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The fully non-linear Cauchy problem
with small data

Lars Hormander

Abstract. This paper is devoted to the Cauchy problem for a fully non-linear perturbation
(87 - A)u+G(v',u") =0

of the wave equation with three space dimensions and small data v = eug, Oty = euy;

u; € C§° (R®). Here G € C™ vanishes of second order at the origin. We give an explicit

positive lower bound for lim,_,,elog Te where T is the lifespan of the solution; it is equal

to the lifespan of the limit as € — O of a rescaled solution. The main point is an exact

determination of the lifespan for the solution of a non-linear first order differential equation in
R?2 of the form

du/dt = a(du/dz)? + 2budu/dz + cu®

with u(0, z) = uo(z) € C§°(R).

1. Introduction

As is well known, the Cauchy problem cannot in general be solved globally even
for an ordinary differential equation. The simplest example is perhaps

(1.1) du/dt = au?, u(0) = uo,
with the solution u(t) = ug/(1 — aupt) when augt < 1. The lifespan T of the

solution, that is, the largest T € (0, o] such that the solution exists for 0 <t < T,
is given by

T~! = max(auy,0).
By a change of scales it follows that for the Cauchy problem with small data
(1.2) du/dt = F(u), u(0)= euy,
where F € C*, F(0) = F'(0) = 0, we have for the lifespan T,
liIEO(E'Tg)_l = max(F"(0)/2,0).
e—

Next we recall the analogous results for the simplest non-linear hyperbolic

Rornivad 17 Netnhar 1088



2 LARS HORMANDER

partial differential equation
(1.3 du/dt = audu/dz, u(0,-)=uy e C3(R),
often called Burgers’ (inviscid) equation although its study goes back at least to

the beginning of the 19th century. The equation means that on the characteristic
curves defined by

(1.9 dz/dt = —au(t,z)
we have
(1.5) du/dt =0,

thus u = constant. This gives u(t,z) = ug(z + atu(t,z)), a formula which
Stokes [16] attributes to Poisson. Stokes observed that the formula means that the
graph of = — u(t, z) is equal to that of y ~ ug(y) referred to the new coordinates
y = z + atug, u = ug, which means that the maximum slope approaches infinity
as t 1 T,T~! = max, max(auj(y),0), if T < co. Analytically this is also seen
from the fact that differentiation of (1.3) gives

(1.6) dé/dt = a€?, € =0u/dx

along the curves (1.4); this is an equation of the form (1.1). Thus 7T is the lifespan
of u. Note that (1.3) has a homogeneity property similar to that of (1.1): if ug
is replaced by eug then the solution is replaced by eu(et,z), so the lifespan is
multiplied by 1/e. By a change of scales one can obtain the asymptotic behavior
of the lifespan for the solution of the Cauchy problem

(1.7 du/dt = a(u)du/dz, u(0,-) = euy,
when e — 0, even for systems for which a(0) has real simple eigenvalues. (See
John [6] and Hormander [2].)

Much work has been devoted during the past decade to the Cauchy problem
with small data for non-linear perturbations of the wave equation
(1.8) Ou+ G(u,v',u") =0,
where G € C* vanishes of second order at 0; this means that the equation is
translation invariant and has the standard wave operator

O=48; - A

in R'*" as linearization at the solution « = 0. (For references up to 1983 see
also Klainerman [11].) Fritz John pointed out that the Cauchy problem for (1.8)
with data
(1.9) u(0,-) = eug, 9:u(0, ) = euy,
where u; € Cg°(R™), should have a much larger lifespan when the dimension n

is large, because disturbances will then be quickly attenuated by spreading over a
sphere with large area. This is indeed the case. A heuristic argument suggesting
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the magnitude of the lifespan can be given as follows. For the solution u L of the
linear Cauchy problem
Oug =0, “L(Oa ) = U, at“L(Oa') =uy,
we have as t — +o0 (see e.g. [2])
ug(t,z) =t/ F(w,r - t) + O(t~(1+7)/2),
Here F is the Friedlander radiation field given for n = 3 by

F(w,q) = (R(w,g,w1) - dR(w,q,u0)/dg) /(47),
where
R(w)q’ ‘P) = <(p)5((‘1w) - q))
is the Radon transform of . When n = 3 + 2k one obtains F apart from a
constant factor by k additional differentiations; when n = 2 + 2k this should be

followed by convolution with ¢ — max(0,—¢)!/2. If one recalls that the basic
energy estimate for the wave equation Clu = g states that

aB(t)/dt < lo(t, )|
where E(t) = ||u'(t,-)|| and the norms are L2 norms, this suggests that for a
solution of (1.8), (1.9) one should have
E'(t) < CE(t)e(t + 1)~ (»-1/2,
as would be the case if G were just a quadratic form in v’ and the maximum of

u’ for fixed ¢ is roughly as in the linear case. Integration of this inequality would
give

E(t) < E(0) exp ( /0 t Ce(t + 1)‘("‘1)/2dt)

and suggests global existence if n > 3, existence when elogt < ¢ if n = 3 and
when et(3-")/2 < ¢ if n = 1,2. To justify this argument one must deal not only
with the equation (1.8) as it stands but also with the equations obtained by differ-
entiating. It is not sufficient just to differentiate with respect to the coordinates in
RIt", for energy estimates can then at best lead to the conclusion that solutions
are bounded in time, not that they decay as required above. However, Klainerman
[9] has observed that the desired decay can be obtained by using all equations ob-
tained by applying to (1.8) any product of the vector fields 8 / 9z;,7=0,...,n
(we write t = z here), the infinitesimal generators of the Lorentz group

Zjy = 70/0z; — x;8/0zy, jk=1,...,n,

ZOk = zoa/azk + :L'ka/azo = —Zko, ’C = 1, PR ()
which commute with OJ, and the radial vector field

n
(1.11) Zy=) z;0/9z;.

(1.10)

:)
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This allows one to justify the statements on the lifespan made above when G
is independent of u; terms depending on u cause difficulties because energy
estimates do not give direct control of them. These arguments are simpler or
give better results than the earlier ones of Klainerman [12], Klainerman-Ponce
[13], Shatah [15] and John-Klainerman [8]. When n > 5 one can safely allow
G to depend on u also (cf. Christodoulou [1] and Li-Chen [14]), but for lower
dimensions this is not always true. In particular, John [5] has proved that for the
equation Cu + u? = 0 there are positive upper and lower bounds for €27, as
€ — 0 if T, is the lifespan of the solution with Cauchy data (1.9).

