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Quantum groups
L. D. Faddeev

Abstract. An elementary introduction to the notions of the quantum Lie Groups and quantum
Lie algebras is given. The approach is based on the fundamental commutation relations which
appeared first in the quantum inverse scattering method.

1. Introduction

A new mathematical object, called Quantum Group appeared as an abstraction
of the development of the theory of quantum integrable dynamical systems. In
this paper I shall first present the formal motivations and definitions of this notion
and after this describe its connections with integrable models. In the end I shall
comment on possible new applications of quantum groups.

2. Main Results
The theory of classical Lie Groups is intimately connected with the theory of

matrix algebras. Given a family of matrices T' = ||T||, ¢,k = 1,... ,n, we
have the operation of multiplication
¢)) (T'T")a = D _Ti;Tji

J

and the action in the linear space of vectors X = (z;)
(Tz); =) Tipzy-
k

The idea of quantization (or in more mathematical terms deformation) consists in
taking the matrix elements T}; and vector components z;, as g-numbers (elements
of an associative algebra) in such a way that these formulas still make sense.

In more details, let us impose on the generators T}, some commutative rela-
tions such that if Ty, and T} are two commuting exemplars of these generators,
then (T'T");; as defined by (1) also satisfy them. Furthermore, the relations are
to be imposed on z such that (T'z), also satisfy them, if T}, and z), commute.
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We shall deal mainly with the first requirement, which is basic for the defi-
nition of the quantum (matrix) group itself. We shall write the relevant relations
with the hope, that their naturalness will be evident. No claim will be made that
they are the only possible relations suitable to our goal.

The relations look most elegant if one uses matrix notation. Let V' denote the
vector space in which the classical matrices T act (say, V = C™). Given a formal
matrix T' of generators Tj, we form two matrices

T'=Tel, T,=10T,
associated with V' ® V. With these notations the relations look as follows
(2) RT\Ty =TyT1\R,
where R is a C-number matrix acting in V @ V.
The main requirement can be easily checked:
RT{T{'T;Ty' = RT{Ty,Ty'T; (using the commutativity of 7" and T")
=T3TiTyT{ R (using the main relation)
=T3TyTiT{'R (using the commutativity once more)
The main relations, presented more explicitly in terms of the matrix elements
T look as follows

Z RixipgTomTon = Z TpTiq Rgpmn
P P
where the structure constants Ry, are the matrix elements of the matrix R

written in a natural basis in V @ V.

The main relations, being quadratic in generators, could lead to the new ones
of higher order. Indeed, consider the product T, T,T3 in V@V @V and compare it
with T3T, Ty using the main relations. There are two ways to make the necessary
commutations in correspondence with the following scheme

— (213) — (231) -
™ (132) — (312) 7
More explicitly we get the relations
Ry3Ri3 Ry T1ToTs = TsT2 Ty Res Ri3 Ryg
and
Ri2Ri3 Rps Ty T5Ts = T5T2 T1 Ria Ris Ras
with the evident notations: R;; is a matrix in V @ V @ V' acting as R in the first
two spaces and as a unit matrix in the third one, etc.

The relations obtained could be new independent cubic relations on the gen-
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erators T;,. However, if we require that the structure constants Bk |mn satisfy the
property, written in short notation in the form

(3) Ry R13R23 = Ry3 Ri3 Ry,

then no new relations appear. Moreover, the general theory of categorical consid-
erations show that the higher commutations also do not produce more relations.
So in what follows we shall require that (3) be satisfied, thus supplementing the
definition on the quantum matrix algebra.

The relation (3) appears in several physical situations. If we consider the
matrix R as a two-body scattering matrix, then relation (3) means that the scat-
tering in the three-body system is multiplicative and does not depend on the time
ordering of the two-body collisions. In the vertex models of classical statistical
physics R;i ., can be considered as the Boltzman weights on the vertices. The
relation (3) then allows the exact solution of the corresponding model.

However relation (3) also has a well known mathematical meaning. Introduce
a matrix R as follows

R=PR,

where P is a permutation matrix in V @ V

Pla®b)=b®a,
or in terms of the matrix elements

}zik|mn = Rkt']mn'
Then relation (3) will take the form

Ri3Ry3 Ryy = Ry3 Ryg Ry,

recognizable as the main relation in the theory of braids. The relation between
braids and the deformation of classical groups is one of the unexpected aspects
of this development.

In our formulation of the quantum inverse scattering method, based on the
quantum version of the Lax equation

(4) ¢n+1 =Q"¢n
we impose the commutation relations on the matrix Q™ of its coefficients
RQ1Q? =Q3Q1R
RIQT =Q7QT, n#m,
with a suitable matrix R. Relation (3) holds for these R. The fundamental
commutation relation (4) leads to the same relation for the monodromy matrix

T=Q"..Q!

of the ecmatinn (AY  Thne in tha rancrate avamnlac Af tha ananfiim infaceakla
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models we have already used the explicit realizations of the quantum matrix
algebras.

In our investigations, revealing the universality of relations (2) and (3), we
have called the relation (3) the Yang-Baxter equation, having in mind the most
prominent users of it in scattering theory and statistical physics, correspondingly
(besides of Mc-Guire, Berezin, Brezin and Zinn-Justin, Zamolodchikov, or Lieb,
Gaudin and others). On the other hand, the fundamental commutation relation (2)
appeared first in the quantum inverse scattering method and subsequently has led
to the invention of the notion of quantum group.

