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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A NONLINEAR
WAVE EQUATION

ORLANDO LOPES

Introduction and Statement of the Main Result.

In this paper we deal with the damped nonlinear wave
equation:

(1 Upp =Bu +eu, + f(u) = n(t,x), & 2)0,

We assume u(t,z) and #(t,x) are defined for all
x = (x,,z,,x,) in R’ and are 2m-periodic in each z.3 in
other words, we take 2m-periodicity in the spatial variables as
boundary condition. For each non-negative integer %k and
1D <o, Hk,p(ﬁs) (chﬁa) for p = 2) 1enotes th% usual
Sobolev spaces with the usual norm; H%Tp(ﬁ ) (H%“(R ) for
p = 2) denotes the Sobolev spaces of functions which are
2mn-periodic in each variable (of course, the integrals defining
the norm are taken over the fundamental cube [0,2n]x [0,27] x [0,2n]).

Equation (1) can be viewed as a system

U, = ¥
(2)

vy = bu~ouy ~ flu) ~ h(t,z)

or, more compactly,

(3) au

Aw + G(t,w), where

w= (u,v), Aw

(v,Au), G(t,w) =
-ev-=f(u) +h(t,.)
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It is very well known that A generates a strongly
continuous semigroup (actually a group) of linear operators in
the space Xk = szlx Hiﬁ, for each integer kz% 0. Zﬁs phase
space for equation (3) we take the space X, = H; x Hy . Since
12" < Hf” continuously, it is easy to see that w € X > G(t,w)€X,
is lipschitzian on bounded sets provided f is c*. So, if
this is the case and h&: R, > H, is continuous, it follows that
local existence and uniqueness of mild solutions of (3) is
guaranted in the space Xx,;; moreover, global existence in time
can also be guaranted provided we get an a priori estimate for
the norm of the mild solutions in the space x,. For t > t; > 0
and w, belonging to X,;, we denote by w(t,t,3;w,) the solution

satisfying w(to,to3we) = Wo.

Definition. Equation (3) is uniform ultimately bounded in the

space X, if there are functions a(R) and T(R) and a constant

R such that | < R implies Iw(tato3wo)1xl s #LR), . for

|
0 Xl
t > t, and |z,;(7:,150;w0~)|x1 S Roo¥or( %) B & TR)

Qur main result is the following:

Theorem A. Equation (3) is uniform ultimately bounded in the
space X, provided the following conditions are satisfied.
(i) f(u) 1is a C? function;

(ii)  there are constants %k, >0 and k, such that
uf(u) 2 kyu® + Ky

(ii11) there are positive constants %k, and B, 0 < B <4
such that |£'(u)| < k4(1 + l“|8);

2m

(iv) the map t € R, > h(¢t) € H, is continuous and

bounded.

Moreover, if the map ¢t -+ h(t) 1is periodic of period p > 0,

then the Poincare map woe-w(p,o;wo) is the sum of a linear map
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with spectral radius strictly less than one and a compact
differentiable map.

Before getting into the proof, we believe it is
interesting to make the following remarks about Theorem A and
its consequences:

1) If we consider the problem of global existence of
solutions of the equation ., -0u + ]uIBu = 0, with initial
condition (uy,v,) in #,(®>) H (R’), then the exponent
B =4 4s critical; in other words, for B < 4 solutions are
globally defined, and for B8 = 4 they are globally defined
fanr sspaldl dnitial datay (R o aiZ)iae AsSumption, (iddi)r in
Theorem A is related to this fact.

2) Some authors have studied the existence of a p-periodic
solution and of finite dimensional attractors for equation (3)
in the case #4(t) 1is p-periodic in t and the phase space is
HIZWXLETr (3], 4, &1, 6], [7]) (here, finite dimension is
understood in the sense of Hausdorff dimension). For that phase
space, the critical exponent is B8 = 2, For the case we are
treating, the existence of a p-periodic solution and of a
finite dimensional attractor follows immediately from the
decomposition of the Poincaré map given by Theorem A (see 8],
&1,

3) If the wave equation is given in a bounded open set
@ @ R with smooth boundary and we impose, say, Dirichlet
boundary, then everything we have done works, except the proof
of Lemma 3. This lemma gives an Lp - Lq estimate for the
linear wave equation and its proof follows from a similar result
for the wave equation in R°. Almost surely it also holds in
the case of Dirichlet boundary; so while we wait for such a
proof, we restrict ourselves to the case where periodicity in
2 is taken as boundary condition. Lp - Lq estimates have been
used by several authors to treat the Cauchy problem for nonlinear
wave equations in R (see, for instance, (117, 2] and the
references therein).
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Proof of Theorem A. As a preparation for the proof of Theorem A
we start with a Lp - Lq estimate for the problem

(4) wu,, ~fu =0 in R, u(0,2) =0, u,(0,) = f(x).