When n = 3 (and G = G(u',u")) it is particularly important to know also
the size of the constant ¢ in an estimate of the form T¢ > exp(c/e). This question
was first discussed by John [7] who gave an upper bound for lim elog T in a
rather special rotationally symmetric case which could be treated by arguments
close to the vector valued version of (1.7). For equations of the form

3 3
> 9ik(w)8;0,u=0, > g;,(0)8,;8, =0,
7,k=0 k=0
John [4] and Hormander [2] independently obtained a lower bound for
lim elog T which coincides with the upper bound for Iim €log T of John [7]
when it is applicable. More precisely, it was proved in [2] that .
(1.12) limelogTe > A= (ma.x % Zgjk,d)jd)kd)lazF(w,q)/aq2) :

e—0
where w € S? and & = (-1,w) e R1*3,

3
9ik(€) = 9;:(0) + > _gjmbi + o(|eh).
0

Moreover,
(1.13) e~ tet e uc (%, (e + q)w) - U(w,8,q), €—0,
locally uniformly in S? x (0, A) x R, where 8U (w,s,q)/dq satisfies Burgers’
equation (with parameters)
1 R

aUé(w) S, q)/as = ‘2" Zgjklewkwlvé(w, S, q) aUé(w) s, q)/aq)

U(w,0,9) = F(w,q).
The lifespan of the approximation U for the rescaled solution is exactly equal to
A, so (1.12) is optimal at least in a weak sense.

In addition to the methods of Klainerman [9] for proving that
lim elog Te > 0,

e—0
the proof in [2] relied on the construction of the approximate solution implicit

in (1.13). The main part of this paper will be devoted to an extension of these

results to a fully non-linear equation in R1+3

(1.14) Ou+G(v',u") =0

where G € C* vanishes of second order at 0 and does not depend on u. This
requires a solution of the Cauchy problem for a generalized version of Burgers’
equation in R?,

(1.15) du/dt = a(3u/dz)® + 2budu/dz + cu?,

(1.16) u(0,z) = up(z),

where uy € C5°(R). Here a,b,c are real constants. When a = ¢ = 0 this
is Burgers’ equation. Note that eu(et,z) satisfies (1.15) if u does, and the
Cauchy data are euy. Thus the lifespan of the solution with Cauchy data Euq is
proportional to 1/e.

We can use Hamilton-Jacobi theory to study (1.15), (1.16). Set 7 = du/at
and £ = du/dz. Differentiation of (1.15) with respect to z gives as leading term
the derivative of £ along the curve where

(1.17) dz/dt = -2(af + bu).
Thus we obtain along this curve

(1.18) d€/dt = 2€(b€ + cu),
(1.19) du/dt = —a€? + cu?;

the last equation follows since

T+ &dz/dt = ag® + 2buf + cu? — 2¢(al+ bu) = —af? + cul.
Another differentiation of (1.15) with respect to z gives an equation for
U = 92y,
(1.20) dU/dt = 2aU% + 6b¢U + 2cul + 2c€2.
It is linear if @ = 0. For arbitrary a the equations obtained for derivatives of
order higher than two are all linear, so questions concerning the lifespan of the
solution of (1.15) can be answered as soon as we have studied the integration of
the equations (1.18)—(1.20).

Section 2 is devoted to the differential equations (1.18)«1.20). Somewhat

miraculously they can be integrated explicitly so we gain full control of the solu-
tion in terms of the initial data

(1.21) (2(0),(0),£(0),U(0)) = (u,u0(y), up(v), us (v))

which occur in the integration of (1.15), (1.16). In Section 3 we deduce an
explicit formula for the lifespan of the solution of (1.15), (1.16). We also discuss
which derivatives of u that remain bounded at the blowup. Finally we sketch in
Sections 4 and 5 the application to the equation (1.14). This will be done rather
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briefly since the arguments of [2] can be used with minor modifications once we
have the basic facts on the equation (1.15).

2. Integration of the Hamilton equations

In this section we shall study the Cauchy problem for the system (1.18)—(1.20).

The equations (1.18) and (1.19) for (£, u) involve a quadratic form in the right-

hand side. With constants A, s to be determined we can write them in the form
d(AE + pu)/dt = (26X — ap)€? + 2cAuf + pcu?.

The right-hand side is proportional to

(A + pu)?
if
26\ —ap/A? =c/u,
that is, if
(2.1) Mec-2bAp+ap =0.
When this equation is fulfilled we obtain

p = ct(A(0) + pu(0))
Assume for a moment that 0 # ac # b? so that (2.1) with g = 1 has two different
roots Ay, Ay not equal to 0. By eliminating u(t) or £(t) from the equations (2.2)
with (A, u) = (};,1), we obtain

23) &) =¢£0)/N(t), ult)=(u(0) -ct [T(A;£(0) +u(0)))/N(t)

=1
2

(2.9) N(t) = J] (1 - ct(2;€(0) + u(0))).

i=1
An elementary calculation gives
oy EO=EO/NQ,
u(t) = (u(0) - t(a€(0)* + 2bu(0)£(0) + cu(0)*)) /N (2),
(2.4) N(t) =1-2t(cu(0) + b£(0)) + t*c(a&(0)® + 2bu(0)£(0) + cu(0)?),
and for reasons of continuity these formulas remain valid for arbitrary a, b, c.

We shall first consider the quasilinear case where a = 0, which is quite close
to the standard Burgers’ equation. Then the denominator N takes the simple form

N(t) = (1 -tcu(0))(1 - t(cu(0) + 26£(0))),
so we have
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Proposition 2.1. When a = O the lifespan T of the solution of the Cauchy
problem for (1.18)«(1.19) is given by
(2..5) T~! = max(cu(0), cu(0) + 25£(0),0).

In particular this means that the solution exists for ¢ > O if and only if
cu(0) < 0 and cu(0) + 2b£(0) < 0. Note that the linear equation (1.20) also has
a solution for 0<t < T.

From now on we assume that a # 0. It is no restriction to assume that a > 0,
for otherwise we can just change the signs of u,£,U,a,b,c. The reciprocals of
the zeros of N (t) are

1/t = cu(0) + b£(0) + Vb2 — ac £(0).
If 5% — ac > O the largest one is cu(0) + b£(0) ++/b2 — ac |€(0)], so the lifespan
T of the solution of (1.18)—(1.19) is given by
T~! = max(cu(0) + b£(0) + Vb2 — ac |£(0)|, 0),
with the convention which will be used throughout that non-real quantities shall
be dropped. However, we must also examine the solution of the equation (1.20)

carefully, for the non-linear term 2aU? in the right-hand side may cause a blowup.
Set

(2.6) V =U+3b€/2a + cu/2a.
Then we obtain after some simple calculations
(2.7) dV /dt = 2aV? + 3(ac - b?)¢?/2a.

Here £ is given by (2.3)'. It may very well happen that V' blows up long before
€ becomes singular. We shall determine explicitly when and where that happens,
starting with the simplest case where ac — b2 = 0. Then we have

N(t) = (1-t(cu(0) +5£(0)))?,
and the equation (2.7) simplifies to
dV/dt = 2aV2.
The solution is

V() =V(0)/(1 - 2atv (0)).

