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Singular spaces of matrices
and their application in combinatorics

Laszl6 Lovasz

Abstract. We study linear spaces of nxn matrices in which every matrix is singular.
Examples are given to illustrate that a characterization of such subspaces would solve various
open problems in combinatorics and in computational algebra. Several important special cases
of the problem are solved, although often in disguise.

1. The problem

Let 4 be a linear subspace of the space R™*"™ of real n x n matrices. We say
that A is singular if every matrix in 4 is singular. We are interested in the
problem of characterizing singular spaces of matrices, and in obtaining an efficient
algorithm to determine if a space of matrices (given by a linear basis) is singular.
Unfortunately, we cannot give a complete solution to these problems, but special
cases with combinatorial applications will be solved.

Geometrically, det X = 0 defines a surface in R™*™ and we are interested
in the linear subspaces contained in this surface. Clearly, we may restrict our
attention to the maximal singular subspaces.

The problem arose in differential geometry (see Room (1938)), but my interest
in this problem stems from its connection to matching problems and other funda-
mentals problems in combinatorics. In this context, the problem was formulated
by Edmonds (1967), who pointed out its relevance to combinatorial algorithms
and to the theory of computational complexity.

We may slightly generalize the problem by considering a linear subspace A
of real n x m matrices. We define the generic rank gr(4) of such a subspace as
the maximum rank of matrices in it, and want to find an efficient way to compute
this generic rank, given (say) a basis for 4. (Unfortunately, no really efficient
algorithm is known for this problem, at least if we do not allow randomization.)
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However, it is easy to reduce this seemingly more general problem to the problem
of characterizing singular matrix spaces.

A trivial upper bound on the generic rank is the column range rank Irr(4)
of the matrix space, defined as the dimension of the subspace spanned by all the
columns of all the matrices in 4. This number is easy to compute if we have a
basis of 4. Similarly, we can use the row range rank rrr(4) as an upper bound
on the generic rank.

We mention two further ways to formulate the problem, which are both useful
in some way. First, let Ay,..., A, generate our space 4, and let z,,... , Ty be
variables. Then A(z) = zyA; + -+ z Ay is a matrix, each entry of which is a
linear form in these variables. So det A(z) is a polynomial in these variables and
we want to determine those matrices of linear forms for which this determinant is
identically 0. Let us remark immediately that if the determinant is not identically
O then it is non-zero for almost all choices of the variables. In particular, if we
choose transcendental values for the z; which are algebraically independent over
the field generated by the entries of the A;, then for this particular substitution
det A(z) will be 0 if and only if it is identically 0. Unfortunately, this condition
is of little use, since there is no way to evaluate a determinant with transcendental
entries.

On the other hand, the observation that if det A(z) is not identically O then
almost all substitutions give a non-zero value is of algorithmic interest. If we are
given the matrices A,,...,A;, we can generate random values for z,,... , Tk
(say, from a uniform distribution on [0,1]) and evaluate the resulting numerical
determinant. If the result is non-zero, we conclude that det A(z) is not identically
zero. If the result is zero, we conclude that det A(z) is identically zero.

This conclusion is of course not quite legitimate: we may err. If det A(z) is
identically O, then we of course come to this conclusion. But if it is not identically
0, we may be unlucky enough to hit a root, and come to the wrong conclusion.
However, the probability of this to happen is 0.

Of course, in practice we can not generate random real numbers and compute
with them. If we generate, say, a random integer between 0 and N for each
z; then, no matter how large is N, there will be a positive probability of error.
However, this probability will be very small (see Schwartz 1980), so we may still
regard the problem as practically solved. (Whether one can generate a random
integer in a given interval, or even a random bit, is a difficult question with
physical or even philosophical overtones, and we shall not discuss it here.)

Unfortunately, the above — randomized — algorithm does not give any insight
into the structure of such subspaces. In what follows we shall try to attack this
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more theoretical question.

Finally, we can also formulate the problem like this: let A = (a,;;) be a
k x n x m “3-dimensional matrix”, i.e., a tensor with 3 indices. This defines a
trilinear form a(z,y,2z). We want to find the maximum rank of a bilinear form
obtained by fixing (say) the first variable z. This formulation will lead us to an
interesting open question (see section 5).