Lemma 1. The map f -+ S(¢)f = u(t,.) satisfies

t >0, p = . #c04

|ste)rly & Rt |21, e

o AR

Proof. See [10].

Next lemma deals with equation (4) in the case periodicity
is taken as boundary condition.

Lemma 2. ls(t)flL < ks(t3u‘] + t3““1+3/p)|f| 3730 B & 0
Y f,p

Proof. First of -all we have to notice that, due to the wave
propagation property, Lemma 1 can be restated as IS(t)flL (92) <

u‘ [oe]
< k5t3 1lf|H] (2(¢)), where & s any subset of R® and

P

Q(t) 1is the domain of dependence of Q. If 0<t <1 and &

is the fundamental cube [0,2m] x[0,2m] x [0,27], then the

number of cubes necessary to cover Q(¢) 1is less or equal to
some fixed integer N,; also, if ¢ 1is large, the number of
such a cubes grows as fast as ts, and this proves the lemma,

2
Lemma 3. Consider the equation wu,, - bu + cu, + ET u =0
u(0,z) = 0, ut(O,x) = f(x), and suppose 2T-periodicity in =«

is taken as boundary conditions. Then f » 3(t)t = u(t,:)
satisfies:

[ate)sl fkse'Ct/z(t3“‘] +t3“’1+3/p)|f|

2W$t>os pzT.'lﬂ-
Lp
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et /2

Proof. Defining U(t) = e u(t), we see that U, - R

U(0,x) = 0, Ut(O,x) = f(z), and the conclusion follows from the
previous lemma.

Lemma 4. Under the assumptions of Theorem A, equation (3)eiils

T

T
uniform ultimately bounded in the space X, = Hy X Iy (Eor

L) B 3 m 2m - 1 y
initial conditions in HE 2 H o, TS long as solution exists 1in

this space).

™ <
Proof. Recall that the norm in HE is defined by

1
2 2 it 2
([rad ab o #7lul g)”- Deffhtng stlustl)s 3l ¢
2 2 2 2
1 2 e
+ < lerad sf” # 92- <u,v>L2 e T JQ F(u(x))dz where

u
Flu) = J f(s)ds, an easy computation shows that
0

. 2
W(M,U) T _g_lvleTf

2

- c|grad u| T —g- J[ uf(u)de+ <v,h(t)>+<u, h(t):
L

2 2

Q

and using assumptions (ii) and (iv) we get

3 2 2 2
W(usw) < -Y(lvleTT + |grad uILZ,’T + lu‘LZ“) + M,
2 2 2

where y > 0 depends on ¢ and %k, and ¥ depends on Y and
siulpk [1Z(£)! | op: Let R > 0 be defined by —YRf + M = -1 and
t>0 L21T
let us call w(¢) = (u(¢),v(¢)). Notice that assumptions (ii)
and (iii) imply F(u) 1is bounded below and |F(u)|<k,(1 +|u18+]h

LZﬂ 2m

in particular, since cH continuously, we conclude for
6 1 y

each R there is a constant C;(R) such that lJ F(u(x))dx| < C(R)
Q

provided | | 9 & R. Moreover, if for some ¢ ~we have
H

1
|W(tl)|X0 =R, and |W(1/;)|X0 >R for t > t, then necessarily
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(5) W(u(t)sv(t)) < wlult)svlt)) = (¢ - ¢).

This inequality together with the previous remarks proof
the Temma.

Lemma 5. Let u :[t0,+w) -~ FR be a non negative continuous function
satisfying

~c(t-t )/2 t  -c(t-s)/2
u(t) <Me il ok eMé[ e

Jto

k(t=s)u(s)ds, t, <t

where M, , M _, M, are non negative constants and k(s) is a

+00
nonegative function such that eMaj e-cs/4k(s)ds < &, ' Then
" -~c(t-t,)/4 0 ;
u(t) < u(t) = 2Me + 3, t .
Proof. Suppose u(s) < u(s), t, /g8 < t3 then
~e(t-t,)/2
u(t) < Mje 1 +
% W ~c(s-t_)/4
t M, 4 EMa( e—o(t s)/zk(t—s)r_ZMle ! + 3M,]de
tO
5 —c(t-t,)/4 (t
el e(t-t )/2 $M, 42 e, 0 J e‘c(t's)/4k(t—s)ds £
= 843 )

0

e Gy L Foacs M, < a(t)
2

+

t
3M29M3J e‘c(t’s)/zk(t«s)ds < 2M1e
K =
0

and this proves the lemma.