Hence we obtain

Proposition 2.2. If a > 0 and ac - b? =0, then the lifespan T of the solution
of the Cauchy problem for the system (1.18)—(1.20) is given by

(2.8) T~ =max((cu(0) + b¢(0)), (2aU(0) + 3b£(0) + cu(0)), 0).
In the general case where ac — b? # 0 we first note that £(t) = £(0)/N(t)



o LAXD NMUKMANUEK

where
N(t)=1-2ty+t*(v* +8)
(2.9) = +B)t-1/(*+B))+B/(* +B),
B =E(0)(ac—b?), 7= cu(0)+bE(0).
Here we have assumed that 4% + 8 # 0; the discussion of the limiting case where

that is not true is postponed to the end. If § = 0 we have the case already
discussed in Theorem 2.3, so we may also assume that 8 7= 0. Now Set

@10) 5= (2 +B)-N/\/8l, W(s)=2aV (2)/[8]/(+* + B).
Then t = 0 corresponds to so = —y/ \/F , and
dW/ds=W?+3(s?+1)"%, +=sgnp,

W (s0) = 2aV (0)y/|8/(+* + B).

The Riccati equations (2.11) can be integrated explicitly. To do so we set

®(s) = (W(s)(s? 1) +s)/2

which transforms (2.11) to
P'(s) =2(®*+1)/(s? +1).

For the positive sign we obtain arctan ® = const +2 arctan s, that is,

(2.124) ®(s) = ((s* - 1)K +2s)/(2sK - (s - 1)).

Here K is a constant which is allowed to take the value oo also. Note that (2.12)

is symmetric in ® and s, so it can also be written

(2.11)

(2.13;) K = ((s* - 1)®(s) + 25)/(2s®(s) - (s? - 1)).
Similarly, we obtain for the minus sign the solution
(2.12-) P(s) = (K (s +1) +2s)/(2Ks + (s? +1))

which is symmetric in ® and K apart from a sign change, so that it can also be
written

(2.13_) K = (®(s)(s? + 1) - 25)/(s* + 1 — 25%(s)).

In principle this finishes the integration of (2.7), but we have to examine the
solution carefully to determine the lifespan.

(i) We shall now assume that
ac-b*>0
so that 8 > 0 and (2.11) holds with the plus sign. If the solution (2.12), blows
up when s = S, it follows from (2.13); that K = (S? - 1)/28, that is,
(2.144) St 08 Kioini=i0i
Given K this equation has two solutions S = K +1/1+ K2, one positive and
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one negative with product —1. An exception is the solution ®(s) = (s2-1)/2s
corresponding to K = oo and W (s) = —1/(s(s? + 1)) displayed in Fig. 1; it
blows up at 0 only. Note that (2.11) can be written
d(-1/W)/ds =1+3(s* £ 1)7*(-1/W)™.

If W blows up at S and S? +1 # 0 it follows that W(s)(s - S) — -1 as
s — S. In particular, it follows that W — +oco when s t S. For the Cauchy
problem (2.11) (with the plus sign) we conclude by comparing with the solution
corresponding to K = oo that if W (so) < —1/(so(s3 + 1)) then no blowup can
occur to the right of sq if sg > 0; if sg < O then the only blowup to the right of
8o occurs when S = K ++/1+ K2. If W(so) > —1/(so(s§ +1)) and so >0
the solution also blows up at K + /1 + K2, but if so < 0 it blows up the first

time at K — /1 + K2.

Fig. 1

Summing up,
00, if 2s9®(s0)—s3+1<0, 80>0
K+V1+ K2, if 2s0®(sp) -s3+1>0,
0, if 250®(sg)—s3+1=0, s0<0
K-/1+ K2, if 2s,®(sp)-s3+1<0,50<0.
Note that W (s)s(s? +1)+1 = s(2®(s) — s) + 1 = 2s®(s) + 1 - s has the same
sign as the denominator in (2.13)4. Since

K24+ 1=(s? +1)%(®(s)? +1)/(258(s) - s* +1)?,

(8% - 1)®(s0) + 2s0 — 50(250®(s0) - st +1) = (1+s2)(s0 - ®(s0)),

and
80— ®(s0) + V®(s0)2 +1 _ ( /<I>(so)2 + 14 ®(sg) — 80) 7!

280@(80) - 8.-2\ +1

S =
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we can sum up the list by
(S —80)™! = max (\/qm+ ®(s0) — 80, 0) /(sd +1).
For s = —v/+/B and W (s,) as in (2.11) we have
®(s0) = 526V (OVB(v*/8 +1)/(+* + ) - 7//B)
= (aV (0) -v/2)/V/B,

®(s0) — 80 = (aV (0) +7/2)/v/B, sk+1=1+~2/B,

V/®(s0)2 + 1= 1/(aV (0) - 7/2)2 + B//B.
Thus the lifespan T' = (S - s9)/B/(7* + B) is given by
@.16) T g (\/(aV(O) —9/2)t+ B +aV(0)+ /2, o).

Here

aV (0) /2 = (2aU/(0) + 3b£(0) + cu(0)  (cu(0) + b£(0))/2

(2.16) _ { aU(0) + 25£(0) + cu(0),
~ 1 aU(0) + b¢(0).
This gives the explicit formula
2.15) T~* = max(y/(aU (0) + b£(0))2 + (ac - B2)£(0)2 +

+ aU(0) + 25£(0) + cu(0), 0).

It remains true when £(0) = u(0) = O also; the right-hand side is equal to 0 if
aU(0) < 0 and equal to 2aU (0) otherwise.

(ii) Finally we must study the case where

ac-b% <0.

At first we assume that £(0) # 0, hence 8 < 0, and that 4% + 8 # 0. We can
then transform to the equation (2.11) with the minus sign. If a solution W given
by (2.12)_ blows up at s = S # +1, then K = —-(S?+1)/28 by (2.13)_, that
is,
(2.14-) S§*+2SK+1=0.
This equation for S has no real root if |[K| < 1, the double root S = —K if
K = +1, and two different roots —K + /K2 — 1 with product 1 if |K| > 1;
neither is equal to +1 and both have the sign of —-K. For K = +1 we have
® = +1 and W(s) = (22 - s)/(s® - 1). When K = oo we have the solution
®(s) = (s* +1)/2s, that is, W(s) = 1/(s(s? — 1)). The three curves with
K = +1 and K = oo are displayed in Fig. 2.
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Fig. 2
To proceed we must separate cases depending on the sign of % + 8 and ~.
(ii)4 If v+ B > 0 then the change of variables (2.10) preserves the orienta-
tion. ¢ = 0 corresponds to sg = —7/\/3, hence sg > 1 and sg has the sign of
—v. If 4 > 0 then sg < -1 and no blowup occurs before s = —1 if ®(sg) < 1;
set

