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ERGODIC PROPERTIES OF BROWNIAN MOTION ON COVERS OF
COMPACT NEGATIVELY-CURVE MANIFOLDS

F. LEDRAPPIER

Recent works brought a good wunderstanding of global
qualitative properties of the potential theory on simply-connected,
negatively curved manifold (see [AnS], [AnC], [Ki]). In the case
of a compact manifold, averaging by a group of isometries takes
place, and we can define asymptotic growth rates of quantities
related to the Brownian motion. These numbers are global metric
invariants of the compact manifold.

One such invariant is the entropy g, which was defined by
Kaimanovich [kaiZ], and which is the decay rate of the heat
kernel along the Brownian path. Here we introduce a new
invariant vy, the growth rate of the volume element (in polar
coordinates about some fixed point) along the Brownian path
(see Theorem A). Comparison between those invariants — or
between the entropy and the volume growth — reflects properties
of different measure classes on the ideal boundary, for instance
B equals Yy if and only if the harmonic measure class and the
visibility measure class coincide on the ideal boundary
(Theorem B]).

The idea behind the proof of Theorems A and B is that a
typical Brownian path roughly follows a geodesic and that this
geodesic itself is typical with respect to some invariant measure
under the geodesic flow (see Theorem C). Identifying this measure,
we are able to translate its ergodic properties into corresponding
properties of the Brownian motion. This shows for instance that
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the harmonic measure is ergodic under the action of the fundamental

group on the boundary. Using the same idea, we prove in [KL] a
result on the Hausdorff dimension of the harmonic measure.

The paper by Kaimanovich [Kai2] was extremly influencial.
I also owe the understanding of most important technical points
to conversations with A. Ancona, Y. Kifer and W. Veech.

1. Notations and statement of results
1.1. Setting

Throughout the paper, we consider a compact connected
n-dimensional Riemannian manifold ¥ with negative sectional

curvatures. We denote:
2

-b
curvatures,

(~a?) the minimum (maximum) of the sectional

SM the spherical bundle of M, endowed with the natural
metric and the projection p: SM~+M,

@ = c¢(mr,,M) the space of continuous paths,

{Px, xz € M} the family of probability measures on Q,
which describe the Brownian motion on M (see e.g. [pi]),

m the normalized Lebesgue measure on M

P= m(dwo)fb (dw) the stationary Brownian motion on M
[}

3

and

{wt, t> 0} the semi-group of shift transformations on Q.

Since M is connected, the semi-flow (Q.I’,{wt, k%08 )
is ergodic. We also denote:

. ¥ the universal cover of M,

L TiM > M the projection,

I' the group of deck transformations on &.
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fior y in: T, DY the spheriecal action of DY  on:the
spherical bundle SH,

and
Q= C(P+,ﬁ) the space of continuous paths in M.

For =z 1in M, we consider geodesic polar coordinates about
z, i.e. we identify Txﬂ with E: x 5. U {0} and a point =
in M s described by the polar coordinates of exp;E. For all
x in M and all ® 1in & such that w(0) = mx, there is a
unique path ® in & such that

nG(t) = w(z) for all % » 0;

we denote (7(w,t), 6(w,t)) the geodesic polar coordinates about
z of the point w(t). Remark that for all =z in M,P -a.e.

w satisfies w(0) = mz, so that (r,8) is defined P__-a.e.

For all =z in ¥ Tlet Xm be the Lebesgue measure on Sxﬂ.
We denote 4(x,z) the function on ¥ xM such that

dv(exp tg) = A(xz,(t.g))dt Ax(da)
where dV is the Riemannian volume element on M. We write

V(x,t) for the volume of the ball of radius ¢t about «:

V(x,t) = Jz [J (A,(s,i))ix(dg)]ds.

Finally let p(t,x,z) be the heat kernel on M, i.e. the

fundamental solution of %% = Au.,

Also, the distribution of w(t) under B g ils p(t,x,2) dV(z).

