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Polyhedrons and pi-stable homotopies from
3-manifolds into the plane

Luis E. Mata-Lorenzo

Abstract.  For a stable map from a closed 3-manifold into the plane, its Stein Factorization
gives useful information. Our main result presents the list of changes in the Stein Factorization
of the maps in a generic family of homotopies (the Pi-stable ones).

0. Introduction

Ree’s Theorem, [11], gives information on the topology of the source manifold
M of a stable smooth map f: M — R which has only the simplest singularities:
maxima and minima; in this case M is a sphere. Morse theory (see [11]) also
gives results in this direction.

For 3-manifolds, Biirlet and the De Rham [2] have studied special generic
maps into the plane which have the simplest singularities: the definite folds, and
in this case they also provide important information on the topology of the source
manifolds. In the first section below, we shall present an equivalent form of the
Poincaré Conjecture in dimension three; the equivalence is based on [2].

The results mentioned above raise the problem of simplification of singulari-
ties. The concepts of Stein Factorization and Pi-stable homotopy are studied here
as an approach to achieve this simplification. The concept of Pi-stable homotopy
was presented in [3] and will be discussed in section 2. We now introduce the
concept of Stein Factorization.

Definition. Let f: N — P be a map from a topological space N into a set P.
Consider the equivalence relation on N which identifies any two points of N that
belong to the same connected component of a fiber f~1(p) of f, p € P. Denote
by W (f) que quotient space, and let

¢(f): N - W(f)
denote the quotient map. Finally, let f': W (f) — P be the map that makes the
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following a commutative diagram:

N > P

‘I(f) #
W(f)

This commutative diagram is called the Stein Factorization of f, but we shall
call the quotient space W (f) with the same name.

It is known, see [5], [6], [8], [9] or [10], that for a stable map f from a 3-
manifold into the plane, its Stein Factorization W (f) is a 2-dimensional simplicial
complex (a polyhedron), and f':W (f) — R? is a stratified immersion.

The main result of this paper concerns the Stein Factorization of Pi-stable
homotopies, and can be stated as follows:

Theorem. Let M2 be a closed, orientable 3-manifold and let F: M3 x I — R?

be a Pi-stable homotopy, b € I a point of bifurcation, p € R? the critical value

of bifurcation at b and S(F,) the singular set of the map Fy, = F|M3 x {b}.

Then for € > 0 small enough:

(a) If S(F,) n F; (p) is not contained in a single connected component of
F;Y(p) then W (F,_,) and W (F,,.) are homeomorphic.

(b) If S(Fy) n F;'(p) is contained in a single connected component of
F;Y(p) then W(F,_,) and W (F,,,) can be gotten one from the other
by cutting and pasting. The piece that has to be cut is paired below with
the one to be pasted. The twenty two figures (pairs) shown below present
all the possible transitions if the two orders are considered for each pair.
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1. Maps from closed 3-manifolds into the plane

For smooth maps, the study or knowledge of their singularities yields information
about the mappings themselves, their fibers (or level sets), the topology of the
source manifold etc. In practical terms: with simpler singularities there are more
chances of answering any question about the map. As mentioned in the introduc-
tion, Ree’s Theorem, Morse Theory and [2] are interesting consequences of the
maps having simple singularities.

In the case of mappings from closed 3-manifolds into the plane, the Stable
Maps form an open and dense set in the space of smooth maps (with Whitney
C-topology). The singularities of stable maps are grouped in three types up to
local coordinates, (see [8], Ch. 1).

Definite fold singularities, given by

(z,9,2) = (z,4* + 2%)
Indefinite fold singularities, given by

(z’y:z) s (I’yz - 22)
Cusp singularity (at zero),

(2,9,2) = (z,2y + v* + 2%)

Biirlet and De Rham [2] study special generic maps from closed 3-manifolds into
the plane, described as having only definite folds singularities. In ([2], p. 284), it

is presented the list of all closed 3-manifolds which admit special generic maps.
The following is equivalent to the Poincaré Conjecture in dimension three:

Conjecture. If M is a simply connected, closed, smooth 3-manifold then there
exists a special generic map f from M into the plane.

The equivalence with the better known conjecture is immediate from [2],
because the only simply connected manifold in the list is S3.
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Stable maps have been studied in [5], [6] and [8] using the Stein Factorization.
See ([8], Ch. 1) or ([10], Ch. 1-2) as basic reference on stable maps and the Stein
Factorization or [9] for a brief note on these.