S = —1 then. If ®(sq) > 1 it follows from (2.13)_ that K € (1,—(s3+1)/2sy),
so the first blowup to the right of s occurs when S = —K — /K2 — 1; the other
root of (2.14)_ is in (-1,0). Now
K2 —1=(®(s)? - 1)(s? - 1)?/(s* + 1 - 254(s))?,
~®(s)(s® +1) + 25 — s(s? + 1 - 25®(s)) = (®(s) — s)(s? - 1),
(®(s) - 8)2 = (B(s)2 - 1) = 87 + 1 - 259(s).
Since s + 1 - 25o®(so) > 0 we conclude that

(S —s0)™" = (/®(s0)? ~ 1+ &(s0) — 50) /(55 ~ 1)-

This expression is > (~1 — sg)~1 if and only if

V®(s0)2 -1 +®(so) — 50> —(s3-1)/(so+1) =1-sq,

that is, ®(sg) > 1, so we see that in both cases

(S—S)‘1:max(VQ(SO)Z"l‘*'@(SO)—SO 1 )
0 = ’

1 *—1—ay

with the interpretation that a non-real quantity should be dropped. For sy =
—/\/=B and W (so) = 2aV (0)\/=B/(7* + ) as in (2.11) we have s — 1 =
~(v*+p)/B and
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&(s0) :_;_ (ZaV(O) ~ ) _ aV(%7/2’

B(ao)t 1= Oy

s0 the lifespan T = (S — s9)\/—B/(7% + B) is given by
T~ =max(y/(aV (0) - 7/2)* + 8 +aV (0) + /2,

v+ v/-B).

Here 5 + /-8 is the reciprocal of the smallest positive root of N (t). Using
(2.16) we can easily express (2.17) in terms of the original quantities u(0), £(0),
U(0).

We shall now consider the case where « < 0, hence sg > 1. Comparison with
the solution corresponding to K = co shows that there is no blowup if ®(sp) <
(s +1)/2s0. When ®(sq) > (s3+1)/2s0 > 1 then K € (—o0, —(s2 +1)/2s0)
by (2.13)_, so (2.14)- has a unique solution S = —-K + VK2 -1> 1; it is
necessarily > sg since no blowup can occur between 1 and sy. The lifespan

= (S - 80)v/—B/(7* + B) can now be computed as before. We have a plus
sign in front of /K2 — 1 now, but since s3+1—2s,®(s,) < 0 now this difference
disappears and we obtain as before

(2.18) T~ = max <\/(aV(O)—-'7/2)2+ﬂ + aV(0) +v/2, o),

provided that ®(sg) > (s + 1)/2sq. To verify (2.18) otherwise we must show
that

(2.17)

1< ®(sp) < (s2+1)/2s0
A/ ®(s0)%2 — 1+ P(s9) —so < 0if { or
Q(So) < -1.
This is clear since
80— ®(s0) > 80— (s§ +1)/2s0 = (s — 1) /280 > 0,
®(s0)% — 1 - (®(80) — 50)% = 280P(s0) —1- 83 < 0.
(ii)- If '72 + B < 0 then the change of variables (2.10) reverses the orientation
so we have to look for a blowup to the left of sy = —v/+/—p. Note that s3 < 1.
If ®(s) > 00 as s|S e (-1,s0) then B(s) - +o0, so there is no such blowup
if ®(sp) < 1; define S = —1 then. If ®(sp) > 1 then the root S of (2.14)_

(-1,s0) mustbe —-K ++/K2 —1if K > 0, for the other one is < —1. If K <0
then sa > 0 and 1 <« ®fs.) < (22 4 1) /28~ we must then take the smallest ront
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—K —v/K? — 1 for the other one is > 1. We can sum up by

s=—K+K\/1——1W;.

1-1/K?% = (®(s0)* - 1)(s§ — 1)/ (®(s0) (83 + 1) - 250)?
and ®(s)(s2 +1) — 25 > 0, we have

Ky/1-1/K2=/®(s0)? - 1(1 - s3)/ (s} + 1 - 250%(s0))-

Since

Hence

$ - 50 = (1- 82)(s0 - B(s0) + y/B(s0)? — 1)/(s3 + 1~ 280%(s0)),

(S - 50) ™" = (50 — B(s0) — \/®(80)? - 1)/(1 - 53)-

This expression is > (—1 — so)~! if and only if

8o — Q(So) *4/ Q(So)2 -1>s3-1,
\/ Q(So)z -1<1- Q(So)

which is true if ®(sp) < —1 and false if ®(sp) > 1. Thus we have in all cases

(S - 50)"! =min (so ~ ®(s0) = V/®(s0)” - 1 ) :

1-s2 ¥ ~1-89

that is,

For the lifespan T = (S — so)\/—8/(7* + B) we obtain since v* + § <0
219 T~'=max(y/(aV (0) - 7/2)? + B+ aV (0) + /2,7 + V-B),

where v + /=8 is the reciprocal of the positive zero of N(t) and we have the
usual convention of dropping non-real quantities.

We can now sum up (2.15), (2.17), (2.18), and (2.19) in one expression
71 =max(,/(aV (0) - 7/2)2 + B+ aV (0) + /2,

¥+ V-8,0).
In fact, when 8 > O the expression v + \/—_ is non-real and drops out, which
gives (2.15), and similarly we obtain the other cases. We can make (2.20) explicit
by using (2.16) and
~+ V=B = cu(0) + b£(0) + |€(0)| Vb2 — ac.

Using continuity arguments to cover the excluded cases where 8 = 0 or Y2 +B=0

eeem hncen smmcer smamnarrad.

(2.20)
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Proposition 2.3. The lifespan T of the solution of the Cauchy problem for
the system (1.18)—(1.20) is given by

T~ = max(y/a(al (0)2 + 26U (0)£(0) + c£(0)2) + al (0)+
+ 2b£(0) + cu(0), cu(0) + 5£(0) + |£(0)| Vb2 - ac, 0).

Here it is understood that non-real quantities should be dropped.

(2.21)

Note that Proposition 2.3 contains Propositions 2.1 and 2.2 as special cases;
they could have been obtained as limiting cases of the generic case of Proposition
23.

3. The generalized Burgers’ equation.

Since the solution of (1.18), (1.19) vanishes if the initial data do, we see from
(1.17) that z(t) is also constant then. Hence the support of u(t, ) is always equal

to the support of uy, as long as a classical solution exists. In what follows we.

shall always assume that ug # O.

If uis a C* solution of (1.15)<(1.16) for 0 < t < T then u, £ = du/dz,U =
B’u/c‘i:z:2 satisfy (1.18)<(1.20) for 0 < ¢t < T along the integral curves of (1.17),
with initial conditions (1.21). Denote these solutions by z¥(t), u¥(t), £¥(t),
U¥(t). If they are uniformly bounded for O < ¢ < T it follows that the higher order
derivatives with respect to z are bounded too, for they satisfy linear equations.
Hence u can then be extended to a C* function for 0 < ¢t < T. By the local
existence theorems the solution of (1.15) can therefore be extended to a larger ¢
interval. Thus T is the lifespan of u if and only if there is no uniform bound for
u¥(t),£Y(t),UY(t) when 0 < t < T, that is, the lifespan T is the infimum with
respect to y of the lifespans of these solutions of (1.18)—(1.20). It can therefore be
obtained from Propositions 2.1-2.3. It will turn out that the expression involving
the highest derivative always dominates. For the proof we need some elementary
lemmas.