1.2. Asymptotic quantities

We Tist in this section the properties at infinity of the
quantities introduced in 1.1.
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(1.2.1) There exists a number o satisfying (n-1)a a < (n-1)b

and for all =z 4in #, P__-a.e. w, lig z P(w,t) =
(1.2.1) follows readily from the subadditive ergodic
theorem and the expression for » (see [pi] )%

(1.2.2) [Pr] For all =« in 1, P -a.e. w, O(w,t) converges,
as ¢t goes to infinity towards some 1imit variable O (W,.),

(1.2.3) Theorem A: There exists a number Y such that fon atll
x 4in M, P_ -a.e. W,
X

lim % gnA(z,a(t)) = ¥.

t>oo

(1.2.4) [Kaizj There exists a number g such that for all =z in

M, Pﬂx-a.e.

1im-%znp(tﬂu&(tn = B.

t>eo

(1.2.5) [Ma] There exists a number &% such that for all z in ¥

lim 1 gn V(z,t) = k.

t>e
The number % s the topological entropy of the geodesic flow
on SM.

Proposition 1: Let M be a compact connected manifold with
negative curvature. Then:

(1.2.6) 8

A
=

(l.2.7) B ak.

in

See [Kaizj for (1.2.7). The proof of (1.2.6) is analogous.
See also section 4.4,
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The results in the next section characterize the case of
equality in (1.2.6 or 7) by equivalences of measures on the
boundary at infinity of M.

1.3. Measure classes at infindity

Two geodesics Yy and y' on ¥ are said to be equivalent
if sup d(y(z),y'(t)) < 4o,
t>0
The space of equivalence classes in called the {deatl
boundary denoted  HM(~) (see e.g. [BGS]). For all ¥ in sH,
let vy be the geodesic in % defined by (YX(O).Yé(O)) s 0%

We denote by 7t:5M > M(~) the map which associates to ¥ the
cliass of Yy For x in M, the restriction T, ofimrmd oy §

=

is a homeomorphism between Sxﬂ and M(=),

x ~ P =1 ~ -1
(1.3.1) For =z, 2z in M, the measures Ax.Tx and AyeT, are

equivalent on M(«). The measure class they defined is called

the visibility class on  ji(~) (see section 2.2).

It is known that the visibility class is ergodic under
the action of TI. We even have ergodicity of the product class
Ax X on M(e)x M(=) under the product action of T defined by
Y(€,8') = (YE,YE') (see the discussion in section 303 ps

For = in ¥, let ﬁx be the distribution on Sxﬂ of
the 1imit direction 6(w,») under B (588 (1L 2F).

(1.3.2) For (x,z) 1in M, the measures ﬁx'T;] and ﬂz-T;1
are equivalent on M(w). The measure class they define is called
the harmonic cfass on  M(w).

Property (1.3.2) follows from the Markov property and
bounded geometry (see e.g. [An], [Su]).
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Llet ¥ € sit and R > 0. 1In [H] is defined a distance
a v v .
Ng p OO m(*) \ T(-x) such that:
(1.3.3) [W] For x,Z in SH, the h/a dimensional spherical

< a <
measures associated to n- and n% E are equivalent,
X!R bl

The measure class they define is called the Bowen-Margulis class.

See section (2.3) for another equivalent description of
the Bowen-Margulis class (and the justification of its name!).

Theorem B. Consider the universal cover of a compact connected
negatively curved manifold,

10) We have equality B =y 4if and only <if the visibility class
and the harmonic class coincide.

20) We have equality B = ok 4if and only Lif the harmonic class
and the Bowen-Margulis class codincdde.

30) The hanmonic measure class 1 is ergodic undern the action
of T on M(e). The product measure cfass u x u L5 ergodic
under the product action of T on H(w) x M (),

It follows in particular from statement B3 that if neither

1 nor 2 1is realized, the harmonic measure is singular with
respect to the visibility class and the Bowen-Margulis class.

In the case of surfaces, it is known ([Ka]],[kazj, [Le]) that
the visibility class coincide with either the harmonic class or
the Bowen-Margulis class only in the case of constant curvature.
A tool in the proofs is to characterize metrics of constant

curvatures as an extreme point for some property. Theorem B tries

to go in the same direction for negatively-curved manifolds of
higher dimension.
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1.4. Engodic theory of the harmonic measure

We first remark that the family {u,,x6 #} is r-invariant.
Therefore it defines a family {py,zfeM} of probability
measures on SM such that uy(syM) AR SRS T & Bl

We call this family the spherical harmonic measures

The geodesic gLow is the one-parameter group {¢,, te R}
of transformations of S¥ defined by ¢.X = (vy(%),Yy(?)).
The main step in the proofs of Theorems A and B is the
construction of some ¢-invariant probability measure ¢ on
sM related to the spherical harmonic measures.

