Bol. Soc. Bras. Mat., Vol. 20, No. 1, 29-45
[T (© 1989, Sociedade Brasileira de Matemdtica

DA SOCIEDADE BRASILEIRA DE MATEMATICA

Quasi-periodic solutions of nonlinear elliptic
partial differential equations

Jirgen Moser |

Abstract. In arecent paper [9] the KAM theory has been extended to non-linear partial dif-
ferential equations, to construct quasi-periodic solutions. In this article this theory is illustrated
with three typical examples: an elliptic partial differential equation, an ordinary differential
equation and a difference equation related to monotone twist mappings.

1. Three examples

We begin with three problems illustrating the circle of questions to be discussed.
They involve nonlinear elliptic partial differential equations on the one hand and
the stability question of mechanics on the other. As first example we consider the
elliptic differential equation

n
(1.1) A = Flan), el A= 9F,

v=1
where f € C®(T™*1) is a periodic function of period 1 in its n+1 variables
T1,Tg,...,Tn and z,,; = u with mean value zero:

(1.2) /Tn“ f(®)dz = 0;

here we denote by Z the vector (zq,%2,... ,Znt+1), € = (21,Z2,... ,Zn) and by
T+ the torus R™+1/7n+1,

However, we do not impose the usual boundary conditions and do not look
for periodic solutions but rather ask for quasi-periodic solutions in the folowing
sense: We require that the desired solutions u = u(z) can be represented in terms
of a vector a € R™ and a function U = U(Z) with U(Z) — 241 € C=(T™11),
Ozpn 4, U > 0 in the form

(1.3) u(z) =U(z,a-2); a-z= Zauzy.
v=1

Received 16 December 1988.



30 JURGEN MOSER

To explain the term “quasi-periodic” we represent U — z,,,; in terms of a
Fourier series

U(E) =Zp41t Z c;ezﬁ;i
;e n+1

so that (1.3) takes the form
u,(z) =—a-z+ Z c;ezfi(j'f'ajn-}-l)i.

;eln+l
Thus u(z)—a-z is quasi-periodic in the usual sense with frequencies j, +aw Jp4 1,
v=12,...,n J1,72,---» Jn+1 € Z. The function u(z) grows linearly and

actually it is e2™*% which is quasi-periodic, but since u is to be viewed as angular
variable it is justified to simply refer to u as being quasi-periodic.

If o € Q™ is a vector with rational components then u can be viewed as a
periodic function on the torus: indeed, if ¢ € Z\(0) is a common denominator of
the ay, i.e. go € 2™, then one has

u(z+qj) —u(z)eZ forall zeR", jeZ®,
and the graph {(z,u(z)),z € R™} can be viewed as an n-dimensional torus in
Pt

However, if o ¢ Q™ the situation is quite different and the graph of u is not
compact and, in fact, dense in T"*1. Indeed, from the periodicity of f and U we
conclude that with u given by (1.3) also

u(z+j) _jn+1 = U(z,a T+ ’\(3))) ’\(3) 0 'j“jn+l

is a solution of (1.1). Since, as is well known, the set {A(7) = a-j — jut1l7 €
Z"*1} is dense on R precisely if o ¢ Q™ we obtain in this case a one parameter
family
1.4 u(z,\) =U(z,a -2+ A)
of solutions, which depends monotonically on A and satisfies u(z,A + 1) =
u(z,A) + 1.

One can view this situation differently: The invertible mapping

T= (I’zn+l) S (Z’U(zaxn-i-l))
of the torus onto itself takes the family of affine hyperplanes z,,,; = a-z+ A into
the solutions (1.4) of (1.1). This is an example of a foliation on a manifold, here
the torus, whose leaves are required to satisfy the differential equation (1.1) and
have a prescribed direction vector .. The problem then is to find such solutions
1. or eauivalentlv the corresnonding function I7T of s 4 1 variahlee The analvutie
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requirements for the function U are the following:
i) U(Z) - zp41 € C°(T™1),ie. has period 1 in

T1,Z2,.-+,Tp41
(L5) i) U(z,zn41) is strictly increasing in z,
' iiiy U satisfies the differential equation

n

Z(azy S E avazn+1)2U = f(za U(E))

v=1
Note that the left hand side correspond to Au if we observe (1.3).