Proof of Theorem A. We start by rewriting system (2) as

ut=v
(5)

e
vy = Au - cuy Sl ~g(u) + A(t),

2
where g(u) = f(u) - ET u. Certainly, g(u) also satisfies
assumption (iii); so, we can find constants k8 >0, a and bp,
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with 0¢ '@ < 3.0« bl = siuch fthat a *.b =B and

-

. )
bt (] . < kg(1 + Iulb). Then, using that LwcszzTT continuously

1 + Iula
and Lemma 5 with p = agz > 1 we get, by the variation of

constants formula:

~c(t-t,)/2
|u(t)[L < Ke |w(t0)|Xl +
¢ “¥, i
+ Kjt Sedied [(t=s) + (t-s) ]|g(u(s))]H2Tr ds

0 1,pP

0<%, <1, v,30, w(t,) = (u(t,),2(t,)). Using Hilder

! 3 6
inequality |g'(u) &&= | 50 < lo' ()] 53| 200 @ = 2, and
AR Lq 2 L,2
the obvious estimate
o URSICEL TN e P IR P P
a - el i 2T -
T+ |u | 2’ 1+ u L
q q
b
< ke(1 + |uly )11 + Iul")!Lh
q
we get
~e(t=t,)/2
u(t) |, < Ke w(ta)ly *
L 1

K[t ,=c(t=5)/2

o [(£-8) 4(t5)"] [k, | gradus) PECPOIS PO

0 2 q
+ |f(u(s))|L2n']ds_
p
Now, if ]w(to)IX = R then, according to Lemma 4 there is a
1

e,(R) such that |u(s)] Ea{ Rhac B 12 oF oo 1 RANEICU Tar,

g2m :
L e |u(s)|a|L2Tr < ¢, (R) (we have used the inclusion LE"C:H§W),

and so a
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-C(t-to)/z i
]u(t)]L < Ke |w(t0)|Xl + MZ(R) +

T Sl ]
sy r) [ e 2 ey (tms) 2T u(s) |2 de.
Jto L

Since 0 < b <1, for any e > 0, there is a X(e) such that

2 < k(e) + e|u|, and then

]
~a(t-t,)/2

lu(t) |, < Me |w(to)[xl + M (BR,e) +
oo

+ %(R)Jt e 2 ) 4 (tm0) T (o) | d.

to

e-cs/4G;Y1 92

Ifins €(B) - is chosenito satisfy €M, +s )ds <

| =

(x| ;
0
then Lemma 5 gives |u(t)|, < c,(R), t

>t,, for some convenient
o

cu(R). Defining U(t,z) = g2t (£,8) V(t,2) = 522 (),
1 7
t=1,...,n, we see (U(t),V(t)) 1is a mild solution (in the space

K= H?W X Lgﬂ) of the system

<
[l

2 2
o By o s :T U4 f.(u(t))gggxt) -Er g%%(t) + %%Z(t).

Since the semigroup generated by the linear part goes to zerc
exponentially (in the space ¥ ) and

P )2 n) - & By + Dy, >,
7 T Z Ly

is bounded above by some constant ¢ (R) (as a consequence of
Lemma 4, the previous estimate for lu(t)lL and assumption (iv)),

we conclude [(U(t),V(t))]X » t 2t , 1is bounded above by some
0

constant c.(R); hence, |(u(t),v(t))|y ,» ¢ > o is bounded
1

above by some c7(R). Furthermore, using Lemma 4 again and
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previous remarks, we know there are a st hs and T(R) such
that

lgrad u(e)| o0 g e (Ry)y 11+ [u(a) %] 5y < ey(y)
H1 Lq
lg(u(s))]| 9o = R e ] = b, * T(RJ:
%
p
SoF fonissa tl(R) we have

~e(t-¢,(R))/2
lu(t) |, < ke bl LB ) . (R)

co 1

and this implies [u(t)]L e el provided. t > .t, + T7,(R),

o

for a convenient 7T,(R). .Using the functions U(¢) and V(¢)
defined above and argueing exactly as before we can see that
are .eqefBsds andenT, (R).isuch that l(u(t),v(t))le ok By

for ¢ > ¢, + 7,(R) and this proves the uniform ultimate

0
boundedness. The final assertion follows imediately from the
2m

fact that the map u € HEW g (u)Bed A

is compact and

differentiable, and this proves the theorem,
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