Theorem C: Let M be a compact connected negatively-curved
manifold, {uy,y € M} the spherical harmonic measure. There
exists a undique d-Lnvariant probability measure W on SM
satisfying the following equivalent propenties:

1. For all y 4in M

weak limit + {t (u ¢“1)ds = U
t>beo t gt 4.8 ’

2. For all Yy 4in M
weak limit & Jt (n, 6" 2)ds = u
$3raldss? ggf gbnne :

3. For all continuous function f on  SM, all =z 4in

the ( i = : =
univensal cover M of M and P omd.e. wdn Q= CQB+,M),

[ rav = 1in 4 s e
sling | 7D, (on(e, 6w,0)) ds.

Moreover (SM,9,u) 48 erngodic.

In section 2, we recall the results from the ergodic
theory of geodesic flows on negatively-curved manifold we shall
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use, in particular the quasi-invariance of Gibbs measures under
the stable foliation. In section 3 we show we can find a Holder
continuous function F on SM¥ such that "the equilibrium state
of F admits the spherical harmonic measure as transverse
measures". As shown in section 4, the results follow from this
property. The measure 1 in Theorem C will be the equilibrium
state of F.

In the case when ¥ 1is a compact rank-one symmetric
space, the measure 1 in Theorem C is the Liouville (Haar)
measure and properties C. 1.2.3 only express the ergodicity of
(S¥,¢,n). W. Veech (personal communication) remarked that a

stronger property than C1 holds, namely that weak limit uy-¢;1= U
t—>+oo

for all y in M, and raised the question of the general
negative curvature analog of this property. We cannot answer

the question, but Theorem C says that the only invariant measure
one could find as a 1imit of images of spherical harmonic measure
is our measure qu.

2. Ergodic theory of the geodesic flow

This section is adapted from [BR], to which we refer
for all properties below. Of course, [BR] applies since the
geodesic flow on a negatively curved manifold is Anosov [A].
The presentation is slightly different, because we insist on
the notion of quasi-invariance under the stable foliation,

2.1. Stable foliation

For € small enough and X in sy, define the local
stable manifold of X, wS(X), by:

Wi(X) = {X' : d(¢tX',¢tX) < g for all ¢ > 0}.

The set WS(X) is a n-dimensional open ¢*-disk imbedded in swm,
which vary continuously with x.
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The fibration of sM by «t:5% - fi(») 1is invariant under
I'. The quotient foliation #W on sM is defined by the
equivalence relation

x' 6 WO(X) <> sup{d(¢,X,0,X'), ¢t > 0} < +=,

The class WS(X) is called the stable manifold of X5 itsis
a c’-embedded submanifold of sy and We(X) is a neighborhood
O f I 1 shid'e WS(X). A (n-1)-dimensional submanifold 7T of
SM is said to be transversal to the stable foliation if at
each v in T,
S -

T,T N Ty we(y) = {0}.
There are two families of transversals to the stable foliation
we shall consider: the spheres {5 M,y 6 M} and the local strong
unstable manifolds Wuu(X) defined for ¢ small enough, by:

e {x) = {X' A I SRS S LR An Ll T § I 0}.

If 7,7' are close transversals to the stable foliation, the
canonical map 6: T>T' s defined by 6(Y) = 7' n WE(Y).

2.2. Quasi-invariant measures

A family of Radon measures {uT} on transversals is said
to be quasi-invardiant if the canonical maps preserve the negligible
sets. Clearly, if suffices to have a quasi-invariant family
defined only on some continuous family of transversals which
cover SM. For example, a family of measures on (x), {Ex,x 6 i}
which is T-invariant defines a family of measures {p sy €& M} on
the spheres {Sy,y & M}, It is quasi-invariant if and only if
for any x,z 1in ¥ the measures Bx and Ey are equivalent
on M(e).

