= Bol. Soc. Bras. Mat., Vol. 20, No. 1, 55-59
i (© 1989, Sociedade Brasileira de Matemdtica

L ==
DA SOCIEDADE BRASILEIRA DE MATEMATICA

Some Galois groups over number fields

Walter Feit

Abstract. Some conditions are stated which imply that certain finite groups are Galois
groups over some number fields and related fields.

1. Introduction

Let K be an algebraic number field (i.e. [K:Q] < oo) and let ¢ be an indeterminate
over K. An algebraic extension L of K (t) is regular if K is algebraically closed
in L.

Let G be a finite group. In this work I want to discuss the question of when
any, or all, of the following assertions are true.

(1.1) G is the Galois group of a regular extension of K (t).

(1.2) There exist infinitely many fields E; with K C E; C K such that
Gal(E;/K) ~G and E;nE; = K for i # j. (Here K is an algebraic
closure of K).

(1.3) G is the Galois group of an extension field of every number field which
contains K.

(1.4) G is the Galois group of an extension of K.

In this sequence each assertion implies the next. The first implies the second
by Hilbert’s irreducibility theorem, the other implications are straighforward.

Observe that if any of the assertions (1.1)-(1.3) is true for a field K then it is
true for any finite extension of K. Thus in each case the strongest statement is
the case K = Q.

There is no finite group for which any of these assertions is known to be false
for K = Q. In recent years much progress has been made in proving some or
all of these assertions for a variety of finite groups. The object of this work is to
discuss some of these results. An excellent survey of these topics can be found
in [11]. For a more detailed treatment, see [9].
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2. Rigidity and some consequences

Rigidity and related concepts and their connection with the construction of Galois
groups are due to Belyi [2], Fried [5], Matzat [8] and Thompson [13]. T will state
only a special case of their results here.

Let Cy,C,,Cs be conjugacy classes of the finite group G. Define
A =Ag(C1,C;,Cs) = {(z1,73,23) | 2; € C;, T 7923 =1).
Q(C1,C2,Cs) = (Q(xn(=:))11=1,2,3;, n=1,2,...},
where {xn} is the set of irreducible characters of G.

If y € G and (z,z3,73) € A then (zf,2%,2%) € A. Thus G acts as a
permutation group on A.

Definition. A= Ag(Cy,C,,Cs) is rigid if
(i) A#0Q
(ii) G acts transitively on A
(iii) If (z1,22,73) € A then G = (zq, 24, 73).
If in addition Q(Cy,C,,C3) = Q then A is said to be rationally rigid.

Observe that if A is rigid then G acts faithfully on A if and only if the center
of G is (1).

The next result shows the relevance of this concept.

Theorem 2.1. Let G be a finite group with center of order 1. Let Cy,C5,C4

be conjugacy classes of G such that Ag(Cy,Cs,Cs) is rigid. Let Q(C4,Cy,

Cs) = K. Then there exists a regular extension L of K (t) with
Gal(L/K(t)) ~G.

Furthermore at most 3 points in K (t) ramify in L.

The conclusion of Theorem 2.1 asserts that (1.1) and hence (1.2), (1.3), (1.4)
is true for G. Theorem 2.1 is a special case of results proved by all the authors
mentioned at the beginning of this section. However the various generalizations
can be a bit technical and won’t be discussed here.

Let Fo be a function field of genus g, over the complex numbers and let F
be a finite extension of Fy with [F: Fo] = n. Let g be the genus of F. The
following fundamental formula is due to Hurwitz:

20-2=n(290-2)+ > (e - 1),
where P; ranges over all ramified places in F and e; is the corresponding index
of ramification.

The next result is proved by using Hurwitz’s formula in conjunction with
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Theorem 2.1. See [4] or [9], p. 372.

Theorem 2.2. Let G be a finite group with center of order 1. Let H1 G
with |G: H| =2 or 3. Let Cy # {1}, C,,C3 be conjugacy classes of G with
C3,Cs  H such that Ag(Cy,C2,C3) is rigid. Let K and L be as in Theorem
2.1 and let K(t) € M C L where M corresponds to H. Then M~K (t) and
H is a Galois group over M.

Thompson [13] used Theorem 2.1 to show that the monster is rationally rigid,
and hence is the Galois group of a regular extension of Q(t). Since then several
authors have investigated the various sporadic simple groups, see [6], [7]. Quite
recently H. Pahlings in unpublished work has almost completed this work. It is
now known that if G is a sporadic simple group, G % Mjy3, then (2.1) holds for
G with K = Q. If Gz M, then (2.1) holds for G with K = Q(v-23).