This is not anymore an elliptic differential equation since it involves differen-
tiations only tangential to the hyperplanes z,,,; — -z = const .; it is a degenerate
differential equation and consequently the conditions for its solvability are rather
unusual. The vector o can not be prescribed arbitrarily, but one of the main
results in this note is to show that there always exist o ¢ Q"™ for which (1.5) has
a solution (see the Corollary to Theorem 2, Section 3).

The second example is the ordinary differential equation of second order
& o
(1.6) iz = f(t2), fec=(T?)

where f has period 1 in ¢,z and mean value zero. A special case is the equation
for the nonlinear pendulum

Z=g(t)sin2rz
where the “gravitational force” g(t) is assumed to vary periodically in time with
period 1. The angle of deviation from the vertical is denoted by z (mod 1). We
ask the question whether the velocity z of any solution of (1.6) is bounded for
all t. Of course, if f is independent of ¢ then f = 3;Q where Q = Q(z) has
period 1 and the equation (1.6) has the energy integral

%:i:2 - Q(z) = E, E = const,

from which it follows that 22 < 2( E+ max Q) is bounded. But if f depends on ¢
it is conceivable that the pendulum gets pumped up so as to rotate faster and faster
about its pivot. To some degree this is indeed the case, however, we will see that
the velocity |z| is always bounded. The key to the proof is the construction of
quasi-periodic solutions of the form

(1.7 z(t) =U(t,at,))

where U (t,0) -8 € C*(T?), 3,U > 0, and a is an irrational number. Of course,
the equation is the special case of (1.1) obtained by setting n = 1 and replacing
z,ubyt, z.

We will show that solutions of the type (1.7) always exist for certain irrational
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o which are sufficiently large. This illustrates the principle that for sufficiently
large frequency ratios resonances become harmless and stability prevails. For the
special case f = p(t) — sinz this problem has recently been studied by M. Levi
[11].

The third example is a discrete version of (1.6): we consider a sequence of
real numbers zn,n € Z satisfying the difference equations

(1.8) Tpi1 = 2Zn + Zn_1 = f(2n)

where f € C*(S') has period 1 and mean value zero. This sequence is related
to the area-preserving mapping of the torus T? = R? /7?

(1.9 ¢:(z,y) > (z+y+ f(z),y+ f(2)).
We view ¢ as a discrete dynamical system and denote an orbit by ¢"(z,y) =
(zn,yn). By eliminating yn one sees that the zn of an orbit satisfy (1.8) and,
conversely, that any solution of (1.8) gives rise to an orbit (zn,yn) With yn =
Tn—z,_3. One may be tempted to view (1.9) as an approximation to the Poincaré
mapping

(2(0),2(0)) — (=(1),2(1))
of the differential equation (1.6). For small f this may be justified but we will
see that, generally, (1.6) and (1.8) have very different behavior. For example, in
contrast to (1.6) there are sequances {zn} satisfying (1.8) for which the sequence
Yn = Tn — Z,,_1 is unbounded. This is the case even for

(1.10) f=Asin2rz

if A is large enough. According to the work by Mather [4] it suffices to take
A > 2/3r. The mapping ¢ corresponding to the choice (1.10) is sometimes
called the “standard mapping”; it has been studied extensively, using analytical
as well as numerical approaches.

In this expository article we want to illustrate the results of a more general
theory of minimal foliations with some typical examples. This theory (see [8])
refers to more general differential equations and, more importantly, contains also
a study of weak (i.e. discontinuous) solutions.