Remark that by taking o = ix-r;l we just proved (1.3.1)
since we know that the Lebesgue measure on transversals is quasi-
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invariant under the stable foliation ([A], [AS]). Conversely
by taking ¢, = ﬁx-?;l we see by (1.3.2) that the spherical
harmonic measure is quasi-invariant,

Let u be a measure on SM., It is said to be quasdi-
Ainvarndant under the stable foliation if there exists a quasi-
invariant family {uT} of transversal measures such that for
all T a subset E of T 1is up negligible if and only if
u(U{Ws(Y),Y € £}) = 0. The family {u,} is called a transverse
measure for p. Clearly if u 1is quasi-invariant and T a

transversal, one can define wu; by:

u(4) = w(uwi(r); ¥ & 43).

2.3. Equilibaium state

Let F be a Holder continuous function on SM, There
exists a unique measure — called the equilibrium state of F —
which realizes the maximum of the functional

v > hv(¢1) + JF dv

over all ¢-invariant probability measures on SM. The maximum
is called pressure of F and denoted P(F). Let wu be the
equilibrium state of F. The flow (SM,{¢t;t € R}; n) s
ergodic and the measure u is quasi-invariant under the stable
foliation. As a family of transverse measures for 1 on local
strong unstable manifolds, one can choose the conditional
measures on local strong unstable manifolds that are obtained
when decomposing u on the partition {WZM(Z),Z € W?(Xo)} for
some fixed X,.

The classical example is when F is constant and u is
the Bowen-Margulis measure with maximal entropy % on SM. The
family v"  of transverse measures on strong unstable manifolds

is constructed in [Ma] and satisfies v””.¢‘1 = ehtv g i
X % b, X
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From this family, one infers, a family of quasi-invariant
transverse measures on spheres. The result of [H] says that
the corresponding measures at infinity are equivalent to the
h/a-dimensional spherical measures associated to the distances
. 3

nX,R'X € SM.

2.4. Engodie propenties

In section 3, we shall find a Holder continuous function
F such that the family of spherical harmonic measures is a
transverse measure for the equilibrium state of F. 1In the
proof of Theorems A, B and C we shall use the following fact:

Proposition 2: Let F be a Holder continuous function on SM,
U the equilibrium state of F, {uT} a gamily of quasi-invariant
transvense measures gor w. Then for all trhansversal T, {on
Wp~a.e. Y in T, we have:

1. weak limit 1

6 =
£t>+00 t JO ¢Sy e i

whene 8, 448 the Dirac measure at z, and

2. forn €' small enough,

: 1
- B 1 .
1inger & Bt BlIaslsthomihu i)y

whene B(Y,e',t) = {1 :d(¢sY,¢sY') - forn s 0 < s < ¢},

Proof. The set E of points X in SM such that

weak limit'L J §
t > t 0 ¢S

satisfies:

E s of full -measure (by the ergodic theorem) and

E is made of W° Tleaves (if =z belongs to WS(X) there exists
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§,s t, such that ¢soz belongs to Wg(¢t0X)). Thus E intersect T ¥ (2} do_, xqu
on a set of full Hy-measure. This proves 1 and also that for by = - e (i),
t . e
X o] - X
HpTa-e- ¥ 3Jrml 6 1T5, 112 T JO F(¢SY)ds = JF du. By the volume
lemma (see [BR]), for all Y in SM and €' small enough, The proof of proposition 3 imitates in a completely
1 R parallel way the construction and the characterization of the
7 % uB(Y,e',t) s equivalent to P(F) - ¢ !0 F(¢ ¥)ds. So Bowen - Ruelle measure for Axiom A flows. We only have to
: y 1 h replace the Lebesgue measures on strong unstable manifolds by
ol g NS R . i our family A%%., Namely, we start with a probability A on SM,
1 carried by some w*%*(x) and equivalent to Azu, with a
im - 4 B ',t=PF—JFd=h ) i ) b -
llﬂ = n uB(Y,e',t) (F) u k93 continuous density. Any limit point pu of % IO A @sl ds as
We can replace wuB(Y,e',t) by uTB(y,e',t), because t goes to infinity has conditional measures on strong unstable
the set B(y,e',t) is made of local stable manifolds. manifolds equivalent to A“" (by property ii), see [Si 2]).
From this follows hu(¢1) = —JFO du (see [Si 1]) and also
k(0 )Rk —JFO dm for any other invariant probability measure
3. Variational principle Myl
(see e.g. [LY] section 6). This measure wu is therefore the
3.1. Harmonic measure unique equilibrium state of F, and moreover the pressure of

F is zero. By property 1) of the Au“, the spherical harmonic
0

measures are a family of transverse measures for u ‘and this
There exists a Holden continuous function F, such that the achieves the proof of proposition 3, provided we establish the
sphenical harmonic measure can be chosen as a family o4 claim.

trhansvense measures for the equilibrium state of Fy.