Let H ~ Ag or Ay or a sporadic simple group such that 3 divides the order
of the Schur multiplier of H. Then there is a unique covering group H of H with
center of order 3. In each of these cases there exists a group G with a center
of order 1, such that |G: H| = 2. The existence of G is proved by inspection.
By using recent results of Pahlings, as well as earlier known results [6], [7], and
Theorems 2.1 and 2.2 it can be shown that in each case H satisfies (2.1) with
K = Q. Sce [4]. This is perhaps surprising since rigidity only applies to groups
with trivial center, yet it can be used to handle these groups H with center of
order 3.

3. Serre’s theorem and some consequences
Let n > 4. Then there exists a nonsplit exact sequence
3= Z —+ A — Ap—s (15
where Z has order 2 and Ay, the double cover of Ap, is unique up to isomorphism.

If G is a transitive subgroup of Ap, let G denote the inverse image of G in Ap.
The following result is a special case of a theorem of Serre [10].

Theorem 3.1. Let char K # 2. Let f(z) be an irreducible separable monic
polynomial over K of degree n and let F = K(6) for a root 6 of f(z).
Assume that the discriminant of f(z) is a square in K. Let E be a splitting
field of f(z). Thus G = Gal(E/K) acting on the roots of f(z) is a subgroup
of An. Let T be the trace from F to K and let w be the Witt invariant of the
quadratic form T(z?). Then the following are equivalent.

(i) There exists a Galois extension M of K with E c M and
Gal(M/K)~G.
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(i) w=1.
As an example of how this result may be used I will show that ;{8 is the
Galois group of a regular extension of Q(t).

It is known that there exist polynomials f(z) = z® + az + b over K = Q(t)
whose splitting field is a regular extension of Q(t) with Galois group As. Let 6
be a root of f(z). Then {§* | 0 <4 < 7} is a basis of F over K and T'(6) = 0
for 1 < ¢ < 6. Thus the subspace spanned by 6, 62,82 is a totally isotropic space
orthogonal to 1. Hence F = H 1 V; 1 V,, where V; is spanned by 1 and H is
the direct sum of 3 hyperbolic planes. Therefore T is equivalent to the diagonal
form [1,-1,1,-1,1,-1,8,¢]. Since T has square discriminant ¢ = —8¢2, and so
w=1.

The argument above is due to Serre [10]. A minor variation shows that 2.1)
with K = Q(t) is true for G = Ag;. By using similar polynomials it can be
shown that (1.1) is true for A, in the following cases (see [12], [14]):

n=0 or 1 (modS8);
n=2 and n is the sum of two squares;
n=3 (mod8) and n=azi+ 13+ 2} with (n,z;)=1.
Similar results can be proved for the two double covers of symmetric groups.
By using generalized Laguerre polynomials it can be shown that A5 satlsﬁes

(1.1) with K = @, while A6 and A-, satisfy (1.2) with K = Q. See [3] and some
unpublished results of J.-F. Mestre.

By making use of the duality theorem of Tate and the argument of Section 2
it can also be shown that there exist algebraic number fields K, for n = 6,7 such
that (1.2) is satisfied for 64, with K = K,,. Here 6A,, is the universal central
extension of An. See [4].

It should be emphasized that Serre’s theorem does not cover all central exten-
sions with a center of order 2. For instance if p > 3 is a prime then SL(2,p) is the
universal central extension of the simple group PSL(2,p). If 16 divides the order
of G = PSL(2,p), and G is a transitive subgroup of A, then GrZ, x PSL(2, p).
Hence one can never find extensions with Galois group SL(2,p) by using Serre’s
theorem.

In fact very little is known about the groups SL(2 q) with ¢ a prime power.
The results mentioned above imply that SL(2,5) ~ Ay satisfies (1.1) with K = Q
and SL(2,9) ~ A6 satisfies (1.2) with K = Q. Recently Zeh-Marschke has shown
that SL(2,7) is a Galois group over Q. No group SL(2,¢) with ¢ odd, ¢ > 3,
g #5,7,9 is known to be a Galois group over Q.

By using the results of [1], the author and J.-F. Mestre have also shown that
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M, ,, satisfies (1.2) with K = Q.
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