The Stein Factorization W (f) of a stable map f: M3 — R? is a polyhedron
(a 2-dimensional simplicial complex). If M is orientable, the lower dimensional
strata of W (f) provides (see [8], Ch. 1) a complete description of the singularities
of f. If f is special generic as in [2], then W (f) is a surface with boundary. This
boundary corresponds to the definite folds.

Definition. Given two maps f,g: N — P, we say that their Stein Factorizations
are equivalent if there are homeomorphisms h, w and p such that the diagram in
the following figure is commutative:

h
N » N
9(f) q(g)
w
f w{f) > W{g) g
f! g
P - P
p

The fact is that the Stein Factorizations of f and g are equivalent if and only
if f and g are conjugated by homeomorphisms, say f = p~1ogoh. In particular
if two stable maps f,g: M3 — R? are A-equivalent, i.e. right-left equivalent, then
the corresponding W (f) and W (g) are homeomorphic. If W (f) and W (g) are
not homeomorphic, we may want to compare them to investigate the differences
between the singularities of f and g.

On the other hand, if f and g are not A-equivalent it may still happen that
W(f) and W (g) are homeomorphic as the following example would show (in
these cases their singular sets are in some sense identical). Consider M3 = 3,
the unitary 3-sphere in R%. Define f: M3 — R? as the orthogonal projection into
the first copy or R? in R* = R? x R%. The map f is stable; the factoring map
f':W(f) - R? is a homeomorphism into its image (the unit 2-disk, B, in R?).
Next consider a smooth map d:R? — (2,0) — R% — (2,0) without singularities,
which maps Bz onto an annulus in R2, The map g = do f: M3 — R? is stable; the
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polyhedron W (g) is homeomorphic to B, and W ( f), but its image is an annulus,
hence g is not A-equivalent to f because, the number of connected components
of the set of regular values is an invariant of 4-equivalence.

2. Pi-stable homotopies

We shall consider homotopies between stable maps. It is desirable to have homo-
topies which are “simple”.

Chincaro presents in [3], a generic family of homotopies, called Pi-stable
homotopies, which connect any two (homotopic) stable maps. In our case, for
maps into the plane, any two maps are homotopic and the theorem in (131, p. 117)
has the following immediate corollary:

Any two stable maps f,g: M3 — R? can be connected with a Pi-stable
homotopy F: M?® x I — R? which has a finite number of bifurcation points.

A bifurcation point is a value of the parameter, say b € I = [0, 1] such that
Fy: M® — R? is not a stable map. In the case of the corollary above, F, has
a A-codimension one. The homotopy F, when crossing a point of bifurcation,
moves from one A-orbit to another. We may expect changes in the topology of
the polyhedron W (F;) when t runs “over” b € I. This fact shall be investigated
in the next section.

In order to be more precise about what a Pi-stable homotopy is, we shall
content ourselves with describing the non-stable map Fj when b is a bifurcation
point. It may be that F, presents a non-stable (germ) singularity, see (i), (ii) or
(iii) below, or it may fail to satisfy exactly one global stability condition, see (iv),
(v) and (vi). In some sets of local coordinates in M3, about b in I and in R2, the
germ of the homotopy F is given by one of the following (see [3], pp. 115-117),
also ([13], p. 75), (1] and [4]):

(1) Lips.

F(z,y,2,t) = (z,4® + yz? + 22 + yt);
(ii) Beak to Beak.

F(z,y,2,t) = (z,9° - ya* + 2% + yt);
(iii) Swallowtail (first and second kind).

F(z,y,2,t) = (z,y* + yz + 2> + y2t);

The following are the possible codimension one multigerms
(iv) Intersection of a Fold and a Cusp.
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Fiy(z1,91,21,t) = (4] £ 28 +¢,1,)
Fiy (22,42, 22,t) = (23,95 + y222 + 23)
(v) Non-transversal intersection of two folds.
Fu(z1,y1,21,t) = (] £ 2 +t,121)
Fiv (2,y2,22,t) = (3 * 23 — 23, 2,)
(vi) Intersection of three folds.
Fu(z1,91,21,t) = (v§ + 2§ +t,24)
Fiy (22,92, 22,t) = (V3 + 23 + 22, 7,)
Fiv (z3,y3,23,t) = (v3 + 23 — 73,73)

Remark. Only in (i), (ii) and (iii) there is a change in the types of singularitics
occuring in Fy. In the remaining cases the stable singularities cross in a non-stable
manner.