Proposition 3: Let M be a compact negatively-curved manifold.

For X in s¥, let W(X) be the negative horisphere at
¥ (in particular w@(%¥) = w*¥(m%)). We shall construct the

Proof. We first claim that there exists a family A*% of ‘ family A"* by constructing a family % of measures on
measures on strong unstable manifolds Wuu(X) horispheres which is invariant under the action of T.
uu uu 0} We shall use the fact that there is continuous function
= X H S — - pt i
RF ) U{Qtwe (Q*t ez ) k on M xM(«) such that for all =, 2 in ¥ and f-a.e. £ in

with the following two properties: i) the family AH* is quasi- M(=),
invariant, and equivalent to the spherical harmonic measures, dﬁx.r;l
under canonical maps, and ii) there exists a Holder continuous k(x,2,8) = —~Fwre (& )
function F;, on SM such that for all X in SM and | du T,
A%u-a.e. Zz in  W*%(x): Moreover for each compact domain K < ¥, the function %k s

Holder continuous on X xKxM(=») (see [AnS] section 6),
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Remark that the map T defines a one-to-one correspondence
between ¥(X) and #(~) minus the point <t(-¥). Fix a point O
in M and let A  be the measure on #(X¥) such that

-1 ~ ~=1

A g2 X =i e,

The measure X, 1is non-zero since the support of #H, is the
whole () ([An]). We define X on #(¥) by

The following properties are now easily verified:

The family X we obtain does not depend on the reference
point and is T invariant.

The family A*¥ we obtain on sM by quotienting is
equivalent to the spherical harmonic measures under canonical
maps.

We have for J-g.e. 7

d@_li _ (Y‘Z‘(])posT@1Z) |
wirt vl 7 s \
dax k(pz,0,12)

= K(r5(1),75(0),77)

since 1¢,%Z = 13Z. 9

As 7 varies in a compact fundamental domain & for sy, ’
the map t: x> M(=) 1is Holder continuous ([An S]) and the

function F  defined by ’

FO(WE) = in k(Yg(O); YE(])’ TZ)

is a Holder continuous function on S¥,
This achieves the proof of the claim and proposition 3.
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Remark that proposition 3 implies the first statement in
theorem B3, namely that the harmonic class is ergodic under the
action of T on M(®). For if 4 is a r—iqvariant sgbset of
#() and « belongs to M, the set ngﬂTx A is a W -invariant
subset of 5 M Either: the set pmT A or its complementary
set is negligible for the transverse measure,

Consider the function F on SM defined by:

F(nX) = 3‘% an k YX(O),Y}?(”’T}?)/#O

= X(en k(p%,.,T1X)).

1
Since ( F(¢ _X)ds = F,(X), the function F has the same
10

equilibrium state as F;. Remark also that

B(EY 2 HFEN) =0

and

Jt F(¢3X)ds = &n k Y~(0),Y~(t),T2}
0 X X

for any X with DX = X,

We therefore can write from Propositions 2 and 3.

Corollary 1: Considen the function F:SM > R defined by

F(rx) = x(nk(pX,-,1%)) and p the equilibrium state of F.
Then the sphenical harmonic measurnes {u ,y € M} are thansvense
measures gor u and we have, for all y An M

1. weak limit 1 (t (n -9
' t>o0 t J0 Y s

2% /for uy—a.e. X Lin SyM; € small enough,

; 1 . %,1%| =
-~ = n o B(X,e',t) = lim = ¢ k|y (¢) X,TX] =h (¢,).
lim ~ 2 il ) Lam 2 P ul®1
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p