In section 2 we describe the connection with mechanics which is standard
except for the fact that we consider the singular limit || — co. The situation can
be handled particularly easily with the present approach in configuration space; in
the appendix we supply the connection with the theorem on invariant curves for
a twist mapping. The main results are contained in Section 3. The discussion of
the difference equation (1.8) in Section 4 is based on the work of Mather [4] and
contains nothing new. Finally, in Section 5, we show the effect of symmetries on
the existence of quasi-periodic solutions.
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2. The stability of the Pendulum

Quasi-periodic solutions can be used to answer the question posed for the example
2, i.e. to show that for any solution z = z(t) of (1.6) one has sup, |z(t)| < oo.
More precisely, we will show that for any large positive number N there exists
a number M = M (N), such that any solution z(t) of (1.6) with |z(0)| < M
satisfies |z(t)| < N for all ¢ € R. We will call, for short, the system stable in this
case. In particular, the nonlinear pendulum is stable in this sense. To be sure,
this stability statement does not refer to the equilibrium z = O but to a fictitious
state with z = +oo.
To show this we write (1.6) as a system

z=y,

y= f(t> :1:)
which we consider as a vector field on T2 x R. Let ¢* denote the corresponding
flow taking (t,z(t),y(t)) into (¢t +s,z(t+s),y(t+s)). If Qa =T x [, +qf
we have to show that
(2.2) J¢* () c Qn for some N = N(M).

38

(2.1)

Assume now that we have a quasi-periodic solution of the form (1.7) with U
satisfying
(2.3) (8: + ady)*U = f(t,U)
and consider the mapping

(t,6) - (t,2 = U(1,8),y = (3; + ady)U)
as an embedding of a torus in T2 x R. We denote this torus by Aq. On account
of (2.3) the vector field (2.1) is tangential t0 Aq, hence ¢¥(Aa) = Aa. Such an
invariant torus can be used to obtain bounds for |y|. Indeed, if
my =min(d; + ady)U, my; = max(9; + ady)U
onc has
Aa [ T2 X [ml,mz],

and any solution (¢,z(t),y(t)) of (2.1) with y(tg) < my for some ¢, satisfics
y(t) < my for all ¢t € R. Indeed, otherwise the orbit would pass from one side of
A to the other which is impossible since A is invariant under the flow.

Therefore, to establish the stability of (1.6) we have to prove the existence
of such invariant tori Aq in T% x [M, +00) and T? x (—c0,—M] for any M > 0.
This corresponds to finding quasi-periodic solutions for arbitrarily large || and
this is precisely what we will do next.
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3. An existence Theorem

First we show that the condition (1.2) is necessary for the existence of a solution
U of the problem (1.5). For this purpose we note that any periodic function
f € C°°(T™*1) can be written in the form

@3.1) f(Z) = 0204, Q (%) + Aq(2) + f

where f is the mean value of f and Q € C*(T™*1), ¢ € C*(T") are both
periodic functions of period 1 in its variables. For the proof we assume f = 0;
then the function

9@)= [ 1z,

has the mean value zero and therefore can be written in the form g = Ag with
g € C(T"). Integrating f(z,z,41) — g(z) with respect to z,,; we obtain a
periodic function Q(Z), proving (3.1). Thus the differential equation (1.5) can
be written in the form

n
Y DU -q)-Qu(z,U)-f=0,
v=1
Dy — 3:,, + ayazn+l.
Multiplying this expression with Uz, +1» Which we abbreviate. by U’, we obtain

52 DU DU - ) - O { LY 0w -ar+ Q(z,v)} ~Ju'=o.

v=1 v=1
Since DyU, 0z,,,U = U’ € C*(T™*1) are periodic we obtain by the divergence
theorem after integration over T*t1,
~f U'dZ=0
Tn+1

By (1.5i) the integral is equal to 1 showing that the condition f = 0 is indeed
necessary for existence of quasi-periodic solution of the above type.

Moreover, the above decomposition shows that one can reduce our problem
to the case

(3.2) f =0204,Q(2,2n41), Qe€C®(T™)
by replacing U by U + gq.