2. Examples

Let us discuss some classes of singular subspaces. The first is the most natural
one and is discussed, e.g., in Room (1938).

Example 1. Let U and V be two subspaces of R™ such that dimU = dimV +1.
Let A consist of all n x n matrices A for which AU C V. Clearly, A is a linear
subspace of matrices and every member of it is singular.

This example contains as special cases several other constructions that occur
in a natural way:

— let A be a singular matrix and consider all matrices of the form AX (X €

Rnxn);

— consider all matrices with 0’s in their first row; more generally, all n x n
matrices with a fixed k x (n — k + 1) block of 0s.

A more general way to put this example is the following: Let A be any space
of n x n matrices. For n x n matrices B and C, let BAC dcnote the space of all
matrices BAC, A € A. Then

gr(4) < gr(BAC) + 2n —1k(B) - 1k(C).
In the example, and we can choose B and C trivially so that BAC = 0 and
1k(B) + 1k(C) > n. Then the inequality gives gr(4) < n.

This idea can be used, more generally, to construct new matrix spaces with
low generic rank from a given matrix space with low generic rank. Let A be a
space of n x m matrices of generic rank r. Let 4’ be the set of all n x (m + k)
matrices that arise from some matrix in A4 by adding k new columns arbitrarily.
Then A’ is a matrix space of generic rank r + k.

There is of course a dual form of this construction, corresponding to adding
new rows to a matrix.

Example 2. If nis odd then the space Sy, of all skew symmetric n x n matrices
is singular. More generally, if a space A of skew symmetric matrices has odd
column range rank then

gr(4) <Irr(4) - 1.
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The next example gives a construction to combine matrix subspaces with a
low generic rank into a new subspace of such kind.

Example 3. Let 4; and 4, be matrix spaces of the same dimensions. Define
A+ Ay = {A; + A, A; € 4;}. Then

gr(A1 + 42) < gr4; +gr 4,.

Our last example we give is of a somewhat different, more special kind. We
will see, however, that it also has important applications.

Example 4. Let Ay,... , A; be skew symmetric n x n matrices. Let 4 consist of
all n x n matrices that arise in the form [Az,... , Anz|, where z ranges through
R™. Then 4 is a singular space of matrices. To see this, observe that each matrix
A= [Ajz,... yAnz| in 4 satisfies zT A = 0. More generally, it is not difficult
to show that if such a matrix space 4 is not the 0 space then

gr(4) <lrr(4) -1

We could generalize this construction: let A,,... ,Ap be skew symmetric
n x n matrices, by,... ,bp € R™, arbitrary vectors. Consider all matrices of the
form 2{;1 A‘-xb?, where z € R™. Clearly, these form a matrix space in which
each matrix has rank less than n.

3. Some results

A complete characterization of singular matrix spaces seems to be unknown. There
are, however, some results that show that under certain restrictions, singular (or
low generic rank) matrix spaces arise by the constructions described in the previous
section. As we shall see, these results were first obtained in a combinatorial
framework, and correspondingly, the assumptions one has to make on the matrices
involved concern some properties of the matrices generating the subspace. It
is possible that there are conditions of an entirely different nature under which
analogous results can be obtained.

Theorem 1. Assume that the singular matrix space A is generated by rank 1
matrices. Then it arises by the construction in Example 1 above.

There is a slightly more general way to formulate this theorem:

Theorem 1*. Let 4 C R**™ be a matrix space generated by rank 1 matrices.
Then

gr(4) = min{n — dimU + dim(4U) | U c R™}.

This theorem follows quite easily from the the Matroid Intersection Theorem
of Edmonds (1970). In fact, we only need the special case when the matroids in
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question are linear, which can be formulated without any reference to matroids:

Theorem 2. (Edmonds 1970.) Let ay,...,ap € R* and b,,... by, € R'. The
maximum number s os indices 1 < iy < --- < 1y < p such that both sets of
vectors {a;,...,a;,} and {b; ,...,b;} are linearly independent is given by
s =min{dimlin{a;: 5 € J}+
+dimlin{b;:5 € {1,... ,n}\J}: J C {1,... ,n}}.

