(F)eEq 2 i<ty) U{(EF),H(F ) By 2 j<r, ).

Q.E.D.(claim, lemma 15 and PRL assuming Hy).

! for the i ibility of C o 5

We shall now prove the impossibility of case C assuming Hj and the

supplementary hypothesis:

Hy' :Vn0, f(Fp)eE) and f2+1(Ry)eE;.

Lemma 16;

Under the hypotheses of theorem A, case C is impossible assuming H,
and HZ'.

Proof of lemma 16:

We have to show that there is no p>0 such that:
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fP(F))eE; and PHI(F)eE,.

Because of Hz', {fzn(FO)}n>0 and {fzn“'"l(FO)}n>0 are two Cauchy sequences,

respectively in E(y and E{, which converge respectively to Loe E and L€ E;.

Since f is a quasi-contraction:

Vn20, do(f2(F;),Fp) < k.do(f(Fy )27 2(F )<
<k2.d) (Fp. 20+ L (Fg))< k3.dg(F(Fp),f20(Fy)) -
Hence f(F1)=F0=L0,| so that the orbit of F; cannot have two consecutive points in
E;.
Q.E.D.(lemma 16).

So far we have succeded to eliminate all that could contradict the PRL, except

for the (*) configuration.

Q.E.D.(step 2).
STEP 3:
Lemma 17 :
If for some ke [0,1[, the reduction lemma holds true for k< k(), then the PRL

holds true for all k< k()l/ 2,

Proof of lemma 17:

12 1f £ does not satisfiy the PRL, then f

Let f be a quasi-contraction with k< k)
necessarily presents a configuration (*), for instance (with the roles of 0 and 1 as

chosen at the begining of the chapter):
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[ f(Fo)eE; and f™(Fg )eE; =f™*1(F)eE,
< 29
JL f(F; )eEg; f2(Fq )eEq and f>(F; )eE;
and 3 p>0: sz(FO)e Eq and f2p+1(F0)e Eq

and there exists a first n=n() such that:
f%(F; )e E and 0% (F; )e E;.
Let then define:

HO=Uy 50 ((P(Fg)) U Yng2n20 M (FD},

and
GoV=Ey nHY , G;D=E; nHO.

We define a map:

gZGO(l)UGl(l) =2 GO(I)UGI(I),

by:
g(P)=f(P) if P={P(F)),
g(fP(F))=F,.

g satisfies conditions C1 and C2. Hozever, because GO(I) and Gy (M need not be

closed, one cannot insure that g is a quasi-contraction. Thus we extend g to a map:

T GG —» GG ®,

by setting:
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g (limp. ¢ Gj(1)(Pi))=1im*(g(Pi)) :

where lim* accounts for the following minor difficulty:
- if lim(g(P;)) does not depend on the defining sequence, then lim*= lim.

- in the other case, i.e. when lim(g(P;)) can be F(y or Fy according to the defining
sequence for lim(P;), we set lim*(g(P;)) to be F; if the defining sequences are in

Go(l) or Fyy if the defining sequences are in Gl(l) .

Of course, this difficulty disapears if one consider quasi-contractions as maps from

the union of two spaces to their join.
T s a quasi-contraction on Gn(MDUG; (D and thus satisfies lemma 11 and
g q 0 |

lemma 12. It follows that:

either g (P) € G and g 2(P)e GV

(D
il =>{ or g (P)eG'l(l) ,

and we have also:
Pe G;V = g (P)e GV

Notice that, by construction, g satisfies the PRL. The proof of lemma 17 will

be obtained by proving that such a map cannot exist.

We now define a new map:

g D G’O(l)u G'l(l) = GO(I)U G_l(l)’
by:
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= : (D)
o i 2(P) if Pe G
g “(P) if PeG{(,
Defining:
m
H(1)=Un120{(g (1)) (F O) }UUHZO{ (g () )n (Fl) }’
and

GO(Z):.E()('H(l) , Gl(2)___ElmH(1),

we remark that:

g(l)(GO(Z)U(;l(Z)) C GO(Z)UGI @),

and:
g(l)(GO(Z)) C G1(2)_

Notice that Go(z) and Gl(z) are closed sets, and that g(l) is a quasi-contraction
on GO(Z)UGI(Z). This allows us to introduce a further map:

g2:GyPuG|® 5 GG, @,
(@ (P)= AP it PeGy®
(g)®) if PeG{@.