3. The Stein factorization of pi-stable homotopies
In this section we present a proof of the main theorem stated in the introduction.

Let us consider a Pi-stable homotopy F: M?® x I — R? with bifurcation point
b=0e I = [-1,1], and critical value of bifurcation the origin in RZ. We want (o
describe the change in the topology of W (F}) as t goes, from ncgative to positive
values.

Preliminaries of the proof. We shall restrict the homotopy F to a smaller
interval [—e,e] so that b = 0 is the only bifurcation point. This homotopy F
represents a universal unfolding of the codimension one map F,. If we consider
another universal unfolding of Fy, say h, then a thcorem of G. Lassalle (7], p.
220) tells us that: h_. and h, are A-equivalent to say F_, and F., respectively.
Hence, W(h_.) is homeomorphic to W (F_.), and W (h,) is homcomorphic to
W (F.).

We shall look for a universal unfolding h of F, as the one given by the
following lemma,

Lemma 0. Let F: M3 x [—e,e] — R? a universal unfolding of the codimension
one map Fy, as in the statement of the main theorem and with the restriction
Just made above (specifically consider the cases (i) through (vi) above). Let
By be the closed ball of radius r about the origin in R%. Then,

(1) After an appropriate rescaling change of coordinates at the origin in
R?, we can assume that Fy intersects transversally the boundary of Bu.
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9By. It follows that N = Fy1(By) is a smooth, orientable, 3-dimensional
submanifold of M3 (with boundary).

(2) By the transversality condition in (1), F, is a product map when restricted
to some small product neighbourhood of N = F;1(3B,).

(3) There exists a universal unfolding h, of Fy, such that
ht(:z:) = Fo(x), vt € [—e,e] if Fo(z) ¢ B3 C R

Proof. Parts (1) and (2) follow by inspection of the local canonical forms (i)
through (vi) together with a direct application of Ehresmann’s Theorem, see ([8],
p. 7). For part (3), we shall construct the new universal unfolding h: M3 x
[~e,e] = R2. Let us start by considering a small enough neighborhood 0, of
the singularities of F, above the origin in R? (the critical value of bifurcation).
We can assume that in this neighborhood 0, F, has the form given by one of
the local canonical forms of Chincaro ((i) through (vi) above). Consider a small
radius r > 0 such that the 3-dimensional disk of radius 2r is contained in 0 and
Fo(z,y,2) € By if 2 + y? + 27 < 4r%. Let p:[0,00) — [0, 1] be a smooth
function such that u(s) = 1if s < r?, and pu(s) =0 if s > 4r2.
We define h for each of the six cases under consideration as follows.
For cases (i), (ii) and (iii), define
h(z,y,z,t) = F(z,y,2,tu(z? + y* + 2h) if (z,y,2) € 0, and
hs = Fy outside of 0.
For cases (iv) and (v), define
hiy (21,91, 21,1) = Fly (21,41, 21, tp(zd + v} + 22)),
hyy = Fy, if (z1,y1,z1) € 0, and
ht = F, outside of 0.
Finally, for case (vi) we define,
h]U(xlf y1,21,t) = Fiy (21,91, 21, tp(ad + y? + 22))
hy = Fy,
hw = Fw if (z1,y1,71) €0, and
h = Fy outside of 0.

The map h is smooth and if Fo(z) ¢ Bs C R, then hy(z) = Fy(z) by the
construction. The map h is a universal unfolding of F,. This is true, because h
coincides with F in a neighborhood of the singularities of F, above the critical
value of bifurcation (the origin), hence h is also a universal unfolding of Fy, see

[71.
Once the existence of h has been granted (satisfying (3) in Lemma 0), it
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follows immediately that h; satisfies (1) and (2) for ¢ small enough. We shall
restrict h to N = hg 1(By) like in (1) above. The family h; is constant, with
respect to ¢, on the hg-preimage of the annulus By —int(Bs); in particular h_, =
h. on a neighborhood of dN.

According to the cases (i) through (vi) for hg, we have in figures 23 through
28, the pictures of the critical values on By of h_., hg and he, say going from
the left to the right.