3.2. Revensing time ( F'(6,X)ds = in RO 2rata )

J

0

By Corollary 1 we already know that there is a unique -
¢-invariant measure satisfying property Cl1. We now show that JUnRe @ raRd: -
v also satisfies property C2. We first apply section 3.1 to Let G(x,z) be the Green function on H, G(x,z) =J p(t,z,2)dt.
the flow {¢_t,t € R}. The corresponding notion of transverse The VAP T . v 0
measure is by projecting along local unstable manifolds. We get L G e
the analogous result to Corollary 1:
? k(z,z,E) = lim g{gzg%.
L]

¥t
Corollary 2: Let F' be the gunction defined on SM by In particular, since y'z = y-(np) goes to T¥ as 7 goes to
F'(1x) = (-x) (n k(pX,.,t(-X)) and p' the equilibrium state +o and to t(-X) -

gorn F'. Then forn all y 4in M

as n goes to =o, we have
, we have

don n
1 [t b k(z,yx,TX) = lim Eif;l_gl_
weak Timit = j (u .¢: Jds = u'. w2 NG (YTl N )
trteo olvsmaf ~° ‘ ]
=+ G{w Ynx ] n W
We want to show that wu = n', 1i.e. that the Holder continuous g ]lm E%‘i;ﬁ:%—‘ 5 llm (G(x,y =)
71 Smaie x X 00
functions F and F' have the same equilibrium state. By (LiJ, ‘ p )
this will be a direct consequence of the following fact: and analogously, 1
‘ & I L
k(yz,z,t(-X)) = lim (G(z,Y "x))"

>0
Proposition 4: [et X 4in SM generate a periodic onbit: 2

12 | Since is an isometry and G 1is symmetri G "2) =¢ =l
thene exists p > 0 such that ¢ X = X. Then, { F(¢_X)ds = ‘ . bie . ¥ . T SLE by "2)
P Jo &y and the proposition is proved.
p
JO F' (¢  X)ds.
3.3. Proo§ of theonem B3

Proof of proposition 4: Let X be so that X = X and Y in The proof is the same as in the case of the visibility

I so that measure. We recall it for the convenience of the reader,

- t = Dy X, £ -
(rg(P)ov3(2)) Fix 0 in ¥ and for any geodesic Y in M, call 0

By definition of F and F' we have: \ the point of the geodesic which is closest to ¢. We define a
bijection I between M(w) xH¥(e) xR and S by I(£,8',t) =
(v(t),y(t)) where Yy 1is the geodesic satisfying: Y(+®) = &,

y(-=) = &' and ¥(0) =0

v

p
J(O F($ X)ds = n k(z,yx,TX)
v
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The action of T on S¥ 1is transported by £ into an
action of T on HM(eo)x M(w) x R which commutes with the
action of R given by

ws(,E'E';t) = (g£,8'st+s), s ER.

Consider on Si the measure o which is T-invariant
and equals u on each fundamental domain SM. The measure
L is R-invariant and since the action of R 1is ergodic on the
I'-invariant sets, the action of I 1is ergodic on the R-invariant
sets.

The space of R-invariant sets is identified with M(®)x#(x).
We only have to check that the corresponding measure class is
the class of the product of the harmonic measure classes.
Locally on SM the coordinates (&,&',t) can be read by
choosing some transversal T to the geodesics. The coordinates
E and &' will be given by T(#° n r) and t-(W*nT)
respectively. Since u 1is Gibbs, un is locally equivalent to
the product of its conditional measures on an T, W*n 7 and of
the Lebesgue measure on the geodesics. By the proof of
proposition 3 and section 3.2, these conditional measures are
equivalent to the harmonic class, so that the measure 1§ is
equivalent to ux uxdt. The action of T on ¥(w) xM(w) is
ergodic for the class u xu,.

4. Proofs of theorems

4.1. A Browndian path foflows a geodesdic

We recall in this section the basic properties we want
to use. We first have a classical comparison lemma:

Lemma 1: Let M be a simply connected manifold with sectional

curvatures bounded from above by ~a® < 0. Then for all x 4in

M, ©6,8' in sxﬂ, 0 <t <u, we have:
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shini at

1 1
Hate,5 ] 20, 18.8] Sapypon

where p (8,08') s the distance on the sphene 5, = {z:d(z,2) = u}
Uu

0f the points (u,6) and (u,6').