One can check that g@ is a quasi-contraction with constant k2<k0. As a

consequence g satisfies Theorem A.
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Hence, the pair (Ig(z)(FO),Ig(z)(Fl)) of symbolic sequences is quasi-rotation

compatible. Furthermore, one can reconstruct the itineraries Ig(FO) and Ig(Fl)
using successively the two inflation rules :
0 0 - 01 1: 0 - 0
¥y - 1 &l - 10
By definition of the set A = SG( Wzo), the pair (Ig(FO),Ig(Fl)) of symbolic

sequences is also quasi-rotation compatible.

Let us then remark that because we are dealing with a configuration (*),
Ig(FO) reads:

Iy(Fg)= 010......1001... .

By construction, F, belongs to the orbit of F; under g, and going backward on this

orbit startiong from F, yields successively g'l(FO)e Eiq g'z(FO)e E(. Consequently,

one gets:

Iy(Fy)= 10... .01Ly(Fp),

which violates the minimality of Ig(g(Fl)) among all the shifts of Ig(Fl) starting

with the symbol O (see Theorem 2 ,§6). This contradiction concludes the proof of

lemma 17.
Q.E.D.(lemma 17).
Lemma 18:
If for some ke [0,1[, the reduction lemma holds true for k< kg, then the RL

holds true for all k< ko'/%.
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Proof of lemma 18;

We remark that in order to describe I(Fy) and I(F;), we do not need the

complete reduction lemma; the pre-reduction lemma is quite enough.
Consequently, if f is a quasi-contraction with contraction constant k< k()l/ 2
lemma 17and §3 tell us that f satisfies the statement 2) of Theorem A. Hence, we can

split the proof of lemma 18 according to:

188 cage: both I(FO) and I(F,) are eventually periodic,
d

case: none is.

In both cases, defining Gy and G as usual, and assuming f(Gi)CGj for

@i,j)e {0,1 }2 , we have to show that:
PeG; = fP)e Gi {

In the first case, if f(P)e G; , then there are ke {0,1}, p>0, n>0 such that:

+m.n
limy, |, (7" (Fy))=P.
If we assume that:
f(P)e Gj ,
then necessarily:
f(P)E G-l 'j'

In fact,by C2 we have:
f(P)=Fy
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and:
lif (fp+m n+l(F )= F

m_)oc

This implies that there is some q<n and se {0,1} such that:

lim,, ("™ (F))=fYF,).

moo

Since the orbits of the Fy's belong to GG, we have reached a contradiction.

In the second case, we know that j=1-i. For definiteness, let us assume i=1, i.e.:
f(Gl)CGO

Then the pair (I(F),I(F,)) of symbolic sequences is quasi-rotation compatible
and the rotation numbers of I(Fy) and I(F,) are the same irrational number.

In particular, among all points in the orbits of F, and F,, F yields the maximal

itinerary begining with 0 (see Theorem 2,§6).

Assume now that f(P)g G'O. Again C2 implies that f(P)= F;. Furthermore, for
any sequence {P},qin G with:

lim,,___P,=P,

we have:
hmm_)mf(Pn)=FO.
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Since there is no m>0 with fm(FO)e {Fg,F1}, for any N>0, there is a N'>0 such

that for all n>N', the itineraries of FO and P coincide on at least the first N

symbols.

Furthermore:
- the itinerary of F(y contains some pair of consecutive zeros, by irrationality of the

rotation number,
- there is a sequence {Q };,5( in Ggwith:

V>0, f(Q,)=P,.

Let then N be such that there exists a pair of consecutive zeros among the first
N symbols of I(Fg). Then, for n>N we have 1(Q,)>I(Fg) since the first N+2

symbols of I(Q,,) are 01 followed by the first N symbols of I(Fp.