In all physical applications mentioned above, the matrices 7' and R depended
on a complex parameter A — rapidity in scattering, combination of the thermod-
inamical parameters in statistical physics, spectral parameter in the inverse scat-
tering method. The Yang-Baxter relation in this case looks as follows

Ry3(A = p)Rys(A = 0) Rys(p — 0) = Raz(p — 0) Rys(A — o) Ryp(A - p),
or, after a trivial change of variables

Ry3(z) Ris(z + y) Ry3(y) = Raa(y) Ris(z + y) Raz(y)-

The work on concrete integrable models produces an impressive list of ex-
amples of R-matrices. In particular, a series of R-matrices, corresponding to
any classical Lie algebra was constructed. The parameters in this list are the
Lie algebra, its representation and 0,1 or 2 the so called anisotropy parameters.
Depending on the anisotropy, the variable A runs through the complex plane C,
the cylinder R x S! or the torus T2. For the theory of the quantum groups the
most interesting case happened to be that of the cylinder. In this case the known
R-matrices admit a nontrivial limit when z — +oo. The limits

Ri= zl}rinoo R(z)
evidently satisfy the relation (3). Taken as the structure constants for the main
relation (2) they produce the examples of quantum deformations of the classical
Lie groups. The anisotropy parameter remains in R and define the parameter of
deformation.

It is now time to give an illustrative example. For the spin 1/2-representation
of the SL(2) group, the known matrix R looks as follows

q 0O 0O

0 1 00
(5) R=

0 ¢g-%1 1.0

0 0 0 ¢

where ¢ is a complex number.

If we use the traditional notation for the matrix elements of a 2 x 2 matrix
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=z §

the relations (2) will be realized as follows (only 6 out of 16 are independent)

ab = gba
ac = qca
db=Lsd
(6) H
B
q
be=cb
1

ad—da=(q- a—)bc.
It is easy to check that the g-determinant
dety T = ad — qbc
commutes with everything. Imposing the condition
) det, T =1
we obtain the quantum group SL¢(2). In particular we have the definition of 71,

namely
1
T—l - < d _Eb .
—qc a

In this case the corresponding quantum linear space is easily introduced. In-
deed, the relation

T1Ty = 4227

is conserved after the action of the matrix T' with the relations (6) on a vector X
with components z,,z, (of course a,b,¢,d and z;,r, commute).

Another example is given by the triangular 2 x 2 matrices. Writing them in

the form
1
o (e ()

0 q—H+/2

or

g H-/2 0

£ == ((%—q) X qH_/Z) )
and requiring relation (2) to hold for the matrix (5), we come to the relations
(8) [Hy, X4 =2X4
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and

) [H_,X_]=-2X_.

Less trivial is the fact, that we can impose the condition
(10) RETLy =L; LiR

after identifying

(11) H,=H_=H.

The new relation implies

(12) Xy, X-] = — (e —e7H).

1
Wy
The relations (8,9, 11,12), evidently give a deformation of the Lie algebra of the
group SL(2).
The generators a, b, ¢, d with relations (6) and (7) and the generators X, X_,
H with relations (8,9,11,12), generate the associative algebras Fung(G) and
Uq(g) which can be considered as the g-deformation of the algebra of functions
Fun(G) on the group G = SL(2) and the universal enveloping algebra U(g) of
the Lie algebra g = sl(2). Both these algebras admit a Hopf algebra structure
with a formula of type (1) giving the corresponding comultiplication. Moreover
the natural duality of Fun(G) and U (g) is conserved after the deformation and
in terms of the generators assumes the form

(L*,T) = R®)
where
Rt*=PRP RG)=R1

The example presented above can be generalized to all classical groups by means
of the relevant R-matrix and Borel structure. The formulas (2), (10), (13) are
universal.

The g-deformation lifts some degeneracy of the algebras Fun(G) and U (g).
Indeed while Fun(G) is commutative and U(g) cocommutative, the algebras
Fung(G) and Uy(g) are both noncommutative and noncocommutative. Moreover,
the algebras Fun(G) and U(g) become more similar after quantization. With a
natural definition of the quantum homogeneous space one can say that

Uq(9) = Fung(G* x G~ /H)
where Gt and G~ are Borel subgroups and H Cartan subgroup.

Let us give several historical comments and a short guide to the existing
literature. The relation (2) as the main formal ingredient of the quantum inverse
scattering method as devised in Leningrad was introduced in [1], [2]. A survey of
the method and its connection with the classical method as presented in [3] can be
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found in [4]. The relations (8,9) and (12) first appeared first in [5] (see also [6])
and subsequently were the origin of the general definition of the algebra Uy(g)
in [7] and [8]. The term “quantum group”, and its Hopf algebra interpretation
were introduced in [9]. The list of R-matrices, relevant for the quantization of
the classical Lie groups, can be obtained by taking the limit £ — +oco of the
trigonometrical R-matrices found in [10], [11].

The approach taken in this note and amplifying the universal role of the
relations (2) and (3) was given in [12] and will be systematically presented in
[13]. A more general, though maybe less developed, view of quantum groups
was recently given in [14].

The theory of quantum groups still has not shown its full power. Its relevance
to the theory of knots and links is already clear (see [15] and references therein).
Recently, the promising applications to conformal field theory were indicated in
[16], [17]. Its usefulness in combinatorics is illustrated by [18], [19]. However
we consider all this to be only a beginning.

The deformations of algebraic structures played a most important role in the
development of our understanding of the structure of matter in our century. Indeed
the passage from Galilei relativity to that of Lorentz as well as the transition from
classical to quantum mechanics are nothing but deformations. Morcover these
are deformations of unstable structures into stable ones. Both are associated with
the dimension parameters C' and h. With these historical examples in mind one
cannot help speculating that the new deformation, found in the (almost) pure
mathematical development will find its main application in the future theory of
matter.
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