To derive Theorem 1* from Theorem 2, consider the rank 1 matrices gener-
ating the space: these can be written as alb{, ... ,a,,b,’,'. Let s denote the largest
integer such that there are s linearly independent vectors among the a; such that
the corresponding b; are also linearly independent. Without loss of generality we
may assume that these are ay,... ,a, and by, ... ,bs, respectively. Now the ma-
trix a,b7 + -+ a,b7 has rank s by elementary linear algebra, and so gr 4 > s.
On the other hand, Theorem 3 implies that there exists a subset J C {1,... ,n}
such that

s=dimlin{a;:5e J} + dimlin{b;:5 € {1,... ,p}\J}.
Now denote U = {z € R™alz = 0 forallj € J}. Then AU C lin{b;: 5 €
{1,...,n}\J}. So
n—dimU +dim AU = n - (n — dimlin{a;:5 € J}) + dimlin{b;:5 € J} = s.
Hence, gr4 > n —dimU + dim AU. Since the opposite inequality is obvious,
this proves the theorem.

Our next theorem shows that if the matrix space is generated by rank 2 skew
symmetric matrices then its generic rank is still determined by the constructions
given in the previous section:

Theorem 3. Let 4 C R™™ be a matrix space generated by skew symmetric
matrices with rank 2. Then

(@) If B is any n xn matrix and 4,,..., 4, are spaces of skew symmetric
n x n matrices with odd column range rank such that

BTABC a1+ -+ Ay,
then we have
gr(4) < 2rk(B) -2n+ ) (Irr(4) - 1).
i

() There exists 4y ... 4 and B for which equality holds in (a).

This theorem again follows from a combinatorial result (Lovdsz 1980a-b),
which is sometimes called the “matroid parity theorem”.

Theorem 4. Let a1.bi.a0.bo.... .an.bn € R*. Then the maximum number
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s of indices 1 < 1) < --- < 1, < p such that a;
independent is given by

k
8 = min {dimW + Z
i=1
where W ranges over all subspaces of R*, {H,,...,H,} ranges over all
partitions of {1,...,p}, and (H; u W) denotes the subspace generated by
{a,-:i € H;}, {b,’li. € H.} and W.

This theorem remais valid if we replace the real field by any other fiecld. On
the other hand, it is not valid in general for matroids. In fact, to compute the
maximum in the theorem takes exponencial time (Lovasz 1980c, Jensen and Korte
1982). But there are some classes of matroides to which it extends. The following
version can be formulated without using matroid theoretical notions: if we replace
the vector space by an algebraically closed field, linear independence by
algebraic independence, dimension by transcendence degree, and subspace
by algebraically closed subfield, then the result corresponding to Theorem 4
holds (Dress and Lovasz 1987). For a discussion of those matroids for which this
min-max result extends, see also Bjorer and Lovdsz (1987).

iy30iys- -+ 28y, b;, are linearly

)

[dim(HluW) —dimWJ}
2

To derive Theorem 4 from Theorem 3, consider the rank 2 skew symmetric
matrices generating the space. These can be written as
a b7 - byaf,... Japbg = bpal
Let a;,b; ,...,a;,,b;, be a largest family of pairs a;,b; that are collectively
linearly mdependent It is obvious that the matrix space spanned by a; bT et
a;, b:‘" has generic rank 2s. On the other hand, consider the subspace W and
the partition {H;} for which the minimum in the Theorem 4 is attained. If we
choose any n x n matrix with null space W as B, and the space generated by the
matrices {B7 (a; b7 —b;aT)B:j € H;} as 4;, then equality is attained in (a).

We state one more class of matrix spaces for which the generic rank can be
determined. These are the subspaces considered in Example 5, again with the
restriction that the matrices in the definition have rank 2:

Theorem 5. Let A,,. .., Ap be skew symmetric n x n matrices of rank 2. Let
A consist of all nx n matrices that arise in the form [A;z,... , Apz), where
z ranges through R™. For every partition P = JyU---u J, of the index set
{1,...,p}, let A; denote the matrix space formed by the columns in J;. Then

gr A = min {Z(lrr(ﬂ;) - 1)} .