Lemma 3.1. Let 0# v e C§(R). If zo € R,e > 0 and v(z) < v(zo) when
zg < z < g + €, it follows that

(3.1) lim v'(z)/(v(zo) — v(z)) = —oo.
zlzg

If instead v(z) < v(zo) when zo — € < z < z, then

(3.2) Z@’ v'(z)/(v(zo) — v(z)) = +co.

Proof. If (3.1) is not valid we obtain for some § with 0 < § < € and some
constant K that
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v'(z) > —K(v(zo) —v(z)) when 2o < z < 2o+ 6.

Hence (v(z) - v(zo))e~ %= is negative and increasing in (zo,zo+ 6) and O at the
left endpoint which is impossible. This proves (3.1), and (3.2) is (3.1) applied to

v(-z).

Lemma 3.2. Let 0# v € C}(R). Then the convex hull K of
J(v) = {(v(z),v'(2)), zeR} c R
is a convex set with the interval (minv,max v) x {0} in its interior and the

end points on the boundary. K is differentiable at these points. The whole
boundary of K is in C if ve C.

Proof. Let M = max v and choose zg with v(zo) = M; then v'(z) = 0, which
proves that (M,0) € J(v). Since v < M we conclude that (M,0) € K. If
M > 0 we can choose zy maximal or minimal with v(zo) = M; if M =0 we
can choose x, locally maximal or minimal. In both cases it follows from Lemma
3.1 that K has a vertical tangent at (M, 0). Replacing v by —v we make the same
conclusion at (minv,0).

Assume now that v € CZ and that K has a corner at a point (vg,v;) with
vy # 0. Then (vp,v;) = (v(z1),v'(z1)) for some z;. We can choose cg,c;
different from 0 and € > 0 such that
cov(z) + e1v'(2) < cov(z1) + €1’ (z1) — e(|v(z) — v(z1)| + |/ () - v'(z1) )
Leting z — z; noting that

|v(z) — v(z1)|/Iz — 21| - |v'(21)| # O
we obtain a contradiction since cov(z)+ ¢y v'(z) is differentiable at ;. The proof
is complete.

Theorem 3.3. If a = O, then the lifespan T of the solution of the Cauchy
problem (1.15), (1.16) is given by

(3.3) T~! = max(cug(y) + 2bu(y)).

If b# 0 then T < co and u is bounded for 0 <t <T. Ifb=0then T < oo
and u is unbounded for 0 <t < T unless cugy < C.

Proof. If b # 0 it follows from Lemma 3.2 that

max cug(y) < max(cug(y) + 2bug(y)),
so this is an immediate consequence of Proposition 2.1.

Thoaram A IFE S SN anAd L B2 S0 LG G Hebnad Al v i PGl i L L s E LA
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the Cauchy problem (1.15), (1.16) is finite and is given by
(3.9 T = max(2auf(y) + 3bug(y) + cuo(y))-

Proof. By Proposition 2.2 we only have to prove that

(3.5) max (cug(y) + bug(y)) < max(2aug(y) + 3buy(y) + cuo(y))-
This is clear if 6 = 0, hence ¢ = 0, so we may assume that b = 0. Write
v = cug + buy, thus av’ = b(bug + auy) and
2auf + 3buh + cug = 2ab~ v’ + v.
This reduces the inequality (3.5) to
max v < max(2ab~1v' + v),
which is a consequence of Lemma 3.2.
We shall now examine the case where ac — b2 > 0. Then we have
T~1 = max(y/a(aug(y)? + 2bug(y)up(y) + cup(y)?) +
+ aug(y) + 2bug(y) + cuo(y))
> max (bug(y) + cuo(y))-
This is positive if b7 0. If b =0 then ¢ > 0, and T = o if and only if
(3.6) v/ (au(y))2 + acu(y)? + auf(y) + cuo(y) < O.
This implies that cug < 0, hence ug < 0. (3.6) is then automatically true where

ug = 0, for ug = 0 and ug < 0 there, so we only have to examine the condition
where ug < 0. Differentiation shows that

VU2 +acub(y)? + U + cup(y)

is an increasing function of U, and it is equal to O precisely when
acuf(y)? = c®uo(y)? + 2cUuo(y), |

that is ;
U = (aup(y)® - cuo(y)?)/2uo(y)-
Thus (3.6) is equivalent to

aug(y) < (aup(y)® - cuo(y)®)/2uo(y)
when ug(y) < 0, which implies that everywhere

2aug(y)uo(y) > aup(y)? - cuo(y)?.
Set ug(y) = —f(y)? where f > 0. If uy € C$° then f is piecewise in C* in the
complement of the set E of points where ug vanishes of infinite order without
vanishing in a neighborhood. In this set f € C1 except at double zeros y, of ug,
where f'(yo+0)— f'(yo—0) = v/—2u"(yo). Moreover, f is Lipschitz continuous
on R by the well known inequality |uf| < C'y/|ug(y)| which follows from the
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positivity of —ug. The condition (3.6) can then be written
3.7 daf"+cf>0, f>0.

The first inequality is clear in the complement of E. To prove it in general we
choose xe € Cg°(R) equal to 1 at distance < € from E, equal to O at distance
> 2¢ from E, so that 0 < x. < 1 and ng) = O(e77). Since

Xef" = (xef)" = 206.1) + X1
converges to 0 as € — 0, it follows that 4a f" +cf is a positive measure on R, and
also that the mass at distance < & from E is O(eN) for every N. This implies
that f'(y) — O as the distance from y to E converges to 0, so f € C'! except at
the double zeros of uyg.

Proposition 3.5. Let I be a compact interval on R with length |I|. If |I| <
2n+/a/c then there is no f € C(R) with supp f c I satisfying (3.7) in the
sense of distribution theory. If |I| > 2x+/a/c then the set K of all such f
with [ fdz =1 is compact and convex, and it is the closed convex hull of all
functions in K of the form kfo(y — yo), where k is a positive constant and

foly) = { cos(v/c/ay/2), |yl < x\/a]c
G Iyl > nv/aje

or the maximum of two such functions with supports overlapping in an interval
of positive length. Hence every f € K is monotonic in any interval of length
n\/a/c such that f =0 at one end point. Every component of the set where
f > 0 is an interval of length > 21r\/¢72.

Proof. Set g = 4af"” + cf, which by hypothesis is a positive measure with
support in I. Since f has compact support, g is orthogonal to the solutions
y — cos(v/c/a(y—yo)/2) of the homogeneous equation. This proves that g = 0,
hence f = 0, if \/c/aly—yo| < x in I for some yo, which gives the first
statement.