Before formulating the relevant theorem we consider the case of small nonlin-
earities f. If f =0 the solution of (1.5) is given by U = z,,,; up to an additive
constant. Therefore we will have to require that the linearized equation

Z D121¢ =g, Dy=0z + avazn.H
v=1

is solvable for any smooth and periodic g of mean value g =0, i.e. for all
geCR(T) = (e C=(T™]), ¥ =01,
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Moreover, we will assume that the solution ¢ € C*(T™*1) is unique up to an
additive constant, i.e. that the operator

n
(3.3) L=)_Di:Cg(T"t) - (™)
v=1

is bijective. It is remarkable that this condition on L is sufficient for the solv-
ability of the perturbation problem of the nonlinear equation (1.5) (see Theorem
1, below). One has to keep in mind that L is not an elliptic differential oper-
ator on C*(T™+1) since it involves only tangential derivatives on the foliation
ZTp+1 — @ -z = const. As a matter of fact, it is an elliptic operator only when
restricted to these leaves.

Lemma. The operator L given by (3.3) is bijective if and only if the o =

(a1, 2,... ,an) satisfies a Diophantine condition
n
(3.4) E(avjn-i-l = jV)2 2 051(1 oo .73-}-1)_7
v=1

for some positive constants cqy,r and for all
;: (jlaj2a % % :jn+l) € Zn+1\(0)'

Proof. The space X = C$°(T™*1) is a Frechet space whose topology can be
described by the Sobolev norms

1/2
e A 12
(3.5) ||¢||,=(_Z J 4’7’) )

where

Since L is bijective we conclude from the open mapping theorem that L~! is
continuous; in particular, there exist positive constants 7, c; so that

n

2

(3.6) I¢llo < exllZéll,, = e > [ Dol
v=1
which is equivalent to the condition
-2 n
(3.7) M " <edn? 3 (G — awgnra)?.
v=1

These inequalities imply the seemingly stronger inequalities (3.4) with ¢y =
max{2,4n%¢;(2|a|? +1)7}. Indeed, if |_7'|2 > 2|a|?52Z, ;41 then
n
i z 1,.2 ; 1
> U —avjns1)? 2 53| - lal’si1 2 5

v=1
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and (3.4) is trivially satisfied; and if |5|® < 2/e|?52,; + 1 then
= 2 .12 o o
3" = 31" + 321 < @Il + )2 + 1)
so that (3.7) implies (3.4) with ¢ > 4n2c; (2]al? +1)".

On the other hand, the condition (3.4) implies that the mapping L: X — X
is a bijection as one sees readily using Fourier representation. This proves the
lemma.

As we pointed out L is not an elliptic operator; but if it is bijective it behaves

like a “subelliptic” operator with a certain derivative loss, in the sense of (3.6).
The condition (3.4) also leads to an estimate for the quadratic form

3.8) (L) = | Dvd|3 > c5t4n?| 4|,
v=1

where

@9)= [ ¢@(@E)

and ||¢||_, is the norm (3.5) for negative r = —r; in the elliptic case one would
have such an estimate for r = 1.

It is surprising that the bijective character of L leads to a Diophantine condi-
tion. For n = 1 it means that « should not be a “Liouville number”. This is an
irrational number a for which there exists a sequence of distinct rationals ps/qs
such that

|gsc — ps| < ¢5 “* where ws — oco.
For n > 1 the condition (3.4) means that the numbers oy, g, ... ,an should not

admit simultaneous approximation by rationals with the same denominator, i.e.
it should not be possible to find a sequence of rationals pys/qs such that

=)
m;lx]q,ay —Prs| < g5 °, ws > 00

holds. In this case some o, may be rational and it suffices that just one component
is not a Liouville number (but this condition is not necessary). Almost all vectors
a € R satisfy (3.4) for some constant ¢ if 7 > o

Now we consider the nonlinear operator
3.9 E(U)=LU - f(z,U)
and look for a solution of E(U) = 0. Here we consider L = Y-0_, D% also
defined for arbitrary C'*-functions. The main result is that E(U) admits such
a solution if it has an approximate solution U* for which E(U*) is sufficiently
small and if L is a bijection on Cg (T"*1).