Proof of part (a) of the theorem. If the singularities of hq above the origin
of R? do not belong to the same connected component of the ho-fiber the q-
image of those singularities contains at least two points w; and wy in W (hg).
In [10] it is shown that W (hg) is Hausdorff so the points w; and w, can be
separated by disjoint open neighborhoods W, and Wy in W (hg). In fact, by the
construction of h above, we can even take W; uW, = W (hy). We can look
now to the disjoint open submanifolds N; = ¢=1(W,) and N, = ¢~ 1(W,) in N.
In each of these submanifolds the restriction of the unfolding A is a homotopy
of stable maps, hence h_. and h. are 4-equivalent when restricted to the N;’s;
we conclude then that W (h_,) = W(h_¢|n,) UW (h_e|,) is homeomorphic to
W (he) = W (he|n,) UW (he|n,) and part (a) is finished.

Proof of part (b) of the theorem. Now we are assuming that the singularities
of hg, above the origin in R2, belong to the same connected component of the
ho-fiber. This is always true for cases (i), (ii) and (iii).

If N = hy'(B,) is not connected, we shall replace N by the connected
component of hy 1(B,;) that contains the singularities above the origin. Let’s
consider the comparison mapping g of he and h_. (defined in the appendix of
this paper),

g =helh_.:2N - 2B, =S? (2-dim. sphere).
Notice that h satisfies conditions (1) and (2) of Lemma 0 and, he = h_. on some
product neighborhood of d N as remarked after the lemma’s proof; then, sufficient
conditions are satisfied to construct the comparison mapping g. Notice also that
e > 0 can be taken arbitrarily small.

The map g is stable and W (g) is a polyhedron as in [8], [9], [10] or [12].
Locally, g looks like he and/or h_., then the singularities of g are those of h,
and/or h_.. The critical values of g are in the image (by the quotient) of the
critical values of h. and/or h_., in 2B, = SZ.

The reason for introducing the comparison mapping g is that W (g) “contains”
W (he) and W (h_.). In fact, to get W(h.,) and W (h_.) we just have to cut
(appropriately) the polyhedron W (g) in two pieces. On the other hand, W (g)



(ii1)

(1v)

—_
[~
s

sl ICVIINOL
DHOSDOOVO:
SAAIOI]O]

—_
[
S,

=

LUI E. MATA-LORENZO

Fig. 23

Fig. 24

Fig. 25

Fig. 26

Fig. 27

Fig. 28

POLYHEDRONS AND PI-STABLE HOMOTOPIES 5]

is simpler to compute than the pair W (h.) and W (h_.), essentially because W (g)
is just one object (with some structure), while W (h.) and W (h_.) are two ob-
jects (same kind of structure) with some sort of relations between them. I shall
mention that the method of the comparison mapping, may seem too elaborated
for the simple cases (i) through (iv); the fact is that the method does not add
any complications. The real usefulness of the comparison mapping is more evi-
dent by tackling cases (v) and (vi); this can be seen from the long list of figures
(associated to these cases) presented in the statement of the theorem.

The following Lemma is an important step in the analysis that follows.

Lemma 1. Under the hyphotesys of part (b) of the theorem, there exists a
regular value zy € S? of the comparison mapping g, such that g='(z) is
connected (a copy of St).

Proof. See the appendix.

We shall be looking at the connected components of the set of regular val-
ues of g, RV (g). For any connected component R of RV (g), we shall define
a(R) =associated number of R, as the number of connected components of the
g-fiber above any regular value in R. Clearly, a(R) is a well defined non-negative
integer.

Lemma 1 says, that under the hypothesys of part (b), there exists a connected
component R of RV (g) with a(R) = 1. Notice that this may not be simultane-
ously true for h. and h_. (in place of g).

The next step will be to consider a diffeomorphism, the stereographic projec-
tion s:8% — {29} — RZ, from any regular value z, as in the lemma above, and the
map, G:2N - g~1(z) = L — R?, given by

G(z)=s(g(z)), vee L=2N —g71(2).
The space L is an orientable (non-compact) 3-manifold. The map G is smooth,
proper and stable; its singularities are those of g and its critical values are the image
of the critical values of g by the stereographic projection s into R2. Furthermore,
W (g) is the one-point compactification of W (G), hence, if we know W (G) we
can get W(g). The most compelling reason for considering G (and W (G)) instead
of g (and W (g)) is that the new one is easier to represent on paper (drawings).