Now assume that |I| > 2m\/c/a, and let K be the convex set of all f € C(R)
with supp f c I satisfying (3.7). We have

(9, ) =¢(f,1) =c,
so the total mass of the positive measure g is equal to c. Since f is the convolution
of g and the fundamental solution, we obtain a uniform bound for f and for f’,
which proves that K is compact. By the Krein-Milman theorem we just have to
determine the extremal elements in K.

If f has a zero at an interior point z, of I, we define f_(y) = f(y) when
y < zo, f-(y) =0 when y > z, and claim that f_ and f, = f — f_ are non-
negative and satisfv (3.7). The onlv noint which is not ohviong is whether a Dirac
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measure or its derivative might appear at z,. To examine that possibility we note
that for ¢ € C§°(R)

(0= lim [ e )y

= Jim ~f'(@0- )plza-)+ [ w0)f"(W)dy

where f” should be interpreted as a measure. Since we can let € — O through a
sequence such that f'(z—¢) < 0 we conclude that the first term is a non-negative
multiple of ¢(z,). Hence f_ satisfies (3.7), and the proof is the same for f,. If
f is extremal it follows that f_ or f, must be equal to O, for if cx = [ f4(y)dy
we would otherwise obtain

f=cife/e4) +e-(f-/c-),
contradicting the extremality.

For an extremal f the support is thus an interval J c I such that f > 0 in
the interior. We claim that supp g can at most contain three points. If not, then
we can write g = Ei g; where g; >0 and g1, g3, g3, g4 are different from 0
with disjoint supports. The set of (Ay,... ,As) € R* with Y7 ), ¢; orthogonal to
cos(v/c/ay/2) and sin(y/c/ay/2) has dimension > 2, so we can find some such
(A1,...,A4) not proportional to (1,...,1). For sufficiently small || it follows
that

4
Ge = Z(l +€/\1)gj +95 2 0,
1

and that G¢ = 4aF¢' + cF. for some F. with support in J. It is obtained by
convolution of G, with the fundamental solution with support on the positive
(or negative) axis, which is positive near the origin. Hence it is clear that F; is
positive near the end points of J; in the rest of J this is true for small ¢ since
Fy = f > 0 there. It follows that f is not extremal.

Suppose now that supp g consists of two or three points. Two of them must
be end points of J = [y;,ys]. It these are the only points in suppg then f must
be of the form k fo(y — yo). If there is a third point ys between y; and y, in the
support, then

fly)= { ky sin(Ve/aly - 91)/2), i <y<ys,

ks sin(v/c/a(y2 — y)/2), if ys <y <y
Since f >0 we must have

\/;/—a(ys -y1) < 2w, \/c/_a(yz - ys) < 27;

the constants k;,k, are then determined so that f is continuous and has integral
1. The mass of a at u. is positive since a solution of the homogeneous eanation
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4af" + ¢f = 0 cannot have two zeros in an interval of length < 2W\/WE-
This completes the determination of the extremal elements in K. They are all
increasing (decreasing) at distance < r\/ﬂz from the left (right) end point of I.
This proves the last two assertions, for we may replace I by the closure of any
component of the set where f > 0. The proof is complete.

If |I| = 2m\/a/c there is just one element in K. It is not even in C, but by
regularization of this element we can find solutions of (3.7) in C§°(I) for any I
of larger length. Returning to ug = — f2 we then obtain functions ug € C&(R)
satisfying (3.6). We have proved

Theorem 3.6. If a > 0 and ac - b > 0, uy € CP(R), ug # O, then the
lifespan T of the solution u of the Cauchy problem (2.1), (2.2) is finite,

38 T = max(/a(auf)(y)2 + 2buf (y) up(v) + cup(v)?) + auf (y)+

+ 2bup(y) + cuo(y))
unless b = 0 and uq satisfies (3.6). The length of supp ug must then exceed
2mv/a/c, and (3.6) means that uo = — f* with f as in Proposition 3.5. When
T < oo then u and du/dz remain bounded for 0 <t < T.

Remark. In general we can only assert that f is Lipschitz continuous even if
ug € C§°. To construct an example we let

fi(y) = max(sin(y/c/ay/2), sin(y/c/a(y - t)/2))
for 0 < y < 27v/a/c +t and ft(y) = O elsewhere. Here 0 < t < 2my/a/c so
that we have one of the extremal functions in Proposition 3.5. Then

dafy +cfy = 2v/ac(8y +521r\/a_/c+t +2sin(y/c/a t‘/4)5’\/m+t/2).
Choose x € C§°(0,2rv/a/c) with 0 < x < 1, [ xdt =1, and set

f(y) = / f(y)x()dt.

Then
daf" +cf = 2vac(bo + x(. — 2m\/a/c)+

+dsin(y/c/a(. - x\/a/<)/2)x(2(. - 71/a/c)),

so f € C* except at 0 where f(y) = sin(v/c/ay/2) in a right neighborhood.
Hence

uo(y) = -7 (y)? - f(-v)?
is a C function satisfying (3.6) although \/~u,(y) = f(y) + f(~y) is not
differentiable at 0. However, it is always true that f is differentiable except at
isolated points separated by at least a distance 27\/a/c where the derivative has
a simple jump.
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Finally assume that b2 — ac > 0. By Lemma 3.2 we have
M = max(cuo(y) + bup(y) + Vb2 - aclug(y)[) > 0,
so T is finite. We shall prove that 1/T > M, which implies that u and du/dz
remain bounded for 0 <t < T and that T is given by (3.8) with the maximum
taken over all y such that the square root is real. What we must show is just that
this maximum is larger than M. Choose 8 with 8% = b% — ac so that

M =max v(y), v(y) = cuo(y) + (b+ B)uo(y).

Assume for the time being that ¢ 7 0. Thus

(56— B)v=c((b-B)ug + aug),

auf + bub = (b- B)o' [c+ Bub,
which implies that

a(aug(y)* + 2bug (y)ub(y) + cup(y)?) =
3.9) = (aug(y) + bup(y))? - B?up(y)”
= ((b—B)v'(y)/c)((b - B)v'(y)/c + 2Buo(v))-
Let yo be a point where v(yo) = M, hence v'(yo) = 0 and Bug(yo) > 0. Then
we have (b- B)v'(y)/c+2Buf(y) > 0 in a neighborhood w of y, so the square
root in (3.8) is real in w when (b — 8)v'(y)/c > 0. If the maximum in (3.8) is
< M it follows that
M > aug(y) + 2bug(y) + cuo(y) = (b~ B)v'(y)/c + v(y)
for all y € w with (b— B)v'(y)/c > 0. Since v(y) < M this inequality is obvious
when (b — B)v'(y)/c < 0. Thus we have
(b-B)v'(y)/c+v(y) <M, v(y)<M, if yew.
Choosing y, (locally) minimal (resp. maximal) when (b - 8)/c > 0 (resp. (b-
B)/c < 0), we obtain a contradiction with Lemma 3.1 which proves that the
supremum in (3.8) exceeds M.
The case where ¢ = 0 is easier. Then we have

M =maxv+|v|>0, v=bug,.