Theorem 1. Let the operator L on X = CL(T™*!) be a bijection and U*
a function satisfying (1.5i) and (1.5ii) and let € > 0. Then there exists a
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neighborhood N of 0 in C*®(T™*) such that, if f € CP(T"!) has the

property

(3.10) E(U*)=LU* - f(z,U*)e N

then there exists an exact solution U of E(U) = 0, satisfying
U-U*eC>(T"), U-U*

o

The smallness condition (3.10) depends on a, U* and ¢; it is to be considered
a condition on f. We illustrate the result with the choice U* = z,,,; which is a
solution of LU* = 0. Hence (3.10) requires that

feNaoEETY,

and in this case the theorem guarantees the existence of a solution of the nonlinear
equation. More generally, we conclude that the set of f € Cg(T™*1) for which
a solution of (1.5) exists is an open set.

For the following we need a sharper version of this theorem in which the
smallness condition is independent of «. Assuming that cg,7 are given positive
numbers we consider the set (Diophantine condition)

DC(cg,7) = {a € R" satisfying (3.4)}.

For 7 > % this set is nonempty if ¢q is large enough.

Theorem 2. Let cq,7 > 0 be given and a € DC(co,7). Then there exist
integers a = a(r,n), b = b(r,n) with the following properties: Let e, M be
positive constants and U* a function satisfying (1.51), (1.5ii) and

Ozn U > ML, |U* = 2piq|pa < M.
Then there exists a positive § = §(co,7,n, M,€) such that the inequality
(3.11) |E(U*) ot S 8
implies the existence of a solution U of E(U) =0 with U - U* € C>(T"*1)
and

u-u

b % &

This result is sharper than Theorem 1 in several respects: The quantity é is
independent of a. Moreover the smallness condition (3.11) depends only on a
finite number of derivatives, where b is also independent of «. If we apply this
theorem to U* = z,,,; again we can assure the existence of a solution if

Wl <6 decs (704,

We apply this theorem for large frequency vectors «. For this purpose note
that the condition (3.4) is invariant under the translations a« — o + Z%", i.e. if
a € DC(cq,7) then also a+ k € DC(co,7) for all k € Z™.
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Corollary. Let cy,r be given such that DC(co,7) # D, and let f € C(T™1).
Then there exists a large constant A = A(co,,n) such that for
a € DC(cp,7), |la| > A
the equation
LU = f(z,u)

possesses a solution U = U (%, a) satisfying (1.5) and
U - 2n41=0(la|™?)
DU -y =O(lof ™), Ozny U -1= O(lal™)

The advantage of this corollary is that no smallness restriction is imposed
on f; it assures the existence of quasi-periodic solutions for any equation (1.1)
provided f satisfies (1.2). Of course, the smallness condition is hidden in the
requirement || > A. To show that this corollary follows from Theorem 2 we
construct an approximate solution U* of E(U*) ~ O for large |c|. Considering

ay0z,,, as the dominant term in D, we determine U* as the solution of the
ordinary differential equation

Ialzagn.,.; U* = f(x: xn+1) = a=l=n+1Q(-E)
where we assume, without loss of generality, that f is in the reduced form (3.2).
Let Z(z,2n4+1) be the periodic function satisfying 8%, Z = f(z,Zzp,,) then
we set

(3.12)

U* =2py1+ o722
Then one finds
LU*=8%,..Z+0(la]™) = f(z,2p41) + O(j ™)
hence
E(U*) = f(2,2n41) - f(2,Zn41+ | 722) + O(je|™!) = O(la|™Y).

also
azn_'_lU‘ =1 + lal_zazn+lz > %
|U* = xn+1|ga = 0(|a|_2)

and by making || large we can achieve |E(U*)|,, < & proving that the corollary
follows from Theorem 2.

Note that for n = 1 this corollary provides the proof of the existence of a
quasi-periodic solution U = U(t,z) with (8; + adz)U = a+ O(|e|™!) and
therefore the existence on invariant tori Ao for which y = a+ O(|a|™!) is large.
This is what was required for the stability proof for Z = f(t, z), which is therefore
completed.

The idea to obtain bounds for the solution near infinity, here near y = +o0, by
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constructing invariant tori near infinity can be used in many situations. Such an
approach was employed by Dieckerhoff and Zehnder [2] in a more subtle situation
to prove the boundedness of the solutions of a nonlinear Duffing equation, and
for the present situation by M. Levi [11].