This contradicts the maximality of I(F()) (see Theorem 2,§6), which concludes
the proof of lemma 18.
Q.E.D.(lemma 18).
STEP 5:

Iterating ad infinitum the succession of steps 3 and 4 yields the complete proof
of the reduction lemma.

Q.E.D.(RL & Theorem A).
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APPLICATION T IF T

Let us consider a C! flow Xp in R3 with a critical point P of saddle-focus

type and a pair of homoclinic orbits [';, i€ {0,1} bi-asymptotic to P as t — *oo |

as represented in figure 2.

FIGURE 2.comes here.

See the end of the paper
One can look for the structure of the orbits which remain close to FOUFI

for any flow X which is Cl-close to X- Since the shapes of I'j and I"jare

essentially irrelevant for this problem, a natural description of such orbits is to
indicate how they successively follow "closely" I’y and I'; as time goes on.

For instance the two periodic orbits represented in figures 3-a and 3-b can

be described respectively by:

FOFOFIF'IFOFOT'IFIFOFO ....... s
and

rorlrorlrorlrorlrorl ....... ’
or in short:

(0011) *,
and:

01) .

FIGURES 3-a and 3-b.come here.

See the end of the paper
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One can study this problem by considering the first return map T on a small

cylinder C surrounding the local unstable manifold of P. C is cut in two parts, say
Cy and C, , by the local stable manifold of P and the encoding of the orbits of T

in terms of C and C; obviously corresponds to the encoding of the orbits of the
flow in terms of ['jand I'; . In some cases, one has to restrict T to a
neighborhood Cy U C;of CyN C;inC.

In fact, T is a mapping from C, U C;\ Ty N T; to C= C, U C, which is
continuous on C;\ Cy N T for ie {0,1}.

If then E; (respectively E; ) is the disjoint union of G, (respectively C; ) and a
point F; which is the limit of any sequence converging to T, N Ty, T extends

uniquely to a map:

such that the restrictions of f to the E; are continuous for the natural topologies.

Typical questions about f are to describe all possible codes of orbits and,
more particularly, orbits in the w -limit set of f. The same problem can be

formulated for flows on any smooth manifold with dimension greater than one.
In particular, the spiraling in of the I'}'s in the stable manifold of P (figure 2) is

justan example. ~ What is relevant is the existence of a single unstable direction
near P, and that the restrictions of f to the E, be contractions with :

f(EO Y El) C EO v El/ (FO = Fl)’

This is always the case if C is small enough and if the unique positive
eigenvalue of DX (P) is closer to the imaginary axis than any other of its
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eigenvalues. In such case, understanding f amounts to understand the dynamics of
quasi-contractions. Details can be found in [G,G,T.2], which contains a more
complete bibliography (see also [G], [T,S], and a paper to appear [G,G,R,T]).
Notice that part of theorem A as been proved in [G,G,T.2] for k<1/2. This is
enough for most applications to flows. Going from k<1/2 to k<1 has pushed us to

consider more closely the orbits of C and C; and F,. In terms of flows, this

corresponds to the description of the possible symbolic dynamics of the two
branches of the unstable manifold of P for X close to X;. We leave to the reader

the task of formulating all implications of Theorem A for flows.
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6. ABOUT THE SYMBOLIC DYNAMICS OF ROTATIONS, and:

Let : Rq=modl) oRyl g1} >

To: T! > T, ' from the unit interval to itself.

! ; [ R’ induces a decomposition of [0,1] as the disjoint union:
denote the rotation with one lift to the universal cover R of T1 given by: % y .

Ry imt R m-Ro (0,1-0f U [1-a, 1]= [,
X - xH

such that R’ | I ie {0,1}2 is continuous. Correspondingly for R',, we will have

where o is chosen to belong to [0,1] for reasons which will soon become [0,1]=lo U, with 1,=[0,1-0] and I,=(1-0,1].

transparent.