Proof: Let {ys, 0 < s < 1} be the variation of geodesics in

M such that

BB Oe= v 00) == i v (0) = 8g oy (0) =g

and {Ys(u), Ofs 5
uniform speed Du(e,
curvatly (€], Dig =

is a geodesic on the sphere S, with

}

). Write ¢(%) for the Tength of the

1}. We have D.(6,8') < ¢(*t) and
1

" (t) > -a2¢(t), since ¢(?) = [o Hys(t)”ds, where

{Ys(t), 0 <t < ub is a Jacobifield along y_,. The lemma follows.

A consequence of Lemma 1 is

Corollary 3: Let M be a compact connected negatively cunrved
manifold, f a Holdern continuous function on SM. Then thenre
ex4i8ts a constant K such that forn akd « 4in M, akl u >0
and akl 6,8' 4in S M such that d((u,8),(u,0)) < 1, we
have:

Uu U
UO 76 4(Pn(=,0)))dt = [ flo,(or(2,0')))ae < x.
0 >
Corollary 3 follows directly from Lemma 1 if one takes on

Sk the equivalent distance defined by 4, (X,Z)= SUPﬁﬂY}(S)Nz(S)L
0.< s < 1}.

Proposition 5 ([Le], [Kai]]): Let M be a compact connected

negatively curved manifold. For akl = 4in M and P -a.e.
X

w o Ln C(E_'_aM)’
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Hm%ﬂﬂﬂ,@@&hﬂmﬂﬂ=0'

t>co

Proof: Fix € > 0 and define 7t1,(w) =0,

Tn(w) = inf{t: ¢ > Tn_](w)9d(a(t)!a(Tn_](w))) 2 1}

OhE Yy

and n(w,t) = inf{n:Tn(w) s

We have, omitting some LShe

d(w(t),(r(t),06(=)) sd(ﬁ(t)aa(Tn(t)]] it d{&ﬁh(t)J’{r(t)’e[Tn(t)JJJ

. Dr(t)(e“n(t))'e(‘”)]

< C+ Zd(m(t)’é(gég t)] % m g(t)
2

By Lemma 1 the sum can be estimated for ¢ Tlarge enough by

F[w (w)] where F(w) = ¢ 7§ e~a(a-e)T, (w)
n=0

Tn(t,w)

Proposition 5 follows frome the following convergences, true on
a set of P_-probability one:

1im sup & F(y, () = 0

N>
= 1 ate
1 544 =
tlﬂ E Sl L, 0) a-€
and
Tim L a[a(e),a(2tE £)] < ce
t—)oo t : i a-e - 5

The first two estimates come from the fact that the

processes {Tn“Tn-1.n > 0} can be pinched in distribution
between two i.i.d. processes with exponential decay of the

Dr(t)[e(rm),e(rm+1)].
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diisitmilbution (see e.g. [P1]). The third can be proven for
example by comparing with the Brownian motion on the
n-dimensional hyperbolic space with constant curvature -b-.

4.2. Proof of Theorem C

We already know by section 3.1., 3.2 that there exists
a ¢-invariant ergodic measure wu satisfying C1 and C2. We only
have to show that the measure wu satisfies also property C3,
We can assume that £ 1is a Holder continuous function on n.
Then by, Corollary 3. for all, =_dn . ¥, all o n g,

[ra(w9t) Jr(wst)

fedgDm(x,0(w,t))ds - Feog Dm(x,6(w,=))ds)

S kd(e(t),(r(w,t),08(w,»))).

By Proposition 5 and 1.2.1, we get that for P .-a.e. w in Q,

3 r(w,t) : o
lim & JO f.¢s D(x,6(w,t))ds - or 3 Jo f‘¢s Dn(z,0(w,=))ds|=0,

Property C3 follows then from Proposition 2, since ﬁx is the
distribution of 6(w,») and Dﬂ(ﬁx) = U, 1is a transverse
measure for u.