The proof of these theorems follows a standard pattern of rapidly convergent
iterations and is rather technical. Therefore if can not be described here but the
details can be found in [9]. Here we will just explain why it suffices to impose
conditions of invertibility on L, the linearized operator for f = 0, and not on the
linearized operator

E'(U)V =LV - fu(z,U)V.

Here one can assume that E(U) is small, and we will simply take U to be a
solution of E(U) = 0. The answer is related to the observation that our differential
equation is invariant under the translation Ty:U(Z) — U(Z + Aep41), A € R.
Therefore if E(U) = 0 then also E(T)\U) = 0, hence

0=3EMU)| =LU - fulz,U)U' =0
dA A=0

where U’ = 0z,,,U > 0. Therefore eliminating fu, we obtain, with W =
()=
E'(U)WV =LV - (LU"YW = L(U'W) - (LU")W.

Multiplying both sides by U’ it is easy to rewrite this differential operator in the
form
n
U'(E'(U)U'W) =" D,(UD,W) = LW
v=1
where L is defined by this equation. If U’ > M ! one obtains for this operator
L similar L2-estimates as for L: indeed,

n
~(Iw,W) > M7 3 | DW g = M~HIW, W) > M~%c5 4n? W ||,
v=1
from (3.8). By this simple trick, which was noted by S. M. Kozlov, one reduces
the estimates for E'(U) to those of L. Similarly, one obtains estimates for higher
derivatives as they are required for the convergence proof.

These results depend strongly on the translation invariance of E: Eo T, =
T, o E, and therefore one can not expect to prove this way that the mapping
U — E(U) is locally invertible, as it is proposed in Hamilton’s work [3]. Aside
from this technical point his results can also be adapted to this situation.

Finally, we want to point out that (3.12) can be considered as the first terms
of an asymptotic expansion for U in negative powers of a, which can easily be
computed formally. However, such expansions diverge in general and it would



v JURGEN MUSER

be desirable to adapt this method to establish the asymptotic character ot these
expansions.

4. A difference equation

We tumn to a brief discussion of the third example (1.8). If « is not a Liouville
number and f € C§°(T?!) is small enough one can show that there exist quasi-
periodic sequences of the form

zn = u(na+ 6p)
where u(f) — 8 € C(T?!) and d4u > O satisfying the equation (1.8). For this
the function u has to satisfy the difference equation
(4.1) u(0+ a) — 2u(6) + u(6 - a) = f(u(9))
which is the analogue of (1.5iii). Any solution of (4.1) gives rise to an invariant
curve of the form

(4.2) z=u(f), y=u(f) -u(d - o)
of the mapping ¢ given by (1.9). This statement about the existence of such u
for small f is the consequence of the KAM theory (see [6]) but could also be

proven in the same way as Theorems 1 or 2. Here we are more concerned with
the non existence of such solutions of (4.1).

Le us indicate the dependence of u on « and write u = u(6, ). Because of
the condition u(@ + 7,a) = u(6, ) + 7 it is evident that if u(f, ) solves (4.1)
for « then also for a + 7 and we can take u(f,a + 5) = u(f,c). Hence with
(4.2) one has also infinitely many invariant curves

z=u(f,a), y=u(,a)—u(l —j-c,a)~J
for large 5. Hence we obtain closed invariant curves for arbitrarily large y if we
have only one such invariant curve. Conversely, if we have no invariant curves for
0 < a < 1 then we have no invariant curve at all. In this respect, the difference
equation differs radically from the corresponding differential equation.

From this it follows that, if f is small enough, then the mapping is stable,
and sup |yn| < oo for all orbits. In particular, the standard mapping is stable for
small |A|.