Now, with f standing for a Rjora R', and Jo\UJ; for the corresponding

Letus now introgtyge, betide fhes peugk splitting of [0,1], we will parallel Definition 4 by the following:

modl : R — [0,1[, Definition 5 ; The f-address of a point x in [0,1], denoted by ag(x), is 0 or 1

according to wether x belongs to Jg or J;. The f-itinerary of x, denoted by
the unique transformation: I(x), is the element of W defined by:

Ii(x) = (agx), ag(f(x)), a (f2(x)),......).
modl: R — 10,17,

Definition 6 ; To f we associate the two symbolic sequences:
which agrees with mod1 except on Z, and is continuous on 10017

ko(f) =0Ig1) and ky(f) =1140),
Then to any R there correspond canonically two discontinuous maps:
and we remark that, except for the two first symbols,k(f) and k,(f) coincide.

Ré=— DoR,_I
o= (modl)o Ryl gy, The pair (ky(f) , k(f)) is called the kneading pair of f.
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Definition 7 ; As usual we shall denote by o the (positive) shift on W, i.e. the

endomorphism of W defined by:
o(a;,a5,a3,...)=(25,a3,a4,...).

Definition 8 ; We shall say that a sequence We W is m-deflatable if there
exists a m-uple M(W,m)=(N,N,,N5,...N ) with N;e {0,1}, such that W is in
the domain of M(M(W,m))=Nmo...oN3oN20N1, and that W is infinitly
deflatable if it is m-deflatable for all m>0. Deﬂning MW,0)=0, and M(J) as

the identity, an infinitly deflatable word W is of constant type if and only if
there exist mOZO, and Ne {0,1} such that for a M(W,m+1) and a M(W,m), one

has M(M(W,m+1))=NoM(M(W,m) for all m>m,,. This definition has an obvious

extention to pairs.

This definition is made somewhat cumbersome by the ambiguity in the
choice of M(W,m). However this ambiguity is not severe, since M(W,1) is
uniquely determined by W exept for We {(01)*°, (10)*} (cf. the ambiguity in
the representation of a rational number by a continued fraction). Notice that no
ambiguity is involved in the case of sequences which are not of constant type (cf.
the non-ambiguity in the representation of irrational numbers by a continued

fraction).
Our goal in this section is to identify the set of quasi-rotation compatible

pairs. This in turn is by now standard material (see e.g. [G] or [P,T,T] for a

summary and bibliography). In fact we have the following;:

Theorem 1 [G]; Quasi-rotation compatible pairs are of the form :

{ko(®, ky(f)}
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where (f.f') belongs to the set B defined by:

B={(R';R'(),(R'0,R'), (R0, R' ), (R .R' ). (R’
(p/q.p'/q) (QM[0,11)2, Ipq'-p'ql=1}.

ol R pjg)@€10,1],

This result motivates the name chosen, and reduces the understanding of
quasi-rotation compatible pairs to the understanding of the symbolic dynamics

of rotations, and more precisely, of the R'y/'sand R’ 's. In fact,thanks to what we

already learned in section 4, Theorem 1 simply follows from recognizing that the
set of ko(f)'s and k(f)'s consists in the closure of the set C = SG( W) of all

orbits under SG of points in W, with:
W, = {0%°,01%, 10 ,1°}.

Finally we resume here the known facts about kneading pairs that are

needed in the proof of theorem A. This is the content of the following:

Theorem 2 [G]: The set of kneading pairs (ko(f), k, (D)) for some ae ]0,1[, and
fe {R',R', } is precisely the set of pairs (W,W') in W2 such that:
-4 (W) =c?(W)=A,and W=01A, W' = 10A,
- (W, W) is infinitely deflatable,
- 6(W)= sup,;5(,6"(W) ; o(W")= inf ,,c"(W").

Then o is rational or irrational according to wether W is of constant type or
not. Furthermore, in the case when « is irrational, (ko(D, k,(f)) is uniquely

determined by a, i.e. do not dependon wether f= R, or f=R'a.

At last, we have:
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(ko(f), kl(f)) =(010%,10°) if f= R'O,
(ko(D. ky(H) = (02,10 if f=R,
(ko). ky(D) = (01%,1%) if f=R',,
(ko(, ky(D) = (01%,101) if f=R',.
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Figure 1
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