If the maximum in (3.8) is not larger than M, then
\/azv"/b2 +2avv'/b +av'/b+20< M
when the square root is real, hence when
a?v'/b+2av >0, and bv' > 0.

Thus av'/b+ 2v < M if av'/b+ 2v > 0 and bv’ > O; the same inequality is
obvious when bv’ < 0 since 2v < M. The inequalities 2v < M, v'+2v < M
contradict Lemma 3.2 since (v(y),v'(y)) = (M/2,0) for some y. Hence we
have proved:
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Theorem 3.7. If a > 0 and ac - b? < 0, uy € C(R), up # O, then the
lifespan T of the solution of the Cauchy problem (1.15), (1.16) is finite and
given by (3.8), with the maximum taken over the set where the square root is
real. Both u and du/dx remain bounded for 0<t < T.

Note that (3.3) and (3.4) are special cases of (3.8); in the latter case one
should also recall that cug + bug < 1/T.

4. An approximate solution of the Cauchy problem
We shall look for an approximate solution of the Cauchy problem (1.14), (1.9)
in R1*3 of the form
(4.1) u(t,rw) = er U (w,elogt,r - t), |w|=1, r>0.
This is motivated by the asymptotic formula er~! F(w,r — t) for the solution of
the unperturbed wave equation mentioned in the introduction, and the expectation
that €log Te should have a fixed lower bound if T, is the lifespan of the true
solution. Since
Ou=r"1((8; - 3r)(0¢ + 8r) - r 2 Au)ru,
with A, denoting the Laplacian in S%, the main term in Cu is obtained when
0¢ + Oy acts on the argument s = elogt and d; — Jr acts on ¢ = r — ¢, which
gives
4.2) —26%(tr) UM (w, 8,9).
When derivatives act on w or s the inner derivative gives a factor O(1/t) so the
main contributions from the non-linear terms are expected when all derivatives
act on g. We can write the non-linear part of (1.14) in the form
(4.3) G(w,u")= > gp0°udfu+ O(|u’|3 + |u”|s).
1<al,|B1<2
Since ¢'* = ®*, & = (~1,w), the main non-linear terms in (1.14) are
(4.4) St FT N g sterlpldyalfiy
1<|al,|B1<2
when u is of the form (4.1). With the notation

E gaﬂd’a+ﬂa
la|=18|=2

E gaﬁd’a+ﬂ’
|af+18]=3

E gaﬂwa-f-ﬁ
|a|=|8|=1
we now obtain from (4.2), (4.4) and (4.5) the following approximation to the

a(w) =

(4.5) 2b(w) =

c(w) =

DCTIES X TS T
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equation (1.14)

(4.6) AU, /ds = a(w)(3U;/3q)* + 2b(w)aU; /3qUy + c(w)(Uy)?.

When t is large but elogt is still small we see that it is natural to require the
initial condition

4.7 U(w,0,q9) = F(w,q),

where F is the Friedlander radiation field for the solution of the unperturbed
equation, given by (see e.g. [2])

(4.8) F(w,.) = %(R(w, u1) — R(w, .; ug)'),

with the differentiation taken in the variable ¢ indicated by a dot. Here R is the
Radon transform,

(49  R(w,q;9) =/5(q—(w,y))y(y)dy=/; 9(y)dS(y).

w,y)=q

Theorem 4.1. Let |z| < M when z € suppug Usuppu;. Then the Cauchy
problem (4.6), (4.7) has a unique solution U € C*(S? x [0, A) x R) vanishing
in S? x [0, A) x (M, ), if

(4.10) 1/A=rgzx(\/ll(w,q)+I2(w,q)),

where

I(w,q)=a(w)(a(w) Fage(w, q)*+2b(w) Fygq (w, 4) Fag (w, 9) +¢(w) Fyq (w, 9)%),
I (0,9)=a() Ftq 0, q) + 26(w) Fiy (w,0) + (@) Fi(w,q).

Here the maximum is taken over all (w,q) such that the square root is real.

All derivatives of order < 3 are not bounded as s /* A. For ¢ < —M we have
U(w,s,q) =U-(w,s).

Proof. For fixed w the equation (4.6) is an equation for V' = Uy of the form
discussed in Section 3, though depending on parameters. Hence a unique solution
exists for 0 < s < A. The Hamilton-Jacobi theory shows at once that it is a
C* function of (w,s,q). The support of V is contained in supp F x [0,A) c
S% x [0,A) x [-M, M], so the integral U with respect to ¢ which vanishes for
g > M has the required properties and is uniquely determined. For ¢ < —M we
have
U(w,s,q) =U-(w,s)

Lol i

[+ <]

S //o<.,<,(“(w)(6V(w,a, q)/89)*+
+ C(U.))V(OJ, g, q)z)dqdd'

(4.11)

This completes the proof.
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When a(w) = ¢(w) =0, as in the case studied in [2], it follows from (4.11)
that U_ = 0, but this cannot be expected otherwise. That will perhaps be the
main change in the following constructions. To define an approximate solution to
(1.14), (1.9) we shall cut U off near the ¢ axis by taking a function (¢, z) in
C* which is homogeneous of degree 0, equal to 1 in a conic neighborhood of the
light cone and equal to O in a conic neighborhood of the ¢ axis. Let 0 < B< A
where A is defined by (4.10). When ¢ is sufficiently small we have
(4.12) |0%(%(¢t, z)U- (w, elog(et)))| < Cq pt 1,
if et > 1, elogt < B. This is clear since all terms obtained by differentiation
have a factor homogeneous of degree —|a|. Choose x € C* (R) decreasing, equal
to 1in (—oo0,1) and equal to O in (2,00) and denote by ewyq the solution of the
unperturbed wave equation with Cauchy data (1.9). We shall prove that ewe is a
good approximate solution of (1.14), (1.9) for elogt < B if

(4.13) - we(t,z) = x(et)wo(t,z) + (1 - x(et))r (¢, 2)U(w,elogt,r — t),
where r = |z|, w = z/r. Defining R.(t,z) by
(4.14) e0we + G(ew:, ew!) = eR.,
we shall estimate we, R. and their derivatives.

As mentioned in the introduction, the methods introduced by Klainerman [9]
require that one considers not only differentiation with respect to the constant
vector fields 9/ a:c,- but also the infinitesimal generators (1.10) of the Lorentz

rotations and the radial vector field (1.11). By Z7 we shall denote any product
of |I| such vector fields.