Again, there is a corresponding result in matroid theory that implies this
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theorem. Variants of this were discovered by Edmonds (1970), Mason (1976)
and Lovdsz (1977); see also Mason (1981). Let us say that a hyperplane H is in
general position with respect to a family 7 of subspaces if there exists a subficld
K of R such that each of the given subspaces has a basis with coordinates in
K and H is defined by an equation ). o;z; = 0, where the coefficients «; are
algebraically independent over K.

Theorem 6. Let 7 be a family of subspaces of R™* and H, a hyperplane in
general position with respect to 7. Let Q be the subspace spanned by all
subspaces of the form AnH, Ae 7. Then

dimQ = mln { Z (dim(%) - 1)},
TRk
where {#,... %} ranges over all partitions of 7.

4. Combinatorial applications

a) Matchings. Perhaps the nicest combinatorial applications of the methods
and results from the previous sections are in matching thcory. The fundamental
problem in this field is the following: given a graph G, decide whether or not it
has a perfect matching, i.e., a set of disjoint edges covering cvery node. This
problem, by no means easy, has both mathematically beautiful and practically
efficient solutions. For these, we refer e.g. to the monograph Lovész and Plummer
(1987).

However, the connection between linear algebra and the matching problem
has gone through a reverse route. The first necessary and sufficient condition for
the existence of a perfect matching in a bipartite graph was formulated in terms
of linear algebra and proved using methods from linear algebra by Frobenius
(1917). The problem itself grew out from the study of determinants. It was Konig
(1916) who (in connection with an earlier, related result of Frobenius) observed
that determinant problems can be formulated and handled in terms of graphs.
(For more on the history of this basic theorem, see Lovdsz and Plummer 1986).
Besides the necessary and sufficient condition which now occurs in every graph
theory book (and is called the Marriage Theorem or the Konig-Hall Theorem),
the work of Konig also implied the following (easy) result. Let G be a bipartite
graph with bipartition {A, B}. Since we are interested in perfect maichings, we
assume that |A| = |B|. Consider a variable z. for each edge e. Let Fg = { fis}
denote the matrix shose rows are indexed by the elements of A, whose columns
are indexed by the elements of B and

ze, if e=1j€ E(G),
fi;= {

n if 1 and 4 are nan_adiacent
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Theorem 7. A bipartite graph G has a perfect matching if and only if det(Fg)
is not identically 0.

Note that the matrices obtained by substituting for the z. in all possible ways
form a matrix space generated by the rank 1 matrices having a single 1 in a
position corresponding to an edge. Theorem 7 says that the graph has a perfect
matching iff this matrix space is non- singular.

As Edmonds (1967) points out, this theorem can be used to obtain an easy
randomized algorithm for bipartite matching: substitute random numbers for the
variables and evaluate the determinant. This algorithm does not directly supply
us with a perfect matching; but if we have a test for the existence of a perfect
matching, it is easy to actually find one: for a given node v, we look for an
adjacent node u such that G — u — v has a perfect matching (such a node u must
exist if G itself has a perfect matching). Then we put the edge uv in the perfect
matching and, recurrently, find a perfect matching in G — u — v. (This last trivial
procedure breaks down in a parallel environment, as we shall see soon.)

It was remarked in Lovasz (1979) that the preceding algorithm can be ex-
tended to non-bipartite graphs, using a result in the groundbreaking paper of
Tutte (1947). The main result of his paper is a celebrated combinatorial condition
on the existence of a perfect matching, but along the lines Tutte also proved the
following algebraic condition. Given a graph G, associate again a variable z.
with each edge e. Let T = (t;;) denote the skew symmetric matrix whose rows
and columns are indexed by the node set V(G) = {1,... ,n}, and

z., if e=i7€E(G) and 1<y
tij =1 —Z, if e=17€ E(G) and 1> j
0, if ¢+ and 7 are non-adjacent.

Theorem 8. The graph G has a perfect matching if and only if det(Tg) is
not identically 0.

Again, the matrices obtained from T by substitution form a matrix space; in
this case, this matrix space is generated by rank 2 skew symmetric matrices.