4.3. Proof of Theorem A

Let x,z be points in ¥, ¥ be such that Y}(O) = L,
y}(d(x,Z)) =2, X =mY, We claim that we have following
formula

(4.3.1) A(x,2): =z |det D¢d(

x,2) | TXSpXM'
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In fact, recall that there is a canonical identification (Dp,X)

between the space Ty TM and the space TpXﬂ4 + TpXM such that

for all ¢ >0 and & in TyTM, D¢t€ in Ty yTMis identified
i t

with (Yg(t),i’"g(‘t)) inT M4+ T M, where Yg(t) is the

pd)tX p¢tX

Jacobi field along defined by (YE(O)’YE(O)) = (Dp&,KE)

it
(see e.g. [E], Dp and Xk have their usual signification).

Therefore det D¢, | is given by
t TXSpXM

I|y€l(t) RIMR TGS ol Saaes ()l

2

where %j’ g =1T1,...,m=1 are =n-1 vectors in TpX M e X with

= . En-1” =1 and ng is the Jacobi field along vy
defined by (YE~(O)’YIE (0)) = (O,EJ). This is also the formula

J
for A(Y}(O),YX(t)) and this proves (4.3.1).

Let E""(x) = Ty Wgu(X) be the expanding subspace at a

point x 1in SM. The space Ty SpXM makes an angle with the
stable space ES(X) = Ty Wi(X) bounded away from zero, so that

the growth rate of det D¢t | y is equivalent to the growth

TXS

pX
rate of det Do, | . By (4.3.1), we have
ET(X)
. 1 (d(x,z) 2
Tim m)- n A(x, Z) - Jo J ((bSX)dS =]

d
where J%(2) = ( en|det D¢, | |] .
kat t Euu(z) t=0

By Theorem C3, we have for all = in #, an-a.e. w in @

Tim % wn Az, W(t)) = QJJ“ du.

Tt

This achieves the proof of Theorem A. Also:

BROWNIAN MOTION 15317

Corollary 4: We have: 1y = a.jJu A, where
Ju(z) = é% on| det D¢t|Euu(z)|}t=0 and A48 the od-Lnvariant

measune Ln theorem C. In particular vy/o is the sum 0§ the

positive Lyapunov exponents of (SM,{¢,,t € R} ,u).

4.4. Proof of Theorem B:

We first recall another definition of the entropy B8 (see

[kai2]): For all = . in %, £.8 >0 define

E)yo< A} 2.6},

Vilosc i 6= HnifnidEk me{d(@t,

(4.4 YL Floe LA T B in [ S BO8g <261 9B

B = lim ¢ in N(=,t,5).
trw
Proposition 6: Let ¥ be a compact connected negatively-curved
manifold, B degdined by (4.4.1), u the d-invariant measure on

SM  obtained in Theorem C. We have B = ok (9).

ol
Proof: Fix = din 1, 0 <6 < 2, e>0 and ¢' > 0 smale,

and define for atl ¢ > 0:

wi d(D,, (at,8(w,®)) < et and

t°

. —at
T, (6" : D ,(8',0(0,8)) <e'} <e ul®) et

By Proposition 5 and property 2 in Corollary 1 we have

P (A,) > 28§ for ¢ Tlarge enough.
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Fix such a ¢ and pick a set E in ¥ such that #E=0(x,t,S)
and
P _(d(G,,F) <1} > 1-8.

The set of directions 6(w,») for w 1in A, N {d(&t,E) 11
is a set of ﬁx—measure at least &, which can be covered on
Sat by less than N(x,t,&)CEt spheres of radius €'/2 (C s

some geometric constant), and for which the jz-measure of

-~ah ()t 35
spheres of radius e' s smaller that e L e This is
possible only if
~on (9)¢
N(x,t,8)c% ¢ M &5 o &

The estimate g > uhu(¢) follows from the arbitrariness
of €. The proof of the converse inequality is similar (cf.
[Le], section IV). Proposition 1 and Theorem B now follow from
Proposition 6, Corollary 4 and the variational principle for

Anosov flows (see [BR]). For we have B8 <y with equality

if and only if 2 (9) = JJ“ du, which happens if and only if

W is the Liouville measure. Finally the Liouville measure is
characterized by the fact that the Lebesgue measures on spheres
is a family of transverse measures, which proves Theorem BT.
Analogously, we have B < ah with equality if and only if
is the measure with maximal entropy. The measure of maximal
entropy is characterized by the Bowen-Margulis measures as
transverse measures on spheres and this proves Theorem B2,
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