Theorem 4.2. With w. and R. defined by (4.13) and (4.14) we have for any
I and for 0 < B < A, defined by (4.10), if elogt < B and ¢ is small

(4.15) |27 we(t,2)| < Crp(1+1)7,
(4.16) lZIRg(t,:c)l <Crpe(1+)~2(1+et)L.

Proof. The estimate (4.15) for € = 0 is contained in [2], formula (2.1.13), and it
implies that (4.15) holds for the first term in (4.13) since Z7 x(€t) has a uniform
bound when |z| <t + M. When et < 1 we also obtain (4.16) since
eR. = G(ewp, ewp

and the factor (1+ et)~1 is > 1/2 then. To prove (4.15) when £t > 1 we note
that Z log(et) is homogeneous of degree < 0, and that Zgq is either homogeneous
of degree O or else equal t0 ~w;gq, if Z = z;0, + td;. This implies that ZT
applied to the second term in (4.13) is a sum of derivatives of U multiplied by
functions homogeneous of degree < —1 and powers of ¢ = r — ¢; the latter only
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occur if U is differentiated with respect to ¢ and then we have |g| < M in the
support. Hence (4.15) follows.

Next we prove (4.16) in the transition zone where 1 < et < 2. In addition to
the arguments given above when et < 1 we must then also estimate

Owe = O(we — wp) =

= ((1-x(et))O-2¢x’(et) 32 x" (et))(%t/)(t, z)U(w,elog(et), r—t)-wo(t, z)).

In the term where x is differentiated twice the desired bound O (&) is immediately
clear. In the term where x is differentiated once we use that
r~}(¢(t,z)U(w,elog(et),r —t) — F(w,r —t)) = O(er™?),
r 1 F(w,r —t) —wo(t,z) = O(r~ %),
and that these bounds still hold after multiplication by any Z!. The first estimate
follows from the proof of (4.15) since O < log(et) < log2 and F(w,r —t) =

¥(t,z) F(w,r —t). The second one follows from (2.1.16) in [2]. What remains
is to study

(1 - x(et))r=2((8¢ - 8-)(8¢ + 8r) — r~2AL)(¢(t, z)U (w, e log(et), r — t)).
Here d; + 0, must either act on ¢ or else act on elog(et), in the latter case
producing a factor &/t, which gives the desired bound if again we recall the proof
of (4.15). When 9; + 9, acts on ¢ we just obtain a factor O(1/t), but in the
support of a derivative of ¢ we have U(w,0,r —t) = F(w,r —t) = 0, and since
0 < log(et) < log2 this shows that U = O(e) there. These arguments also yield
the estimate (4.16) when |I | # 0.

Finally we must study the case where 2/ <t < eB/¢. Then
Owe = r~1((8: = 8,) (8¢ + 8r) — r2A4) (¥ (¢, )U (w, e log(et), r — t)).
In the terms where 4 is not differentiated we have just observed that 9; + 9, must

act on €log(et), which yields a factor &/t. Writing s = elog(et) and ¢ = r -,
we obtain

lch 4 2er'1t'1Uﬁ,(w,3,q)| o 5 g

for when ¢ is differentiated we can replace U by U_ and conclude that every
differentiation contributes a factor homogeneous of degree —1. With the notation
in (4.4) we have

|6°‘w. - r"d‘)“a,!,“IU(w,s,q)l <Cr?,

|G (ewt, ew?) — e2r~2 E gaﬁd‘)"‘"’pa,!,“lU(w,s,q)a"ﬂU(w,s,q)| <
1<al,|B1<2
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Recalling that by (4.6)

22U, = E gap(‘u""'pa,l,“‘U(w,s,q)alqﬁlU(w, 8,9q)
1<|a|,|B1<2
and that

|r"1t"1 - r‘z' = |q|/tr? < M/tr?

in supp U}, we conclude that |R.| < Cet=3. This proves (4.16) when |I| =0,
and using (4.15) we obtain (4.16) for arbitrary 1.

5. A lower bound for the lifespan

Apart from minor differences of notation the estimates (4.15) and (4.16) are
identical to the estimates (2.4.10) and (2.4.11) given in [2] for a special quasilinear
case. However, there is an essential difference in that the measure of the supports
of we and R for fixed ¢ is now only O(1+ t)3, whereas it was O(1+t)? in the
case discussed in [2]. This means that with L? norms

”ZIRg(t, )" <Crpe(l +t)_1/2(1 +et)™l, if elogt< B,
which implies that

cB/‘
/o |27 Re(t, ) |dt < Cp pe'?

where we had an estimate by elog(1/¢) in [2]. However, this does not affect
the ideas of the proof in [2] of estimates for the derivatives of the difference
v = u. — ew, where u, is the solution of (1.14), (1.9). (When estimating v' one
should factor the non-linear term G(v’ + ewt, v" + ewf) — G(ewt, ew;) and
regard it as a linear function of v’,v".) The conclusion is that for small € a C*°
solution exists when elogt < B, and that

|27 (uit, )/ - wice, )| < Crpet.
This implies that
|27 (ui(t, ) /2 - wilt, )| < Crpe (1 +)71 (1 +1g) 72,
hence by integration from the set where |z| > t + M,
|ue(t,.)/€ - we(t,.)] < Cr,pe/2(1+1q))"/?/(1+1),
SO we obtain

Theorem 5.1. If 0 < B < A, where A is defined by (4.10), and if € is small,
then the Cauchy problem (1.14), (1.9) has a solution ue when 0 <t < eBle,
and

(5.1) e (e + q)ue(e’/*, (e + q)w) - U(w, s,q) = O(e*/?)(1 + |q))*/?
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as € — 0, uniformly when €log(2/¢) < s < B and q > —}e*/*. Hence
5.2) limelogTe > A,

e—0
if Te is the lifespan of ue.

When a(w) =0, b(w) =0, and c(w) = 0 then A = oo in (4.10). If the equa-
tion is quasi-linear it has then been proved by Christodoulou [1] and Klainerman
[10] (see also Hormander [3]) that there is a global solution for small . Also u
is then allowed to occur in terms of order higher than 2. However, it is an open
question if there is global existence in the other cases where Theorem 3.6 allows
A to be infinite.

6. Some open problems

Theorem 5.1 is unsatisfactory in several ways. First of all one would like to know
if (5.2) can be strengthened to lim,_,gelog Te = A, which is known only in a
simple rotationally symmetric case (John [7]; see also Hormander [2]). A proof of
this should at the same time give much more precise information on the way that
blowup occurs. When the perturbation G depends on u also one does not even
know the order of magnitude of T in all cases when n < 4. (The statements made
in Klainerman [11], John-Klainerman [8] in this respect have been withdrawn by
Klainerman.)

Finally there is of course the much harder question of defining and proving
existence of solutions with appropriately restricted discontinuities beyond the time
of blowup. There are few results on that except when there is only one space
variable; even then there are numerous open questions, so the field cannot be
expected to be exhausted in the near future.
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