One can derive the Marriage Theorem and Tutte’s Theorem from Theorems
1 and 3, respectively; but the proofs obtained are lengthy and not too attractive.
Also, one can use the remarks in section 1 to design a rather simple algorithm
to test a graph for the existence of a perfect matching. The worst case running
time of this algorithm (if we use advanced determinant evaluation techniques),
is comparable with the best implementations of Edmonds’ blossom algorithm
and other combinatorial algorithms (about n2-5). But due to the facts that they
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are always this slow, use randomization, and that numerical difficulties also arise,
these algorithms remained curiosities until the study of parallel algorithms became
fashionable. It turns out that determinant evaluation can be parallelized essentially
optimally: a polynomial number of processors can solve the problem in polylog
time (Csanky 1976). Every algorithm known to date to test the existence of
a perfect matching that is well parallelizable is based on this linear algebraic
formulation of the problem.

Let us remark that even if this test tells us that the graph has a perfect matching,
it does not give us one. There is a trivial recursive procedure to use this test in
an algorithm to find a perfect matching, but this is not parallelizable. Karp,
Upfal and Wigderson (1985) show in a very general setting that (with a further
randomization) this weighted matching algorithm can be used to actually find a
perfect matching (if it exists) in parallel. Mulmuley, Vazirani and Vazirani (1986)
illustrated the power of linear algebraic techniques, by designing a very nice and
simple, more direct algorithm to find a perfect matching in a graph in polylog
time, using a polynomial number of processors.

b) Structural rigidity. Let G be a graph. We want to realize G by a bar-and-
joint structure: the nodes of G will be represented by flexible joints, adjacent
nodes must be connected by rigid bars. Will the resulting structure be rigid?

This question is not yet well defined, since we can place the points in many
positions. Let us assume that we place them now in general position, say, their
coordinates are algebraically independent real numbers (in a sense this is the most
“rigid” situation, but I do not want to go into the details of this theory). It is easy
to see that the rigidity of this “general position” structure does not depend on the
choice of these coordinates.

Let us give a heuristic argument for the translation of this problem into linear
algebra; the arguments can be made precise by using elements of the theory of
differential equations. Suppose that we are working in the plane. Also suppose
that our structure is not rigid, and consider a motion of it. Let zy(t) denote the
position of node v at time ¢. Then the fact that the bars are rigid says that for
every edge uv € E(G),

(zu(t) — zv(t))? = const.
Differentiating, we get
(zu, o xu)(iu — ﬂ.:u) = 0

This may be viewed as a system of homogeneus linear equations on the velocity
vectors z, of the nodes. This system always has non-trivial solutions, e.g. we
can take zy the same for all nodes: this corresponds to translating the structure.
We also obtain a solution from rotating the structure. If the structure is non-rigid.
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we obtain further solutions, i.e., the solution space of the system is more than
3-dimensional. Conversely, one can show that if the solution space has dimension
larger than 3, then the structure is non-rigid.

If we write out the matrix of the above system, we obtain an m x 2n matrix,
where m is the number of edges and n is the number of nodes of the graph.
There is one row corresponding to each edge and two columns corresponding
to each node, one for the z-coordinate and one for the y-coordinate. The row
corresponding to an edge uv has z, — zy in the position corresponding (0 Ty, Ty —
Ty in the position corresponding to zu,yv — yu in the position corresponding to
Yv, Yu — Yo in the position corresponding to y, and O elsewhere. If we substitute
all possible values for the z, and yu, we obtain a matrix space Ag, and the
structure is rigid if and only if gr(4g) = 2n - 3. (Exercise: show by algebra that
< always holds.)

This matrix space has a very special structure. Consider its transpose, and the
column corresponding to the edge e = uv. We introduce an orientation of this
graph just for reference purposes. Let b, denote the oriented incidence vector of
this edge, i.e., the vector indexed by the nodes in which the u-th coordinate is
1, the v-th is —1, and the rest 0. Let z and y denote the column vectors formed
by the first and second coordinates of the nodes, respectively. Then the column

corresponding to e is
bebTx
bebly)

Clearly, matrices arising in this way form a linear space. Moreover, we can write
the e-th column in the following form:

(o) (3)
—bebz 0 y /)