Let RV (G) be the set of regular values of G in R?. For any connected
component R of RV (G), we can talk about the associated number of R, a(R). By
the construction of G' we have that RV (G) has exactly one unbounded connected
component, call it E (for “exterior”); this connected component E has associated
mimber one. afl Y =1
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Definition. We shall call two connected components R; and R, of RV (G),
adjacent, if the intersection of their closures in R? contains a (non-empty) interval
of critical values of G.

Remark. From previous work on the Stein Factorization of stable maps from
orientable 3-manifolds into the plane, as in [5], [6] or [8], it is known that for
any two adjacent connected components R; and R, of RV (G), their associated
numbers differ exactly by one, i.e. |a(R;) — a(Rz)| = 1. This last remark follows
explicitly from [8], p. 15; it can also be checked that the remark might not be
true if the domain of G is non-orientable.

For any map G, let us consider C RV (G), the set of connected components
of RV (G).

Definition. We shall call an arrangement of associated numbers, to any map
c:CRV (G) — N = non-negative integers, such that for adjacent connected com-
ponents Ry and R, in RV(G), |c¢(Ry) —c(Ry)| = 1 and ¢(E) = 1 for the
unbounded connected component E of RV (G).

There exists only a finite number of such arrangement of associated numbers.
We shall make explicit (in a set of pictures) all the possible arrangements of
associated numbers. This pictorial list also shows, for each figure, the critical
values of G in R? (represented with a heavy line), together with some special
circles (shown with a broken line), which represent “equator lines of $2” whose
meaning will be explained later.

The intention of the pictorial list is, to leave as an exercise for the reader the
following task: for each of the figures in the pictorial list that follows, construct
all the possible polyhedrons W (G) that under the map G': W (G) — RZ, project
onto the pictures\ shown (do not consider the “equator lines”). To accomplish
this, the reader should refer and follow the rules in [8], p. 20, noticing that the
associated number on a connected component R of RV (G), refers to the number
of surface points in the polyhedron W (G) mapped onto each point of R.

The outcome of the above exercise is (almost) that each figure has exactly
one “realization” W (G) (up to homeomorphism). In the case (vi), there are two
excepcional arrangements of associated numbers: the first with associated number
JSour in the middle triangle, which has two (non-homeomorphic) realizations. The
second exception is for the arrangement of associated numbers which has associ-
ated number two for the middle triangle and the three adjacent triangles each with
associated number three; for this one, it does not exist any realization W (G ) that
fits the picture.
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Once the above exercise has been completed, we can say that we know all the
possible W(G)’s. It remais still to get W (h.) and W (h_.). To accomplish this,
there come into play the “equator lines” drawn in the figures. The polyhedron
W (G) has to be cut in two pieces along the G-preimage of the “equator lines™;
getting as a result the twenty two figures, Fig. 1 through Fig. 22, after the statement
of the main theorem.

Comentary. Many possible equator lines have not been drawn, for they do
not produce new pictures, different from the twenty two figures presented in the
statement of the theorem.

Appendix

This appendix contains in its first part the construction of the comparison mapping
of two maps together with its basic properties. The second part contains the proof
of Lemma 1.

The comparison mapping. The comparison mapping of two maps, to be con-
structed here, has been useful in finding “structural” differences between two
maps.

Let (My, M;) and (P, P;) be in the category of topological pairs, and
f:(Mo, M) — (P,,P;) be a continuous map between pairs, ie. M; c M,
and f(M;) c P,.

Definition. A product neighborhood of M, in M, is a homeomorphism (into)
jZMl X [0,1] = Mo with ](x,l) =z, Vze Ml-

Definition. Given a product neighborhood j of M; in M, we shall denote by
2M, the double of My through j, as the quotient space of My x {I} U My x {r}
(disjoint union) by the smallest equivalence relation including (z,0)~(y,r), if
there exists (z,t) € My x [0,1], such that j(2,t) = z, and j(z,1-t) = y.