On the other hand from the work of Mather [4] it follows that for f given

2
by (1.10) and for A > =

the mapping is not stable. This means, that if Qps = {(z,y) €R?,|y| < M} is a
given strip there exists no strip {1 containing U,>o@"(Qs, Where ¢ is given by
(1.9) with f = Asin2nz.

there are no such invariant curves, and, moreover, that
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Indeed, otherwise the set U,>o@"(lps C Qpn for some N would be a set
invariant under ¢ and the translation (z,y) — (z+1,y). By a theorem of Birkhoff
for such twist mappings the boundary of such invariant sets contains invariant
curves given as the graph y = w(z) = w(z + 1) of a Lipschitz function w.
Mather showed [4] that for A > -— such functions do not exist. To be sure, these
invariant curves need not be smooth and are not of the nature described above. But
they are related to non-smooth, even discontinuous monotone solutions of (4.1)
which always exist. In any event it follows that a) for such f no smooth solutions
of (4.1) exist even if « is not a Liouville number, and b) that the mapping ¢
is not stable in contrast to the stable behaviour of the differential equation (1.6).
The reason for this discrepancy is that for large « the solution of (1.6) can be
approximated by those of Z ~ O while the orbits of ¢ belonging to « have the
same behavior as those for a— 7,7 € Z, e.g. a—[a] € [0,1], [a] being the integral
part.

5. Symmetries

The question whether or not the above equations have quasi-periodic solutions
is evidently quite subtle and depends on Diophantine conditions. Although the
above corollary guarantees the existence of quasi-periodic solutions of (1.1) for
sufficiently large o satisfying (3.4) one can construct f € C§°(T?) such that
(1.6) has no quasi-periodic solutions for any « in a given compact set (see [7]).
Bangert [1] gave interesting examples of partial differential equations of this na-
ture, however these equations have a more general form than (1.1). Therefore for
a given « satisfying (3.4) the set of f € C$°(T™*1) admitting a solution of (1.5)
is not empty and open but certainly not all of C$°(T™*1). One can expect that
the Diophantine conditon (3.4) is necessary for the openness of the set; for the
analogue monotone twist mappings such results were proven recently by Mather
[5] but, again his systems are more general than the ones considered here.

Thus the existence of quasi-periodic solutions for all « can occur only for
special functions f, and we want to describe such situations now. Clearly, if
f does not depend on wu, i.e. the system in invariant under v — u + A, then
(1.1) possesses quasi-periodic solutions for all a. This statement is trivial, since
then the differential equation (1.1) is linear and there exists a periodic solution
q(z) € C(T") of Agq= f(z) and

U(E) =ZTni1 + q(:t:)
is a solution of (1.5). In fact, in this case all solutions with linear growth have
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the form
u(z) =U(z,a-z+ X)) =a-z+ X +¢(z)

as one sees from Liouville’s Theorem.

We consider another symmetric situation, namely the case where f is indepen-
dent of z;. In this case the system is invariant under the translation Z — Z + Ae;
and in this case there exist quasi-periodic solutions for all a € R™ with a; # 0,
regardless of Diophantine conditions.

For n = 1 this statement is evident since in this case Z = f(z) is autonomous
(t corresponds to z;) and possesses an energy integral. All solutions of this
equation with o # 0 are periodic with period a~!. This argument fails, of course,
for partial differential equations, but using the theory on minimal foliations (see
[10]) one can argue as follows: Without loss of generality we assume that fis of
the form (3.2) so that (1.1) is the Euler equation of the variational problem

F(u) = / {%luﬂz—i—Q(x,u)}dz.

According to that theory there exists for any o € R® a “minimal without self
intersection” u of this variational problem for which sup |u —a - z| < co. Here
“minimals” are functions in C}, for which

/;n {%lih; +¢z|2 +Q(z,u+ ¢) - %luzlz —Q(x’u)} dz

holds for all ¢ € Cclomp(R"), thus minimals form a special class solutions of Au =
Qu(z, u). One says u has no self intersections on T**+1 if u(z +5) — 5,41 — u(z)
does not change sign for any choice of (7, j,+1) € Z**1. These minimals without
self intersections play a distinguished role here, since every quasi-periodic solution
of the form (1.3) with o ¢ Q™ has this property.