So this matrix space has the structure of Example 4, with the A; having rank 2.
Hence Theorem 5 can be applied. We do not go through the details (see Lovdsz

and Yemini (1982)), but formulate only the condition derived from this theorem
(essentially equivalent to the results of Laman (1970)):

Theorem 9. A graph G is generic rigid in the plane if and only if it has
the following property: adding any new edge, the resulting graph has two
edge-disjoint spanning trees.

c) Polynomial identities. Let f(zy,...,zn) be a polynomial with integral
coefficients. Is f identically 0? This question has a trivial answer, taught in high
schools: the polynomial is identically O iff eliminating all parentheses, all terms
cancel. While for simple identities this is a very useful decision procedure, it
may take exponential time, (measured in the length of the formula for f). For
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example, if we want to verify the trivial identity
II @+z)- I (m+=)=0
1<i<j<n 1<i<j<n
by eliminating the parentheses, then we obtain exponentially many terms (before
they all cancel).

It is not known whether there exists a polynomial time procedure to verify
polynomial identities! (If we allow randomization, then there is one: just substitute
random values for the z;). One can show, however, that the problem reduces to
the singular subspace problem. In fact, Valiant (1979) describes a construction
that represents every polynomial as the determinant of a matrix in which each
entry is either a variable or a constant. Moreover, the construction can be carried
out in polynomial time. After a trivial homogenization, this gives a matrix space
and the polynomial is identically O iff this space is singular.

Note that the determinant of every matrix space is of course a polynomial in
variables zy,... ,zn if we represent the typical matrix in the space as zqa A;+- - -+
znAn, where the A; are the generators of the space. This polynomial however
cannot be written in general as polynomial of polynomial length (at least no such
formula is known, and it is conjectured that no such formula exists). So matrix
spaces arising in this construction are of a special kind.

5. Open problems

a. The central problem in this area is, of course, to characterize singular matrix
spaces (or, more generally, to characterize the generic rank of a matrix space).
If the matrix space is given by its generators, and these generators are, say,
integral matrices, then the problem of deciding whether the space is non-singular
is, trivially, in ¥ P from the point of view of complexity theory: if the space is
non-singular then this is easily exhibited by specifying a linear combination of
the generators that is non-singular. Theorems 1, 3 and 5 are special cases when
the problem is also in co-NP. There is no hope to prove that the problem is
N P-complete, since as remarked at the beginning, there is a simple polynomial
time randomized algorithm to solve it, i.e., the problem is in the class R P (and it
is believed that RP = N P).

b. A more modest program is to find further special cases for which the problem
is in co-NP or in p. Perhaps the most important from the point of view of
applications would be to extend the application to rigidity theory to dimension 3.
Which graphs have the property that the generic joint-and-bar structure realizing
them in 3-space is rigid? ( Of course, one could extend the problem to any
dimension.)
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The discussion generalizes from the plane and yields that the task is to de-
termine the generic rank of the space of matrices with 3 mod V(G) rows and
|E(G)| columns of the form

b.bT z

bebTy

bbT 2
Unfortunately, no way is known to transform this matrix space into one of the
types that are known to be solvable.

c. It is natural to ask if any of the solvable classes described in section 3 can be
generalized. For example, can one characterize singular matrix spaces generated
by rank 2 matrices? Or can one give a formula for the generic rank of a matrix
space in the second (generalized) construction in Example 5, where the A; are
rank 2 skew symmetric matrices?

d. A very important special case is the problem of polynomial identities, discussed
in section 4. Is there a good way to recognize which polynomials are identically
0? Do matrix spaces arising from polynomials have a more natural description?

e. Note that if we formulate theorems 3 and S in terms of 3-tensors, we obtain that
they concern essentially the same class of tensors. Namely, they concern those
3-dimensional arrays (a; ; ;) in which fixing ¢ we obtain a rank 2 skew symmetric
matrix. In one case, however, we consider the matrix space 2-i ajx; while in
the other, we consider 2, aijxZ;. But there is no immediate connection between
the two results. Is there a connection between the matrix spaces ) a,;;; and
>jaikz; for a general 3-dimensional array? Assuming we can compute the
generic rank of one, does it help in computing the generic rank of the other?
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