Claim 1. If (M, 0 M) is a smooth manifold with boundary and 3:0M xI — M
is an embedding, then 2M is a smooth manifold without boundary.
Proof. Left as an exercise.
Now suppose that f,g:(My, M;) — (P, P;) are continuous and
J:Myx[0,1] - My, k:P;x[0,1] - Py

are product neighborhoods. Assume also that the following diagram is commuta-
tive,
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MixI » J(M1X 1)
(f,1d) (g,1d) f g
Pix1I s > k(P1x 1)

Observe that f and g coincide on j(M; x I ) in Mp. With the assumptions
above we define the map f|g:2M, — 2P, called the comparison mapping of f

and g, given by:
flgl(z,0)] = [f(2),)], and
f19l(=,7)l = [9(z),7)], vze My,
where the brackets denote the corresponding equivalence classes.

Claim 2. f|g is well defined and continuous.

Proof. Immediate.
For smooth manifolds with boundary, we have by Claim 1:

Claim 3. In the smooth case f|g is a smooth mapping.
Proof. Locally f|g looks like f and/or g.
Proof of Lemma 1.

Lemma 1. Under the hypothesis of part (b) of the theorem, there exists a
regular value zy € S* of the comparison mapping g, such that 97 1(20) is
connected ( a copy of S!).

Proof. We shall consider again the universal unfolding h restricted to N, h: N x
[~e,e] — R%. Let H be the suspension of h,
H:N x [-e,€e] = R? x [—e, €],
defined by
H(z,t) = (he(z),t), vz € N, Vt € [-e,€].

Observe that (z,t) is a singularity of H if and only if z is a singularity of h,.
The critical values of H, form a finite collection of parametrized (not necessarily
regular) surfaces in R? x [—e,e]. To complete the proof, it is enough to find a
regular value (yp,to) of H, with ¢ty = 0, such that H “yo,t0)(= gt (wo)) is
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connected, for then, taking e = |to|, the comparison map g satisfies that 97 Y(20)
is connected as desired, where z; is the image of yo by the quotient map into
2B, = S2, (2, is a regular value of 9).

At this point, we shall distinguish the first three cases from the last three.

For the cases (i), (ii) and (iii), it is clear, from the right hand side of the
figures 23, 24 and 25, that there are regular values Yo of h. for which h;1(y,) is
connected, say considering y, = (0,1) or (0,-1) € B, € RZ.

For the remaining cases (iv), (v) and (vi), we shall need a longer argument.
From our hypothesis in part (b), we know that all the singularities of hg are
indefinite fold singularities (the same for any h;), except in case (iv) were it
has a cusp singularity. In fact, if a definite fold singularity where present in
the fiber h51(0,0), this alone would form a connected component of that fiber,
contradicting the assumption in part (b).

Let L = h5'(0,0). This fiber L is not a 1-manifold, for it has one, two or
three exceptional points according to the cases (iv), (v) or (vi), respectively. The
exceptional points are the indefinite fold singularities present in the fiber L. A
neighborhood of an exceptional point in L is homeomorphic to the letter “X” (the
shape).

If we move onto a regular value (vo,to) of the suspension H, we get a
fiber Lo = H™1(yo,t0) = h;;}(yo) which is a closed 1-manifold. The transition
from the fiber L to Ly can be thought as a replacement of each exceptional
neighborhood in L by two open segments that join consecutive ends of the “X”,
as the drawing below shows,

We shall call this process, an opening of the exceptional neighborhood. For
any given exceptional neighborhood, we have the two possible openings shown
in the drawing above. To determine the exact opening that will be produced, we
just have to move from one side to the other. of the surface of critical valuec de.
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termined by the singularity in the exceptional neighborhood. Hence, by choosing
appropriately the connected component of the set of regular values of H, we can
produce any (global) opening of the fiber L.

It only remains to prove the following claim.

Claim. Any closed, connected, 1-manifold with a finite number n of excep-
tional points, L, admits a connected opening

Proof. We shall prove the claim by induction on n. If n = 1, then L is home-
omorphic to the figure “8”, which certainly has a connected opening: the letter
“O” (a circle!).

Suppose now that L has k exceptional points Py,..., P,. At P; we make an
arbitrary opening, and we get another space L; which has at most two connected
components. Each connected component If L, satisfies the hypothesis of the
claim, with at most k — 1 exceptional points, then by induction, each one has
a connected opening. If the resulting space is connected, we are done. If this
opening of L, is not connected we undo the opening at P; that we started with,
and as a result we get a space which satisfies the hypothesis of the claim with
exactly one opening; again this one has a connected opening, which is a connected
opening of L.
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