In the special case Qz, = 0, a; # 0 one can show that for a minimal u
without self intersection with sup |u — & - z| < co one has

u(z+ayle) =u(z)+1, uz, >0
and, moreover, that for all a with oy # 0
Ul#,2n41) =u (z+ z"—ﬂa—a—'xq)
1
is a solution of (1.5).

The proof, which can not be given here, follows rather simply from the theory
referred to above. We mention this result since it illustrates that the destruction
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of quasi-periodic solutions is related to the destruction of symmetries.

Appendix

Here we give an alternate proof for the stability of the equation (1.6) by using the
existence theorem for invariant curves for area-preserving twist mappings [6]. It is
based on the idea that for large velocities £ = y the system with the Hamiltonian

%yz - Q(t,:l:)

has solutions which are close to those of the integrable system with the Hamilto-
nian Eyz' For a differential equation

(A1) &= Q:(t,z); Q € C=(T?)

one usually considers the Poincaré map of the section ¢ = 0 (mod 1) in the three
dimensional phase space T2 x R with the coordinates t,z,#. This was indeed
done in the paper by Levi [11]. But since we are interested in orbits with large
& ~ a we choose to use the section £ =0 (mod 1). As the remaining variables
we use the rescaled energy and the time:

r= (3 - Q)
0=t

where 4 > 0 is a small parameter to be taken of the order a~; here o will be
the rotation number

(A.2)

tlim z(t)/t
of the solution to be determined. We restrict ourselves to the fixed annulus

%5r53, 6 (mod1).

The first variable r is proportional to the Hamiltonian of (A.1) and t = 6 is

its conjugate. Therefore, the equation can be written in canonical form
db

=== K. (z,0,r;7);
dr _ )
E - —Ko(.’t,g,f,’j)

where
K(z,0,r;7) = 1v2(r +77Q(8,2))/* = 1v2r + 0(+%).
This can be verified by a direct calculation.
For small v we have
0'=5(2r) 2 +0(+%), r' = O(1*)
and integration from z =0 to z = 1 gives .
(A3) B = B+ ~(20) Y2 L O(~3): v, = ra + Of~3)
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where 0; = (1), r; = r(s) fori = 0,1, ... . Moreover, since K is a single valued
function the mapping (6o, 7o) — (61,r1) of the section z = 0 (mod 1) is exact
symplectic, i.e. preserves
1
/ r(6)d6
0

for any closed curve r = r(6) = r(6 + 1). In particular, it has the intersection
property of [6]. We will apply the theorem proved there to find invariant curves
of the mapping (A.3) for small values of «, and with rotation number

1

. 0 .
w= lim -2 =iazl:
n—oo N

Note that the change of section leads to a change of rotation number: Since

lim z_(tl —a
t—oo L

it follows that for t = 6, z(6s) = n
bn 1

— - a .
We assume that « is large of order v~1 > 1 and satisfies (3.4) which reads
in this case
(A4) lep— gl 2 ¢™Ip™7; ae (v, 2y7Y)

for all rationals ¢ /p. This condition implies for w = o1 and all rationals r/q,q9 >
0

(A.5) wg -7l > 7 wlg ™ 2 5907, we (3y,9).
Indeed, if |pa| > |g| + 1 one has |ap — ¢| > 1 and for lpal < |q|+1 < 2q (A.4)

implies |ap —q| > c;'q™7 for all ¢ > 1, if ¢y > c(]%I)T. Hence, in both cases
(A.4) implies

lap —q| > c;1¢7;

dividing by |a| we get (A.5).
The condition (A.5) is precisely the small divisor condition required in [6].
Moreover, the interval

(r(2n) V2, 2 <ray

over which the twist ranges contains the interval [37,7] in which w lies. Therefore
by the theorem of [6] there exists an invariant curve r = #(8) = ¢(6 + 1) in this
annulus, provided ~ > 0 is small enough.

The orbits starting on this invariant curve are given by quasi-periodic solutions
6 = 6(z) with frequencies 1 and w or by quasi-periodic solutions z — z(t) with
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frequencies 1 and o = w™!. This concludes the alternate proof.
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